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Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Exposure to environmental and occupational carcinogens is
an important cause of lung cancer. One of these substances is chromium, which is found ubiquitously across the planet. The
International Agency for Research on Cancer has classified chromium(VI) as a human carcinogen. The aim of this study was to
assess whether serum chromium levels, as well as DNA variants in selected genes involved in carcinogenesis, xenobiotic-
metabolism, and oxidative stress could be helpful in the detection of lung cancer. We conducted a study using 218 lung cancer
patients and 218 matched healthy controls. We measured serum chromium levels and genotyped ten genetic variants in ERCC2,
XRCC1, MT1B, GSTP1, ABCB1, NQ01, CRTC3, GPX1, SOD2 and CAT. The odds ratios of being diagnosed with lung cancer
were calculated using conditional logistic regression with respect to serum chromium level and genotypes. The odds ratio for the
occurrence of lung cancer increased with increasing serum chromium levels. The difference between the quartiles with the lowest
vs. highest chromium level was more than fourfold in the entire group (OR 4.52, CI 2.17–9.42, p < 0.01). This correlation was
significantly increased by more than twice when specific genotypes were taken into consideration (ERCC–rs12181 TT, OR
12.34, CI 1.17–130.01, p = 0.04; CRTC3–rs12915189 non GG, OR 9.73, CI 1.58–60.10, p = 0.01; GSTP1–rs1695 non AA, OR
9.47, CI 2.06–43.49, p = < 0.01; CAT–rs1001179 non CC, OR 9.18, CI 1.64–51.24, p = 0.01). Total serum chromium levels >
0.1 μg/L were correlated with 73% (52/71) of lung cancers diagnosed with stage I disease. Our findings support the role of
chromium and the influence of key proteins on lung cancer burden in the general population.
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Introduction

Lung cancer remains the most common cause of death among
all cancers, contributing to over a million people annually
succumbing to this disease worldwide. In Europe, the average
5-year survival for patients with this cancer is estimated to be
around 15% [1]. A characteristic feature of this type of cancer
is its late diagnosis when at an advanced stage due to late
presentation of symptoms when treatment is no longer
possible.

Therefore, it is important to improve the possibility of early
detection through effective screening tests, whichwould result
in a reduction in lung cancer mortality. Currently, diagnostic
imaging of the thorax is used for early detection of lung cancer
using radiological methods, liquid biopsy and, more recently,
epigenetic markers.

Research on methods of early lung cancer detection by
computed tomography (CT) has provided ambiguous results.
In an American study on nearly 55,000 people at high risk of
lung cancer it was shown that CT screening resulted in a
reduction in mortality by 20% through the use of low-dose
CT screening compared with standard chest radiography [2].
In contrast, the results of studies on Europeans with fewer
numbers of people at risk of lung cancer gave inconsistent
results [3, 4]. Diagnostic imaging can often lead to the mis-
reading of results and result in false positive of lung nodules
for which malignancy could not be defined prior to surgery
and pathology [4].

The liquid biopsy is another method for early detection of
lung cancer. Usually a total blood sample is taken for diagno-
sis, prognosis, and prediction of therapeutic response [5].
Genetic markers such as circulating cell-free tumor DNA
(cfDNA), e.g., TP53 mutations in the plasma cfDNA from
SCLC (squamous cell lung cancer) cases; telomerase reverse
transcription (TERT); exosomes; tumor-educated platelets
(TEP); cell-free tumor RNA (cfRNA); plasma microRNAs
(e.g. miR-1254 and miR-574-5p, miR-21, miRNA-126,
miR-210, and miR-486-5p) in early-stage NSCLC (non-squa-
mous cell lung cancer); circulating tumor cells (CTCs) [5, 6]
and tumor-related antigens-p53, GBU4-5, NY-ESO-1,
CAGE, Annexin 1, and SOX2 [7]. These molecular markers
are all potentially valuable for prediction but lack rigorous
large-scale assessment and as such are not ready for wide-
spread use.

One of the most important examples of early detection is
methylation of the p16INK4a promoter in DNA derived from
bronchoalveolar lavage of resectable NSCLC [8]. Other ex-
amples include identification of smokers with the highest risk
of lung cancer up to 3 years prior to clinical diagnosis due to
the promoter hypermethylation of a panel of seven genes:
CDKN2A, PAX5β, MGMT, DAPK, GATA5, GATA4, and
RASSF1A in sputum [9] or higher methylation frequency in
NSCLC compared with normal tissues for 9 genes (APC,

CDH13, KLK10, DLEC1, RASSF1A, EFEMP1, SFRP1,
RAR-β, and P16INK4A) determined by methylation profiles
byMSP (methylation-specific PCR) in tissue and plasma sam-
ples [10].

The disadvantage of these methods is the high cost and the
fact that they often detect lung pathologies that are not cancer.
Therefore, non-invasive and inexpensive screening methods
are being sought that could detect early disease in people with
the highest probability of developing lung cancer.

Two important factors that influence lung risk include
some heavymetals and naturally occurring genetic differences
occurring in encoded proteins involved in the removal or ame-
lioration of the effects of the heavy metal [11–13].
Carcinogenic compounds associated with lung cancer include
arsenic, asbestos, beryllium, cadmium, chromium, diesel
fumes (benzopyrenes), nickel and silica [14].

Exposure to Cr occurs primarily by inhalation in occupa-
tional settings. The International Agency for Research on
Cancer (IARC) classified chromium(VI) as a carcinogen with
sufficient evidence in humans for lung cancer. Except for a
few reports from China, little is known about the health risks
of environmental exposure to chromium [15]. Chromium is
one of the elements widespread in the earth’s crust. This ele-
ment in small amounts is physiologically necessary by taking
part in the metabolism of glucose, certain proteins and fats
[16–18].

Mechanism of Cr carcinogenicity is unclear. There are
some potential molecular mechanisms for Cr(VI)-associat-
ed carcinogenicity including Cr(VI)-induced oxidative
stress, intracellular Cr(VI) metabolism, Cr(VI)-induced
DNA damage and mutagenesis, and Cr(VI)-induced
inflammation-all associated with tumor development [19].
Cr(VI) has been found to be highly mutagenic and pene-
trates into the cells and is reduced by ascorbate, NADPH,
GSH [20, 21], etc., which results in the formation of reac-
tive intermediate forms Cr(IV) and Cr(V) as well as free
radicals [22–24].

As a result of Cr(VI) reduction, reactive species appear,
such as free radicals, superoxide anions and hydroxyl rad-
icals, probably via a Fenton-like reaction of Cr(V) and
Cr(IV) with hydrogen peroxide [25]. A study performed
in human epithelial-like L-41 cells and fetal human lung
fibroblasts revealed that a toxic Cr(VI) concentration
(20 μM) lead to an increase in ROS, and a significant re-
duction in catalase, glutathione, and cytosolic superoxide
dismutase activity [26]. DNA damage as a result of chro-
mium exposure is thought to be the primary mechanism of
genotoxicity and mutagenicity. Among the structural genet-
ic changes produced by Cr(VI) are: DNA adducts, DNA
strand breaks, DNA-protein crosslinks, oxidized bases,
abasic sites, and DNA inter- and intrastrand crosslinks
[27]. Evidence suggests that chromium-DNA adducts lead
to DNA double strand breaks and inhibition of their repair
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to cause chromosome instability [28–31]. Genomic insta-
bility caused by dysregulated DNA repair mechanism via
chromosome instability (CIN), microsatellite instability
(MIN) and abnormal cell cycle checkpoints play an impor-
tant role in Cr(VI) carcinogenesis [32].

The potential role of chromate in carcinogenesis-induced
epigenetic alteration is also postulated. For example, in lung
cancer samples that had been exposed to chromate, 62.5% had
MLH1methylation that was correlated with MLH1 repression
[33]. In addition, methylation and, consequently, reduced pro-
tein expression of the CDKN2A has been demonstrated in
lung cancer [34]. Some studies hypothesize that Cr(VI) may
affect global and promoter-specific histone methylation, lead-
ing to gene silencing events [35].

It has been suggested that the development of lung cancer
is associated with a proinflammatory state, most often chronic
pneumonia especially in non-smokers [36]. A wide range of
immune responses are caused by exposure to chromium —
essentially inhalation of chromium particles causes damage to
lung tissue and an inflammatory response in the lungs [37].

Not all Cr(VI) compounds are carcinogenic, some are cy-
totoxic and others genotoxic [38]. Relatively insoluble,
disintegrated Cr(VI) compounds (such as zinc, lead, stron-
tium, and sintered calcium chromate) show the greatest toxic-
ity leading to transformation in mouse cells and the develop-
ment of cancer in animals [38, 39]. In vivo and cell culture
studies have shown an increased incidence of tumor transfor-
mation and tumor formation which correlates with workers
exposed to certain forms of Cr(VI) who have a significant
increase in the risk of lung cancer [40, 41]. Low levels of
p53 mutation, abnormal p16INK4A methylation, loss of
MLH1 expression and, consequently, an increase in microsat-
ellite instability can be observed in human lung cancer cells
associated with Cr(VI) exposure [33, 34, 42].

It is well established that increased risks of cancer are as-
sociated with polymorphisms of different genes. For the stud-
ies herein, we selected polymorphisms in genes reported to be
directly involved in malignant transformation and/or xenobi-
otic metabolism and/or oxidative stress (ERCC2, XRCC1,
MT1B, GSTP1, ABCB1, NQ01, CRTC3, GPX1, SOD2, and
CAT). The selected polymorphisms characterized by relative-
ly high frequency critical for association studies were interro-
gated to determine if they influenced lung cancer risk in asso-
ciation with Cr(VI) exposure.

Direct malignant transformation has been reported as a
consequence of changes in ERCC2 and XRCC1. The single
nucleotide polymorphism (SNP) rs13181 in ERCC2 in-
volved in nucleotide excision repair (NER) and carcinogen
metabolism, has been associated with lung cancer risk [43].
The results of a meta-analysis strongly implicate XRCC1
(X-Ray Repair Cross Complementing 1) in cancer develop-
ment, especially rs1799782 and its association with thyroid
cancer [44].

Among the genes encoding proteins involved in xenobiotic
metabolism, five are of particular interest: MT1B, GSTP1,
ABCB1, NQ01 and CRTC3.

The protein encoded byMT1B gene plays a role in metal
metabolism and protects cells against the toxic effects of
radiation. It is also involved in the regulation of zinc and
copper homeostasis, and the polymorphism rs7191779 cor-
relates with the risk for oral squamous cell carcinoma [45].
It was assumed that polymorphisms that change the activity
of GSTP1 would be risk modifiers and markers in the de-
velopment of lung cancer [46]. The rs1695 SNP in GSTP1,
implicated in phase II metabolism of many substrates, in-
cluding xenobiotics, is recognized as a risk factor for lung
cancer [47].

ABCB1 belongs to a superfamily of ATP binding cassette
(ABC) transporters, and is also known as MDR1. The
ABCB1 polymorphism rs2032582 is associated with differ-
ential function of the protein where its potential role in toxic
metal secretion or toxicity remain unexplored [48]. NQO1-
NAD(P)H: quinone oxidoreductase is a flavoenzyme asso-
ciated with carcinogen metabolism [49]. According to a
meta-analysis the NQO1 rs12915189 polymorphism is as-
sociated with lung cancer [50]. CRTC3 belongs to the fam-
ily of CREB transcription coactivator genes (a protein bind-
ing the cAMP response element) [51] . The SNP
rs12915189 in CRTC3 has been associated with chromium
level in humans [52, 53].

Among the genes associated with oxidative stress, we
selected polymorphisms within GPX1, SOD2, and CAT
genes. GPX1 is a selenium-dependent enzyme that partici-
pates in the detoxification of hydrogen peroxide and a wide
range of organic peroxides. It is reported that the GPX1
polymorphism (Pro198Leu, rs1050450) may contribute
significantly to lung cancer risk [54, 55]. Superoxide dis-
mutase 2 (SOD2) belongs to the superoxide dismutase fam-
ily, which can transform toxic superoxide into hydrogen
peroxide and diatomic oxygen. The results of a meta-
analysis strongly suggest that the rs4880 polymorphism in
SOD2 is significantly associated with the occurrence of
lung cancer [56]. CAT encodes an enzyme common to all
living organisms and is responsible for catalyzing the de-
composition of hydrogen peroxide into water and oxygen.
It was observed that reduced CAT activity caused by in-
flammation in the lungs can lead to an intracellular increase
in hydrogen peroxide and the formation of an intracellular
environment suitable for DNA damage and cancer promo-
tion [57]. A meta-analysis on the relationship between the
CAT polymorphism rs1001179 and cancer risk showed a
significant association with the risk of prostate cancer [58].

Our aim was to assess whether serum chromium levels, as
well as DNA variants in selected genes involved in carcino-
genesis, xenobiotic-metabolism, and oxidative stress could be
helpful in the detection of lung cancer.
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Materials and Methods

Study Group

Two hundred eighteen patients with lung cancer participated
in the study and gave informed consent. They were randomly
included in this research at the Department of Thoracic
Surgery in Szczecin-Zdunowo Hospital between 2012 and
2017. In all patients, lung cancer was confirmed by histopath-
ological examination. The study was conducted in accordance
with the Helsinki Declaration and with the consent of the
Ethics Committee of Pomeranian Medical University in
Szczecin under the number KB-0012/73/10.

Blood samples were taken from patients at the time of
diagnosis but before treatment. They were then stored at −
80 °C. For each lung cancer patient one unaffected individual
registered at the International Hereditary Cancer Center,
Pomeranian Medical University of Szczecin, was matched as
a healthy control subject. Control subjects were part of a
population-based study of the 1.3 million inhabitants of
Poland designed to identify familial aggregations of cancer
conducted by our center. All control subjects were enrolled
in the study after providing written informed consent.
Participants were matched for year of birth (± 3 years), sex,
smoking status (pack-years ± 20%) and the total number of
lung and other malignancies among first degree relatives. All
patients were fasting at least six hours before blood sample
collection. The characteristics of the individuals included in
the study are shown in Table 1.

Measurement of Cr Level

Total serum chromium levels were measured in the Metals
Analysis Laboratory, Nofer Institute of Occupational
Medicine. The inductively coupled plasma mass spectroscopy
(ICP-MS) technique using NexION 350D (PerkinElmer,
USA) was used for sample analysis. Chromiumwas measured
in DRC mode with ammonia (NH3, purity > 0.9999) as a
reaction gas for removing spectral interference.

Calibration curve standards (0.1–10.0 μg/L) were prepared
and an external calibration method was used. The correlation
coefficient of the Cr calibration curve was always greater than
0.999.

The Laboratory participated in an external quality control
(G-EQUAS) program to ensure accuracy, using certified/
reference standards (ClinCheck® Plasma Control, Recipe,
Germany).

Molecular Analyses

Ten selected variants in ten genes were genotyped: rs13181
in ERCC2, rs1799782 in XRCC1, rs7191779 in MT1B,
rs1695 in GSTP1, rs2032582 in ABCB1, rs1800566 in

NQO1, rs12915189 in CRTC3, rs1050450 in GPX1,
rs4880 in SOD2, and rs1001179 in CAT. From each indi-
vidual included in the study, a 10 mL peripheral blood sam-
ple was collected in a vacutainer tube containing 1 mL of
10% sodium EDTA (EthyleneDiamineTetraacetic Acid).
The genomic DNA was isolated using the detergent method
[59]. SNP analyses were performed using a pre-designed
Genotyping Assay × 40 (Applied Biosystems). Each reac-
tion mixture consisted of 2.5-μL LightCycler 480 Probe
Master Mix (Roche Diagnostics), the assay 0.125 μL
(Genotyping Assay × 40 TaqMan, Applied Biosystems),
and 1.375-μL deionized water (Roche Diagnostics).
Samples were analyzed on 384-well plates. Each plate
was included positive, negative and water-blind control.
The genotyping data were collected and analyzed using
the LightCycler 480 Instrument and the program of the
LightCycler 480 Basic Software Version 1.5 (Roche
Diagnostics).

Statistical Analysis

For the estimation of association of chromium levels or
chromium level and genotype with lung cancer occurrence,
study participants were assigned to one of four categories
(quartiles) based on the chromium distribution in the entire
group. The association of chromium levels with lung cancer

Table 1 Characteristic of individuals for lung cancer study

Characteristics Case (n = 218) Control (n = 218)

Birth year range 1926–1966 1926–1968
Age at sample, mean (range, year) 63.93 (47–87) 63.59 (48–86)
Sex
Male 163 163
Female 55 55

Pack-years, mean (range) 34.52 (3–135) 30.43 (2–100)
Smoking status
Yes 106 106
No 112 112

Stage
I 71 –
IA 36 –
IA1 4 –
IA2 17 –
IA3 15 –
IB 35 –
II 40 –
IIA 19 –
IIB 21 –
III 85 –
IIIA 45 –
IIIB 35 –
IIIC 5 –
IV 15 –
IVA 11 –
IVB 4 –
Missing 7 –

Lung Cancer Occurrence—Correlation with Serum Chromium Levels and Genotypes 1231



occurrence was estimated by odds ratio (OR) analysis with
95% confidence intervals using univariable conditional lo-
gistic regression. The quartile with the highest amount/ratio
of healthy subjects was considered the reference category
for the odds ratio calculation.

All calculations were performed in the R statistical envi-
ronment (R Version 3.6.1 2019-07-05).

Results

The analysis of lung cancer occurrence based on serum
chromium levels of the entire group revealed the highest
frequency of cancer in the quartile with the highest chromi-
um levels. The OR difference between the quartile with the
highest and the lowest chromium levels (quartile IV vs.
quartile II) was 4.52 (Table 2). Differences between sub-
groups of smokers and non-smokers were small—OR for
the entire group did not differ more than 20% from sub-
groups of smokers and non-smokers (Supplementary
Material Tables 1 and 2).

The above correlation was not dependent on clinical stage -
there were no differences between subgroups of combined
stages I and II and stages III with IV (Tables 3 and 4).

When only stage I disease was compared against Cr levels,
the OR of the lowest quartile (quartile 1) against quartile IV
was 5.15 with p = 0.01, CI 1.5–17.8 and for quartile III OR
was 8.72, p < 0.01, CI 2.6–29.8 (Table 5).

The results for all stages are available in Supplementary
Material Table 3.

Inclusion of genotype data from the ten selected polymor-
phisms revealed an even greater correlation with disease.
Several of the genotypes appeared to be associated with a
significantly increased correlation with disease (> 2 times) be-
tween serum chromium levels and the probability of lung
cancer (Table 6).

Genotypes with the strongest effect included: ERCC2
rs13181TT with OR 12.34; CRTC3 rs12915189 nonGG with
OR 9.73; and GSTP1 rs1695 nonAA with OR 9.474; CAT
rs1001179 nonCC with OR 9.18.

The results for other genotypes are available in
Supplementary Material Table 4.

Discussion

Lung cancer is the leading tumor for mortality worldwide [1].
The occurrence of lung cancer is affected by environmental
exposure and genetic or epigenetic susceptibility to disease
development and progression [60]. Important factors associ-
ated with lung cancer development are occupational exposure
to carcinogens (arsenic, asbestos, beryllium, cadmium, chro-
mium, diesel fumes, nickel, and silica) [14]. According to the
European Commission, based on socioeconomic, health, and
environmental impact assessment, the strongest factors related
to attributable cancer deaths include Cr(VI) [61]. However,
this is only an estimate on the impact of occupational exposure
and not based on general population data.

The toxicity of chromium is highly dependent on its chem-
ical form. Very high levels of serum ascorbate lead to the rapid
reduction of Cr(VI) to Cr(III) thus, Cr(VI) levels in humans
that have high levels of ascorbate would be expected to be
low. Furthermore, Cr(VI) reduction would be expected to oc-
cur at or near the site of exposure (lung or gastrointestinal
tract), which results in low circulating blood levels of
Cr(VI). Taking this into account, total Cr levels are the appro-
priatemeasurement for this study and it is justified not to assay
different Cr species.

In the general population, the mean levels of Cr in serum
and urine are 0.10–0.16 and 0.22 μg/L, respectively [62]. The
mean total chromium levels in both groups of people diag-
nosed with lung cancer and controls were within the limits
proposed by ATSDR (Agency for Toxic Substances and
Disease Registry), i.e. they do not deviate from the values
considered normal for the general population. Although the

Table 2 Serum chromium levels and the occurrence of lung cancer

Quartile Cr level (μg/L) Cases Controls OR (95% CI) p- value

I 0.03–0.07 38 71 1.23 (0.60–2.52) 0.58

II 0.08–0.09 24 50 1.00 (−) –

III 0.10–0.14 86 55 3.97 (1.98–7.94) < 0.01

IV 0.15–1.63 70 42 4.52 (2.17–9.42) < 0.01

Italics - Results with statistical significance

Table 3 Serum chromium levels and the occurrence of stages I–II of
lung cancer

Quartile Cr level (μg/L) Cases Controls OR (95% CI) p- value

I 0.03–0.07 15 38 1.00 (−) –

II 0.08–0.10 21 33 1.91 (0.70–5.17) 0.21

III 0.11–0.14 37 16 6.01 (2.32–15.54) < 0.01

IV 0.15–1.36 38 24 5.07 (1.95–13.19) < 0.01

Italics - Results with statistical significance

Table 4 Serum chromium levels and the occurrence of stages III–IV of
lung cancer

Quartile Cr level (μg/L) Cases Controls OR (95% CI) p- value

I 0.03–0.06 11 24 1.00 (−) –

II 0.07–0.09 24 32 1.61 (0.67–3.86) 0.29

III 0.10–0.13 31 25 3.05 (1.22–7.63) 0.02

IV 0.14–1.63 34 19 4.68 (1.73–12.68) < 0.01

Italics - Results with statistical significance
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chromium levels in the group of patients with cancer are statis-
tically significantly higher compared with those in the control
group (p < 0.05), they were still within the normal range [62].

The data herein suggests that it may be attractive for prac-
tical purposes. We plan to measure serum chromium levels in
patients from our cancer genetic outpatient clinics especially
for subgroups of individuals with familial lung and/or other
cancer aggregations. Patients from such families having high
serum chromium levels will be provided with the option of
surveillance CT scans of the lung for early disease detection.
Analyses of chromium levels may be an attractive option to
identify patients with early stage disease especially because
the frequency of lung cancer is significantly increased (OR >
5) if the serum chromium level is above 0.1 μg/L.
Additionally, it is very interesting that total serum chromium
levels > 0.1 μg/L appear to be associated with 73% (52/71) of
lung cancer patients with stage I disease. It is well recognized
that lung cancer treatment success is correlated with the clin-
ical stage at diagnosis. De Matteis et al. studied the effect of
carcinogens on the risk of lung cancer in the general popula-
tion. They showed that patients appear to have an increased
risk of lung cancer due to exposure to nickel-chromium (OR
1.18; 95% CI 0.90–1.53), which is consistent with our study
results [14]. Since smoking is one of the most important risk
factors for lung cancer, we included this factor in our regres-
sion model. Differences between smoking and non-smoking
subgroups were small—with the OR for the whole group not
differing by more than 20% between smoking and non-
smoking groups (Supplementary Materials, Tables 1 and 2).
This is in contradiction with the work of others, since it has

been reported that chromium levels are much higher in
smokers’ lung tissues than in those of non-smokers [63].

Moreover, in our studies, we have been able to show that
functional DNA variants in some genes involved in carcino-
genesis, oxidative stress and xenobiotics clearance probably
enhance the effects of chromium. Variants associated with an
increased risk of lung cancer included ERCC2, CRTC3,
GSTP1 , and CAT. General ly, except for CRTC3
rs12915189, SNPs selected for this study were not recognized
as affecting Cr levels in serum. The most likely explanation
concerning these polymorphisms is that theymodify the phys-
iological response occasioned by the presence of Cr(VI).
Further investigation is needed to explain in more detail the
mechanisms of action between the effects of Cr and the func-
tions of the respective genes. In our series, no single polymor-
phism was by itself altering the probability of lung cancer
occurrence (Supplementary Material Table 5).

The data concerning sub-groups of particular genotypes
were achieved on smaller number of patients and should be
taken with special caution. Further investigations validating
our results are required on larger groups of patients from dif-
ferent geographic regions and ethnic groups.

Another limitation of our study is that, the high risk of lung
cancer is generally recognized as being associated with occu-
pational exposure to Cr(VI), but we did not have patient work
histories available to include in this study. Nevertheless, our
study may provide an avenue to begin to screen for lung can-
cer occurrence, which is based on the large sample size and
analyses focused on the general population.

Conclusion

In summary, our research provides evidence to connect Cr
exposure to an increased incidence of lung cancers.
However, these findings require the support by future studies
that are capable of addressing the problem of other potential
confounders in the association between exposure to Cr(VI)
and lung cancer in the general population. At this time, we
suggest that analysis of serum total chromium after further

Table 6 Genotypes and quartiles of Cr level with the highest/lowest frequency of lung cancer *

DNA variant Cr level (μg/L)–quartile IV Quartile IV-cases/controls vs.
reference quartile-cases/controls

OR (95% CI) p value

ERCC2-rs13181 TT > 0.12 11/4 5/8 12.34 (1.17–130.01) 0.04

CRTC3-rs12915189 nonGG > 0.14 18/9 6/13 9.73 (1.58–60.10) 0.01

GSTP1-rs1695 nonAA > 0.15 21/14 9/22 9.47 (2.06–43.49) < 0.01

CAT-rs1001179 nonCC > 0.15 16/8 5/16 9.18 (1.64–51.24) 0.01

* Statistical analyses on sub-groups of pairs matched also for genotypes

Italics - Results with statistical significance

Table 5 Serum chromium levels and the occurrence of stage I of lung
cancer

Quartile Cr level (μg/L) Cases Controls OR (95%CI) p- value

I 0.03–0.07 9 27 1.00 (−) –

II 0.08–0.10 10 17 2.34 (0.62–8.76) 0.21

III 0.11–0.15 30 11 8.72 (2.56–29.76) < 0.01

IV 0.16–1.36 22 16 5.15 (1.49–17.78) 0.01

Italics - Results with statistical significance
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investigations on the medical and cost-effectiveness of this
approach, might be useful in the effective detection of early
lung cancers, especially in individuals with special genotypes.
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