Skip to main content

Advertisement

Log in

Brazilian Genetic Diversity for Desirable and Undesirable Elements in the Wheat Grain

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Micronutrient deficiency affects billions of people, especially in countries where the diet is low in diversity with inadequate consumption of fruits, vegetables, and animal-source foods, and higher consumption of staple food, i.e., cereals, that have low concentrations of micronutrients. Genetic biofortification is a strategy to mitigate this problem and ensure nutritional security. Wheat is a target of genetic biofortification since it contributes significantly to the caloric requirement. The biofortification process involves a screening related to the presence of genetic variability for grain mineral content. Also, the accumulation of toxic elements must be considered to ensure food safety, because if ingested above the allowed concentrations, it represents health risks. In this sense, this study aimed to quantify the micronutrients iron, zinc, copper, selenium, and manganese and toxic elements arsenic and cadmium in a Brazilian wheat panel grown in Southern Brazil. The presence of genetic variability for the accumulation of micronutrients in the grain was detected; however, we observed that only the copper and manganese accumulation meet the human daily requirements. Iron, zinc, and selenium were detected in insufficient concentration to meet the daily demand. Arsenic and cadmium accumulation were not detected in wheat grain. The wheat genotypes grown in Brazil displayed a similar profile to that found in other countries which may be due to common high-yield breeding goals and the narrowing of the genetic variability, observed worldwide. Thus, the wheat genetic biofortification success in Brazil depends on the introduction of foreign genotypes, landraces, and wild relatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kaur R, Sinha K, Bhunia RK (2019) Can wheat survive in heat? Assembling tools towards successful development of heat stress tolerance in Triticum aestivum L. Mol Biol Rep 46:2577–2593. https://doi.org/10.1007/s11033-019-04686-x

    Article  CAS  PubMed  Google Scholar 

  2. Battenfield SD, Guzmán C, Gaynor RC, Singh RP, Peña RJ, Dreisigacker S, Fritz AK, Poland JA (2016) Genomic selection for processing and end-use quality traits in the CIMMYT spring bread wheat breeding program. Plant Genome 9:plantgenome2016.01.0005. https://doi.org/10.3835/plantgenome2016.01.0005

  3. Kenzhebayeva S, Abekova A, Atabayeva S, Yernazarova G, Omirbekova N, Zhang G, Turasheva S, Asrandina S, Sarsu F, Wang Y (2019) Mutant lines of spring wheat with increased iron, zinc, and micronutrients in grains and enhanced bioavailability for human health. Biomed Res Int 2019:1–10. https://doi.org/10.1155/2019/9692053

    Article  CAS  Google Scholar 

  4. Shahzad Z, Rouached H, Rakha A (2014) Combating mineral malnutrition through iron and zinc biofortification of cereals. Compr Rev Food Sci Food Saf 13:329–346. https://doi.org/10.1111/1541-4337.12063

    Article  CAS  PubMed  Google Scholar 

  5. Santos HG dos, Jacomine PKT, Anjos LHC dos, et al (2018) Sistema brasileiro de classificação de solos, 5a edição. EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária

  6. Meeting of the Brazilian Commission Research Wheat and Triticale (2018). Meeting minutes and Abstracts

  7. Paniz FP, Pedron T, Freire BM, Torres DP, Silva FF, Batista BL (2018) Effective procedures for the determination of As, Cd, Cu, Fe, Hg, Mg, Mn, Ni, Pb, Se, Th, Zn, U and rare earth elements in plants and foodstuffs. Anal Methods 10:4094–4103. https://doi.org/10.1039/C8AY01295D

    Article  CAS  Google Scholar 

  8. INMETRO (2016) Orientação Sobre Validação De Métodos Analíticos. Inst Nac Metrol Qual e Tecnol 31

  9. Pereira RM, Crizel MG, La Rosa ND et al (2019) Multitechnique determination of metals and non-metals in sports supplements after microwave-assisted digestion using diluted acid. Microchem J 145:235–241. https://doi.org/10.1016/j.microc.2018.10.043

    Article  CAS  Google Scholar 

  10. Mojena R (1977) Hierarchical grouping methods and stopping rules: an evaluation. Comput J 20:359–363. https://doi.org/10.1093/comjnl/20.4.359

    Article  Google Scholar 

  11. Cruz CD (2013) GENES-a software package for analysis in experimental statistics and quantitative genetics. Acta Sci Agron 35:271–276. https://doi.org/10.4025/actasciagron.v35i3.21251

    Article  Google Scholar 

  12. Demsar J, Curk T, Erjavec A et al (2013) Orange: data mining toolbox in Python. J Mach Learn Res 14:2349–2353

    Google Scholar 

  13. Velu G, Ortiz-Monasterio I, Cakmak I, Hao Y, Singh RP (2014) Biofortification strategies to increase grain zinc and iron concentrations in wheat. J Cereal Sci 59:365–372. https://doi.org/10.1016/j.jcs.2013.09.001

    Article  CAS  Google Scholar 

  14. Haraldsdóttir J (1999) Dietary guidelines and patterns of intake in Denmark. Br J Nutr 81:S43–S48. https://doi.org/10.1017/S0007114599000884

    Article  PubMed  Google Scholar 

  15. Laskowski W, Górska-Warsewicz H, Rejman K, Czeczotko M, Zwolińska J (2019) How important are cereals and cereal products in the average Polish diet? Nutrients 11:679. https://doi.org/10.3390/nu11030679

    Article  CAS  PubMed Central  Google Scholar 

  16. Hashimu Jaryum K (2016) Comparative analysis of some trace element Contents of staple cereals grown in Plateau State, North-central Nigeria. Int J Nutr Food Sci 5:129. https://doi.org/10.11648/j.ijnfs.20160502.16

    Article  CAS  Google Scholar 

  17. Winiarska-Mieczan A, Kowalczuk-Vasilev E, Kwiatkowska K, Kwiecień M, Baranowska-Wójcik E, Kiczorowska B, Klebaniuk R, Samolińska W (2019) Dietary intake and content of Cu, Mn, Fe, and Zn in selected cereal products marketed in Poland. Biol Trace Elem Res 187:568–578. https://doi.org/10.1007/s12011-018-1384-0

    Article  CAS  PubMed  Google Scholar 

  18. Vignola MB, Bustos MC, Pérez GT (2018) Comparison of quality attributes of refined and whole wheat extruded pasta. LWT Food Sci Technol 89:329–335. https://doi.org/10.1016/j.lwt.2017.10.062

    Article  CAS  Google Scholar 

  19. Balk J, Connorton JM, Wan Y, Lovegrove A, Moore KL, Uauy C, Sharp PA, Shewry PR (2019) Improving wheat as a source of iron and zinc for global nutrition. Nutr Bull 44:53–59. https://doi.org/10.1111/nbu.12361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li L (2018) Yang X (2018) The essential element manganese, oxidative stress, and metabolic diseases: links and interactions. Oxidative Med Cell Longev 2018:1–11. https://doi.org/10.1155/2018/7580707

    Article  CAS  Google Scholar 

  21. Institute of Medicine (2001) Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academies Press, Washington

    Google Scholar 

  22. Cu ST, Guild G, Nicolson A, Velu G, Singh R, Stangoulis J (2020) Genetic dissection of zinc, iron, copper, manganese and phosphorus in wheat (Triticum aestivum L.) grain and rachis at two developmental stages. Plant Sci 291:110338. https://doi.org/10.1016/j.plantsci.2019.110338

    Article  CAS  PubMed  Google Scholar 

  23. Morgounov AI, Belan I, Zelenskiy Y, Roseeva L, Tömösközi S, Békés F, Abugalieva A, Cakmak I, Vargas M, Crossa J (2013) Historical changes in grain yield and quality of spring wheat varieties cultivated in Siberia from 1900 to 2010. Can J Plant Sci 93:425–433. https://doi.org/10.4141/cjps2012-091

    Article  Google Scholar 

  24. Prentice AM, Mendoza YA, Pereira D, Cerami C, Wegmuller R, Constable A, Spieldenner J (2017) Dietary strategies for improving iron status: balancing safety and efficacy. Nutr Rev 75:49–60. https://doi.org/10.1093/nutrit/nuw055

    Article  PubMed  Google Scholar 

  25. Kumar U, Mathpal P, Malik S, Kumar N, Kumar S, Chugh V, Sheikh I, Sharma P, Singh T, Dhaliwal HS, Kumar S (2016) Evaluation of iron and zinc in grain and grain fractions of hexaploid wheat and its related species for possible utilization in wheat biofortification. Plant Genet Resour 14:101–111. https://doi.org/10.1017/S147926211500012X

    Article  CAS  Google Scholar 

  26. Sundaria N, Singh M, Upreti P, Chauhan RP, Jaiswal JP, Kumar A (2019) Seed Priming with iron oxide nanoparticles triggers iron acquisition and biofortification in wheat (Triticum aestivum L.) grains. J Plant Growth Regul 38:122–131. https://doi.org/10.1007/s00344-018-9818-7

    Article  CAS  Google Scholar 

  27. Shi R, Zhang Y, Chen X, Sun Q, Zhang F, Römheld V, Zou C (2010) Influence of long-term nitrogen fertilization on micronutrient density in grain of winter wheat (Triticum aestivum L.). J Cereal Sci 51:165–170. https://doi.org/10.1016/j.jcs.2009.11.008

    Article  CAS  Google Scholar 

  28. Niyigaba E, Twizerimana A, Mugenzi I et al (2019) Winter wheat grain quality, zinc and iron concentration affected by a combined foliar spray of zinc and iron fertilizers. Agronomy 9. https://doi.org/10.3390/agronomy9050250

  29. Myint ZW, Oo TH, Thein KZ, Tun AM, Saeed H (2018) Copper deficiency anemia: review article. Ann Hematol 97:1527–1534. https://doi.org/10.1007/s00277-018-3407-5

    Article  CAS  PubMed  Google Scholar 

  30. Garnett TP, Graham RD (2005) Distribution and remobilization of iron and copper in wheat. Ann Bot 95:817–826. https://doi.org/10.1093/aob/mci085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Arshad M, Murtaza G, Arif Ali M et al (2011) Wheat growth and phytoavailability of copper and zinc as affected by soil texture in saline-sodic conditions. Pakistan J Bot 43:2433–2439

    CAS  Google Scholar 

  32. Korzeniowska J, Stanisławska-glubiak E (2011) The effect of foliar application of copper on content of this element in winter wheat grain. 3–6

  33. Roohani N, Hurrell R, Kelishadi R, Schulin R (2013) Zinc and its importance for human health: an integrative review. J Res Med Sci 18:144–157

    PubMed  PubMed Central  Google Scholar 

  34. Ning P, Wang S, Fei P, Zhang X, Dong J, Shi J, Tian X (2019) Enhancing zinc accumulation and bioavailability in wheat grains by integrated zinc and pesticide application. Agronomy 9:1–12. https://doi.org/10.3390/agronomy9090530

    Article  CAS  Google Scholar 

  35. Liu D-Y, Liu Y-M, Zhang W, Chen XP, Zou CQ (2019) Zinc uptake, translocation, and remobilization in winter wheat as affected by soil application of Zn fertilizer. Front Plant Sci 10:1–10. https://doi.org/10.3389/fpls.2019.00426

    Article  Google Scholar 

  36. Institute of Medicine (2000) Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids. National Academy Press, Washington

    Google Scholar 

  37. Boldrin PF, Faquin V, da Consolação Sampaio Clemente A et al (2018) Genotypic variation and biofortification with selenium in Brazilian wheat cultivars. J Environ Qual 47:1371–1379. https://doi.org/10.2134/jeq2018.01.0045

    Article  CAS  PubMed  Google Scholar 

  38. Suchowilska E, Wiwart M, Krska R, Kandler W (2020) Do Triticum aestivum L. and Triticum spelta L. hybrids constitute a promising source material for quality breeding of new wheat varieties? Agronomy 10:43. https://doi.org/10.3390/agronomy10010043

    Article  CAS  Google Scholar 

  39. White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets-iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84. https://doi.org/10.1111/j.1469-8137.2008.02738.x

    Article  CAS  PubMed  Google Scholar 

  40. Broadley MR, Alcock J, Alford J, Cartwright P, Foot I, Fairweather-Tait SJ, Hart DJ, Hurst R, Knott P, McGrath SP, Meacham MC, Norman K, Mowat H, Scott P, Stroud JL, Tovey M, Tucker M, White PJ, Young SD, Zhao FJ (2010) Selenium biofortification of high-yielding winter wheat (Triticum aestivum L.) by liquid or granular Se fertilisation. Plant Soil 332:5–18. https://doi.org/10.1007/s11104-009-0234-4

    Article  CAS  Google Scholar 

  41. Slamet-loedin IH, Johnson-beebout SE, Impa S, Tsakirpaloglou N (2015) Enriching rice with Zn and Fe while minimizing Cd risk. Front Plant Sci 6:1–9. https://doi.org/10.3389/fpls.2015.00121

    Article  Google Scholar 

  42. Deng F, Yu M, Martinoia E, Song WY (2019) Ideal cereals with lower arsenic and cadmium by accurately enhancing vacuolar sequestration capacity. Front Genet 10:1–7. https://doi.org/10.3389/fgene.2019.00322

    Article  CAS  Google Scholar 

  43. Finnegan PM, Chen W (2012) Arsenic toxicity: the effects on plant metabolism. Front Physiol 3:1–18. https://doi.org/10.3389/fphys.2012.00182

    Article  CAS  Google Scholar 

  44. Kumarathilaka P, Seneweera S, Meharg A, Bundschuh J (2018) Arsenic accumulation in rice (Oryza sativa L.) is influenced by environment and genetic factors. Sci Total Environ 642:485–496. https://doi.org/10.1016/j.scitotenv.2018.06.030

    Article  CAS  PubMed  Google Scholar 

  45. Williams PN, Villada A, Deacon C, Raab A, Figuerola J, Green AJ, Feldmann J, Meharg AA (2007) Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environ Sci Technol 41:6854–6859. https://doi.org/10.1021/es070627i

    Article  CAS  PubMed  Google Scholar 

  46. Rasheed H, Kay P, Slack R, Gong YY (2018) Arsenic species in wheat, raw and cooked rice: exposure and associated health implications. Sci Total Environ 634:366–373. https://doi.org/10.1016/j.scitotenv.2018.03.339

    Article  CAS  PubMed  Google Scholar 

  47. Zhao FJ, Stroud JL, Eagling T, Dunham SJ, McGrath SP, Shewry PR (2010) Accumulation, distribution, and speciation of arsenic in wheat grain. Environ Sci Technol 44:5464–5468. https://doi.org/10.1021/es100765g

    Article  CAS  PubMed  Google Scholar 

  48. Thielecke F, Nugent AP (2018) Contaminants in grain—a major risk for whole grain safety? Nutrients 10:1–23. https://doi.org/10.3390/nu10091213

    Article  CAS  Google Scholar 

  49. Satarug S, Vesey DA, Gobe GC (2017) Health risk assessment of dietary cadmium intake: do current guidelines indicate how much is safe? Environ Health Perspect 125:284–288. https://doi.org/10.1289/EHP108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. World Health Organization (2010) Joint FAO/WHO expert committee on food additives seventy-third meeting

  51. Harris NS, Taylor GJ (2013) Cadmium uptake and partitioning in durum wheat during grain filling. BMC Plant Biol 13:1. https://doi.org/10.1186/1471-2229-13-103

    Article  CAS  Google Scholar 

  52. Corguinha APB, de Souza GA, Gonçalves VC et al (2015) Assessing arsenic, cadmium, and lead contents in major crops in Brazil for food safety purposes. J Food Compos Anal 37:143–150. https://doi.org/10.1016/j.jfca.2014.08.004

    Article  CAS  Google Scholar 

  53. Guo G, Lei M, Wang Y et al (2018) Accumulation of as, cd, and pb in sixteen wheat cultivars grown in contaminated soils and associated health risk assessment. Int J Environ Res Public Health 15. https://doi.org/10.3390/ijerph15112601

  54. Huang X, Duan S, Wu Q, Yu M, Shabala S (2020) Reducing cadmium accumulation in plants: structure–function relations and tissue-specific operation of transporters in the spotlight. Plants 9:223. https://doi.org/10.3390/plants9020223

    Article  CAS  PubMed Central  Google Scholar 

  55. Garcia-Oliveira AL, Chander S, Ortiz R, Menkir A, Gedil M (2018) Genetic basis and breeding perspectives of grain iron and zinc enrichment in cereals. Front Plant Sci 9:1–13. https://doi.org/10.3389/fpls.2018.00937

    Article  Google Scholar 

  56. Sasaki A, Yamaji N, Yokosho K, Ma JF (2012) Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24:2155–2167. https://doi.org/10.1105/tpc.112.096925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu N, Huang X, Sun L, Li S, Chen Y, Cao X, Wang W, Dai J, Rinnan R (2020) Screening stably low cadmium and moderately high micronutrients wheat cultivars under three different agricultural environments of China. Chemosphere 241:125065. https://doi.org/10.1016/j.chemosphere.2019.125065

    Article  CAS  PubMed  Google Scholar 

  58. Pinson SRM, Tarpley L, Yan W, Yeater K, Lahner B, Yakubova E, Huang XY, Zhang M, Guerinot ML, Salt DE (2015) Worldwide genetic diversity for mineral element concentrations in rice grain. Crop Sci 55:294–311. https://doi.org/10.2135/cropsci2013.10.0656

    Article  CAS  Google Scholar 

  59. Pandey A, Khan MK, Hakki EE, Thomas G, Hamurcu M, Gezgin S, Gizlenci O, Akkaya MS (2016) Assessment of genetic variability for grain nutrients from diverse regions: potential for wheat improvement. Springerplus 5:1912. https://doi.org/10.1186/s40064-016-3586-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bityutskii N, Yakkonen K, Loskutov I (2017) Content of iron, zinc and manganese in grains of Triticum aestivum, Secale cereale, Hordeum vulgare and Avena sativa cultivars registered in Russia. Genet Resour Crop Evol 64:1955–1961. https://doi.org/10.1007/s10722-016-0486-9

    Article  CAS  Google Scholar 

  61. Chen X-P, Zhang Y-Q, Tong Y-P, Xue YF, Liu DY, Zhang W, Deng Y, Meng QF, Yue SC, Yan P, Cui ZL, Shi XJ, Guo SW, Sun YX, Ye YL, Wang ZH, Jia LL, Ma WQ, He MR, Zhang XY, Kou CL, Li YT, Tan DS, Cakmak I, Zhang FS, Zou CQ (2017) Harvesting more grain zinc of wheat for human health. Sci Rep 7:7016. https://doi.org/10.1038/s41598-017-07484-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Harmankaya M, Özcan MM, Gezgin S (2012) Variation of heavy metal and micro and macro element concentrations of bread and durum wheats and their relationship in grain of Turkish wheat cultivars. Environ Monit Assess 184:5511–5521. https://doi.org/10.1007/s10661-011-2357-3

    Article  CAS  PubMed  Google Scholar 

  63. Hocaoğlu O, Akçura M, Kaplan M (2020) Changes in the grain element contents of durum wheat varieties of turkey registered between 1967–2010. Commun Soil Sci Plant Anal 51:431–439. https://doi.org/10.1080/00103624.2019.1709487

    Article  CAS  Google Scholar 

  64. Scherlosky A, Marchioro VS, de Assis Franco F et al (2018) Genetic variability of Brazilian wheat germplasm obtained by high-density SNP genotyping. Crop Breed Appl Biotechnol 18:399–408. https://doi.org/10.1590/1984-70332018V18N4A59

    Article  Google Scholar 

Download references

Funding

The research and fellowships were supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) grant no. 2016/10060-9 and 2014/05151-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camila Pegoraro.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(PDF 103 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maltzahn, L.E., Zenker, S.G., Lopes, J.L. et al. Brazilian Genetic Diversity for Desirable and Undesirable Elements in the Wheat Grain. Biol Trace Elem Res 199, 2351–2365 (2021). https://doi.org/10.1007/s12011-020-02338-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02338-x

Keywords

Navigation