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Abstract
Free zinc is involved in signal transduction within mammalian cells, acting as a second messenger. Gold standard for its analysis
is currently the use of metal-responsive fluorescent probes. The present study elucidates the impact of instrumentation used for
measuring the resulting fluorescence. The free zinc concentration of THP-1 cells loaded with the fluorescent probes Zinpyr-1
(ZP1) or Fluozin-3 AM (FZ3) was determined using a microplate reader (MPR) and a flow cytometer (FC). Depending on the
instrumentation, either low nanomolar (MPR) or picomolar (FC) concentrations of free zinc were observed. The concentrations
measured from identical samples by MPR were about 40 (ZP1) or 165 (FZ3) times higher compared with FC. These results
demonstrate that the choice of instrumentation has a fundamental impact on the determination of intracellular free zinc concen-
trations by low molecular weight fluorescent probes.
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Introduction

Zinc ions play a crucial role in numerous signaling pathways.
Changes in free zinc concentrations are involved in intercel-
lular communication and act as a second messenger for trans-
mitting information within cells [1, 2]. In this context, the
determination of the intracellular free zinc concentration is
of great significance.

Fluorescent probes are useful tools for detection and quan-
tification of metal ions. Their functional principle is based on
the binding of the analyte to a metal-specific binding site,
inducing an alteration of the optical properties of an attached
fluorophore. For detailed information on fluorescent metal ion
sensors, the reader is referred to review articles on this subject
(e.g., [3, 4]). For zinc, the two cell-permeable and zinc-
selective fluorescent probes Zinpyr-1 (ZP1) and Fluozin-3
AM ester (FZ3) are commonly used for determining the free
zinc concentration in cells. Here, the term “free zinc”

describes the zinc pool that is not tightly bound to proteins,
but relatively weakly bound to low molecular weight ligands
[5, 6]. In order to quantify the free zinc concentration, the
following equation by Grynkiewicz et al. can be applied for
non-ratiometric probes such as FZ3 and ZP1 [7]:

Zn2þ
� � ¼ KD � F−Fmin

Fmax−F

Herein, KD indicates the dissociation constant of the
zinc:probe complex, F represents the fluorescence of the
probe induced by free zinc present in the cell, Fmin the auto-
fluorescence of the probe in the absence of zinc, and Fmax the
maximum fluorescence of the zinc-saturated probe.

The fluorescence intensity is typically measured by either
one of two different types of instruments, microplate readers
(MPR) or flow cytometers (FC). This study examines whether
the resulting free zinc concentrations are comparable when
different techniques are used.

Materials and Methods

Materials

Bovine serum albumin (BSA) (Sigma-Aldrich, Germany);
Dulbecco’s Modified Eagles Medium (DMEM) (PAN-
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Biotech, Germany); fetal calf serum (FCS) (CCPro,
Germany); Fluozin-3 AM ester (FZ3) (Thermo Fisher
Scientific, USA) N,N,N′,N′-tetrakis(2-pyridinylmethyl)-1,2-
ethanediamine (TPEN) (Sigma-Aldrich, Germany); Zinpyr-1
(ZP1) (Santa Cruz Biotechnology, USA); ZnSO4 • 7 H2O
(Sigma-Aldrich, Germany). All other chemicals were pur-
chased from standard sources.

Cell Culture

THP-1 cells (obtained from Leibniz Institute DSMZ-German
Collection of Microorganisms and Cell Cultures GmbH,
Germany) were cultured in DMEM, containing FCS (10%),
penicillin (100 U/mL), and streptomycin (100 μg/mL) at
37 °C, 5% CO2, and humidified atmosphere. The medium
was changed every two to three days.

Fluorescence Staining and Incubation of the Cells

THP-1 cells were seeded into 96-well plates (2 × 105 cells/per
well in 200 μL assay buffer; 120 mM NaCl, 5.4 mM KCl,
5 mM glucose, 1 mM CaCl2, 1 mMMgCl2, 1 mMNaH2PO4,
10 mM HEPES, pH 7.35), centrifuged (5 min at 166 rcf) and
the supernatant removed. Subsequently, cells were incubated
with incubation buffer (assay buffer with 0.3% BSA), either
200 μL containing 0.5 μM ZP1 or 50 μL containing 1.0 μM
FZ3, for 30 min at 37 °C, 5% CO2, and humidified atmo-
sphere. Cells were then washed once with assay buffer to
remove extracellular probe before addition of 200 μL assay
buffer alone (F), or supplemented either with the chelator
TPEN (1–100 μM) or the ionophore sodium pyrithione
(NaPyr, 25 μM) and ZnSO4 (1–500 μM) to induce Fmin or
Fmax, respectively. Cells were incubated for additional 30 min
at 37 °C, 5% CO2, and humidified atmosphere before measur-
ing fluorescence intensity.

Measurement of Fluorescence Intensity

Fluorescence intensity was first measured by MPR (ZP1:
Infinite M200, Tecan, Switzerland, FZ3: SPARK, Tecan,
Switzerland) (ZP1: λex 492 nm, λem = 527 nm; FZ3: λex
490 nm, λem = 515 nm). Subsequently, 96-well plates were
directly transferred into the FC (CytoFLEX, Beckman
Coulter, Germany) and single-cell fluorescence measured at
λex 488 nm and a band-pass filter at 525/40 nm.

Results and Discussion

The apparent free zinc concentration of THP-1 cells varies
considerably depending on the instrument used for measuring
zinc-dependent fluorescence. For ZP1, fluorescence intensity
values measured by MPR (1.05 ± 0.30 nM) yielded about 40

times higher values for free zinc compared with FC (0.027 ±
0.006 nM) even though identical samples were investigated.
Applying the equation by Grynkiewicz et al., the calculated
result is influenced by the relative ratios of F to Fmin and Fmax

toF [7]. To induceFmin, the zinc chelator TPENwas used. For
both instruments, concentrations from 1 to 100 μM resulted in
a comparable ratio of Fmin to F of about 0.5 (Fig. 1a). In
contrast, the ratio of Fmax to F differs between MPR and FC
(Fig. 1b). A higher ratio, as in the case of the FC, results in
lower calculated free zinc concentrations.

Comparable observations were made with another zinc-
selective probe, FZ3. Free zinc determined by MPR (10.38
± 5.37 nM) was 165 times higher than by FC (0.063 ±
0.012 nM). As for ZP1, the ratio of Fmax to F is substantially
higher when measured by FC (Fig. 1d). In addition, the ratio
of Fmin to F also differs slightly between approximately 0.2
for MPR and 0.5 for FC (Fig. 1c), contributing to the differ-
ence of the calculated free zinc concentrations between the
two instruments as a lower ratio of Fmin to F results in higher
calculated values for free zinc.

In addition to the variance between different instruments,
the calculated free zinc concentrations also differ between ZP1
and FZ3, when these are measured on the same device. Even
though the probes have different affinities for zinc, with FZ3
being the lower affinity probe (KD 8.9 nM) compared with
ZP1 (KD 0.7 nM) [8, 9], comparable values would have to be
expected. However, this only applies if both probes localize to
the same intracellular compartments. It has repeatedly been
shown that this is not the case for ZP1 and FZ3 [10, 11], so
the present data do not allow an evaluation of the effect that
the choice of different fluorescent probes may have on the
resulting free zinc concentration. Notably, in human serum,
where compartmentalization is not an issue, FZ3 and ZP1
yield comparable free zinc values, indicating that both probes
do give according results (data not shown).

The effect has been observed with two different zinc-
selective fluorescent probes, indicating that it is not a particu-
larity of ZP1 and FZ3, but more likely a general observation
that is relevant for other probes, as well, not even being limited
to zinc-selective probes. Accordingly, different ratios of fluo-
rescence intensity values between MPR and FC for fluores-
cent probe–loaded cells, after inducing fluorescence intensity
by identical treatment, have also been described by Pasquier
et al. analyzing human breast cancer cells with the fluorescent
probe Calcein acetoxymethyl ester. The ratio relative to un-
treated control cells is reported to be higher by FC than by
MPR, and the difference between the two measurement ap-
proaches amplified with increasing fluorescence intensity
[12].

To our knowledge, parallel measurements of free zinc by
MPR and FC in the same samples have not been previously
reported. Still, a higher calculated free zinc concentration
resulting from measurements by MPR compared with FC
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seems to be a recurring pattern in the literature. The results of
different studies that are comparable with regard to their ex-
perimental setup typically show nanomolar free zinc concen-
trations by MPR, while FC yields sub-nanomolar concentra-
tions. In HL-60 cells incubated with FZ3, Dubben et al.

determined a free zinc concentration of 1.75 ± 0.61 nM using
an MPR, whereas Wessels et al. reported approximately
0.04 nM using a FC [13, 14]. In monocytes and lymphocytes
from peripheral venous blood incubated with FZ3, the calcu-
lated free zinc concentrations were approximately 2.5 nM and

Fig. 1 Relative fluorescence intensity of fluorescent probe–loaded THP-
1 cells measured by MPR and FC. THP-1 cells were incubated with a, b
ZP1 (0.5μM) or c, d FZ3 (1.0μM) in incubation buffer before addition of
either 200 μL assay buffer alone (0 μM) or containing a, c 1–100 μM

TPEN or b, d 25 μMNaPyr and 1–500 μMZnSO4. Cells were incubated
for 30 min before read-out of fluorescence intensity by MPR and FC.
Data are shown relative to F (fluorescence intensity of 0 μMZnSO4) and
represent means + SD of n = 3 independent experiments

Fig. 2 Difference between zinc-induced increase in fluorescence
intensity by FC and MPR plotted against the mean. THP-1 cells were
incubated with a ZP1 (0.5 μM) or b FZ3 (1.0 μM) in incubation buffer
before addition of either 200 μL assay buffer alone (F) or containing

25 μM NaPyr and 1–500 μM ZnSO4 (FZnSO4). Cells were incubated
for 30 min before read-out of fluorescence intensity by MPR and FC.
Data represent means of n = 3 independent experiments
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4.4 nM determined by MPR, compared with 0.17 ± 0.06 nM
and 0.35 ± 0.07 nM by FC, respectively [15, 16].

In the present study, identical single-cell suspensions were
analyzed by two different instruments; therefore, the cause of
the observed differences must lie in the instrumentation.
When comparing the results of two methods, Bland and
Altman suggest plotting the differences against the mean as
this allows conclusions about the comparability of the
methods [17]. As F represents the fluorescence intensity in-
duced by free intracellular zinc and FZnSO4 the fluorescence
intensity induced by incubation with increasing zinc concen-
trations, the value for F is constant while FZnSO4, and thereby
the ratio of FZnSO4 to F, increases when ZnSO4 is added. In
Fig. 2, a proportional increase of the ratios of FZnSO4 to F
determined by MPR and FC would lead to a constant relation
between the difference of the ratios determined by both
methods (depicted on the y-axis) to their means (shown on
the x-axis). This is not the case for either fluorescent probe.
There is a smaller increase of FZnSO4 by MPR than by FC,
indicating a decreasing sensitivity of the MPR for higher fluo-
rescence intensity, compared with FC. Such an observation
has also been made by Pasquier et al. in a comparable context
[12] and has to be considered when trying to explain the ob-
served discrepancies.

An MPR light passes through the single-cell suspension
and fluorescence intensity is recorded as the sum of zinc-
bound ZP1 molecules within a well. Neither during data
recording nor data processing it is possible to gain any
further information, such as size or intactness of the re-
spective cells that are source of the fluorescence signal.
On the other hand, in a FC, the cells pass a laser one by
one. In addition to fluorescence intensity, information
about size and granularity is measured and can be assigned
to each recorded event. As a result, it is possible to select
cells of interest for subsequent data processing, which is a
common procedure for flow cytometry and often referred
to as gating, shown as an example in Fig. 3 g. Subsequent
analysis is then based on fluorescence intensity values
from these gated cells only, instead of all measured events.
This had been performed with the FC data shown in Fig. 1
to exclude cell debris.

Using fluorescence signals from all events measured by the
FC instead of gated data results in higher calculated free zinc
concentrations for ZP1 (0.037 ± 0.006 nM instead of 0.027 ±
0.006 nM) and FZ3 (0.077 ± 0.012 nM instead of 0.027 ±
0.006 nM). For both probes, the ratio of Fmin to F is compa-
rable between gated and ungated data (Fig. 3a, d), whereas the
ratio of Fmax to F is smaller without gating (Fig. 3b, e). This
ratio decreases either when the value for F gets bigger or the
value for Fmax gets smaller. Here, the absolute values for both
F and Fmax are smaller for ungated datasets (Fig. 3c, f).
Inclusion of cell debris, which would otherwise be eliminated
by the gating process, results in a lower median of ungated
fluorescence intensity values compared with the gated dataset.
Proportionally, the decrease of Fmax is bigger than the de-
crease of F, so the smaller ratio of Fmax to F in ungated data
is caused by a smaller Fmax. Excluding cell debris in FC might
therefore contribute to the observed differences between both
instruments. However, this effect due to data processing is
relatively small compared with the overall differences in cal-
culated free zinc concentrations observed between MPR and
FC, and cannot be seen as the sole reason for this discrepancy.
As FC measures individual cellular fluorescence, while MPR
records bulk fluorescence within a well, the latter would also
be prone for measuring cell fragments too small to be recorded
by FC, at all, and even extracellular fluorescence. Cells were
washed to remove extracellular dye, but still probe could be
released through leakage during the experiment, which might
be a source of considerable perturbation for MPR measure-
ments. Finally, differences in the excitation and detection of
the fluorescence signal, based on the different technological
setups, may also contribute to the differences in fluorescence
intensity ratios and resulting free zinc concentrations when
comparing MPR and FC.

Conclusion

Both MPR and FC can be used to detect the fluorescence
intensity of cells incubated with zinc ion-sensitive fluorescent
probes. For some experiments, the choice between MPR and
FC is of lesser importance, e.g., when only trends or relative
changes are investigated. Here, aspects such as instrument
availability, sample throughput, or coefficient of variation
can be taken as decisive factors. However, when these values
are used for quantification of the intracellular free zinc con-
centration, the choice of instrumentation critically impacts the
obtained values. This factor also needs to be considered when
comparing literature results obtained using different measure-
ment approaches.

The most important question, which instrument gives a
better representation of the actual free zinc concentration, re-
mains unsolved. The present study cannot provide a definitive
answer, as the true intracellular zinc concentrations are not

�Fig. 3 Comparison of different data processing of fluorescence intensity
values of fluorescent probe–loaded THP-1 cells measured by FC. THP-1
cells were incubated with ZP1 (0.5 μM) (a, c, e, g) or FZ3 (1.0 μM) (b, d,
f) in incubation buffer before addition of either 200 μL assay buffer alone
(0 μM) (g) or containing 1–100 μMTPEN (a, b) or 25 μMNaPyr and 1–
500 μM ZnSO4 (c, d, e, f). Cells were incubated for 30 min before read-
out of fluorescence intensity by FC. Data are shown relative to F (fluo-
rescence intensity of 0μMTPEN or ZnSO4) (a, b, c, d) or as fluorescence
intensity in arbitrary units (e, f) and represent means + SD of n = 3 inde-
pendent experiments or as dot plot, showing forward scatter (Fsc) and
sideward scatter (Ssc) (g). Ungated data include all measured events (g,
black and gray events), and gated data include selected cells only (g, gray
events)
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known. Because MPR includes data from debris and damaged
cells, as well as it might pick up extracellular fluorescence
from leakage, it seems that the lower, sub-nanomolar values
obtained by FC might be more reliable. These are also a better
match for values obtained by other methods not based on
fluorescent probes [18, 19], as well as the sub-nanomolar af-
finities of many cellular zinc-binding proteins [20].
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