Skip to main content
Log in

Precision Harvesting of Medicinal Plants: Elements and Ash Content of Hyssop (Hyssopus officinalis L.) as Affected by Harvest Height

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

To investigate the effect of harvest height on the amassed elements and ash content of Hyssop (Hyssopus officinalis L.), an experiment was conducted in a randomized complete block design with three replications. Treatments included four harvest heights, i.e., 15, 25, 35, and 45 cm (from the tip of the plant) and the residual stalks. The dependent variables were the amassed content of elements N, K, P, Ca, Mg, Cu, Zn, and Pb in different heights of the plant and the associated ash content (total ash (TA), acid-insoluble ash (AA), and water-insoluble ash (WA)). The results showed that by moving from the upper shoots toward the ground, the amassed content of Mg, Ca, Cu, Zn, and Pb increased by 22.67%, 43.74%, 12.87%, 39.02%, and 85.04%, respectively. Further, a downward trend was observed for N (50.16%) and K (6.41%) content, while an upward trend reported for P (29.06%) content. As for the residual stalks, by moving from the upper shoots toward the ground, Mg, Ca, Cu, Zn, and Pb contents decreased by 1.01%, 21.03%, 9.11%, 17.02%, and 51.06%, respectively, while N and P contents increased by 60.59% and 3.15%, respectively, and a 34.74% increase was seen in P content. With increasing harvest height, TA, AA, and WA values increased by 33.48%, 27.03%, and 18.25%, respectively. As for the residues, these variables increased by 11.44%, 6.35%, and 5.22%, respectively. Our results showed that 15 cm harvest height had the highest quality with the lowest heavy metal content.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Khazaie HR, Nadjafi F, Bannayan M (2008) Effect of irrigation frequency and planting density on herbage biomass and oil production of thyme (Thymus vulgaris) and hyssop (Hyssopus officinalis). Ind Crop Prod 27(3):315–321. https://doi.org/10.1016/j.indcrop.2007.11.007

    Article  Google Scholar 

  2. Zheljazkov VD, Astatkie T, Hristov AN (2012) Lavender and hyssop productivity, oil content, and bioactivity as a function of harvest time and drying. Ind Crop Prod 36(1):222–228. https://doi.org/10.1016/j.indcrop.2011.09.010

    Article  CAS  Google Scholar 

  3. Momin RK, Kadam VB (2011) Determination of ash values of some medicinal plants of genus Sesbania of Marathwada region in Maharashtra. J Phytol https://www.researchgate.net/publication/261885600_Determination_of_Ash_Values_of_Some_Medicinal_Plants_of_Genus_Sesbania_of_Marathwada_Region_in_Maharashtra

  4. Vermani A, Navneet P, Chauhan A (2010) Physico-chemical analysis of ash of some medicinal plants growing in Uttarakhand, India. J Nat Sci 8(6):88–91 https://innovareacademics.in/journal/ijpps/Vol4Suppl4/4448.pdf

    Google Scholar 

  5. Khodakarami L, Soffianian A, Mirghafari N, Afyuni M, Golshahi A (2012) Concentration zoning of chromium, cobalt and nickel in the soils of three sub-basin of the Hamadan province using GIS technology and the geostatistics. JWSS 15(58):243–254 http://jstnar.iut.ac.ir/article-1-2052-en.html

    Google Scholar 

  6. Kaličanin B, Velimirović D (2013) The content of lead in herbal drugs and tea samples. Open Life Sci 8(2):178–185. https://doi.org/10.2478/s11535-013-0117-1

    Article  CAS  Google Scholar 

  7. Sing CLI (2018) Sustainability performance assessment of municipal solid waste management utilising aggregated indicators approach. Published in University Technology Malaysia. http://eprints.utm.my/id/eprint/79271/1/LeeCindyIkSingPFChE2018.pdf

  8. Yu IS, Lee JS, Kim SD, Kim YH, Park HW, Ryu HJ, Lee JH, Lee JM, Jung K, Na C, Joung JY, Son CG (2017) Monitoring heavy metals, residual agricultural chemicals and sulfites in traditional herbal decoctions. J Altern Complement Med 17(1):154. https://doi.org/10.1186/s12906-017-1646-y

    Article  CAS  Google Scholar 

  9. Locatelli C, Melucci D, Locatelli M (2014) Toxic metals in herbal medicines. A review. Curr Bioact Compd 10(3):181–188. https://doi.org/10.2174/1573407210666140716164321

    Article  CAS  Google Scholar 

  10. Bolan S, Kunhikrishnan A, Seshadri B, Choppala G, Naidu R, Bolan NS, Ok YS, Zhang M, Li CG, Li F, Noller B, Kirkham MB (2017) Sources, distribution, bioavailability, toxicity, and risk assessment of heavy metal (loid) s in complementary medicines. Environ Int 108:103–118. https://doi.org/10.1016/j.envint.2017.08.005

    Article  CAS  PubMed  Google Scholar 

  11. Au AM, Ko R, Boo FO, Hsu R, Perez G, Yang Z (2000) Screening methods for drugs and heavy metals in Chinese patent medicines. Bull Environ Contam Toxicol 65(1):112–119. https://doi.org/10.1007/s0012800102

    Article  CAS  PubMed  Google Scholar 

  12. Cooper K, Noller B, Connell D, Yu J, Sadler R, Olszowy H, Golding G, Tinggi U, Moore M, Myers S (2007) Public health risks from heavy metals and metalloids present in traditional Chinese medicines. J Toxicol Environ Health A 70(19):1694–1699. https://doi.org/10.1080/15287390701434885

    Article  CAS  PubMed  Google Scholar 

  13. Garvey GJ, Hahn G, Lee RV, Harbison RD (2001) Heavy metal hazards of Asian traditional remedies. Int J Environ Health Res 11(1):63–71. https://doi.org/10.1080/09603120020019656

    Article  CAS  PubMed  Google Scholar 

  14. Shellard EJ (1958) Exercises in the evaluation of drugs and surgical dressings. Pitman Medical Publishing Company

  15. Abdu BA, Adamu U, Sani SM, Joshua OO (2015) Physical and phytochemicals study of some local herbal remedies. Int J Pharm Bio Sci. https://doi.org/10.9790/3008-10440510

  16. Sunggyu L (2005) Encyclopedia of chemical processing 1:31–33

  17. Rao Y, Xiang B (2009) Determination of total ash and acid-insoluble ash of Chinese herbal medicine Prunellae Spica by near infrared spectroscopy. Yakugaku Zasshi 129(7):881–886. https://doi.org/10.1248/yakushi.129.881

    Article  CAS  PubMed  Google Scholar 

  18. Brisco B, Brown RJ, Hirose T, McNairn H, Staenz K (1998) Precision agriculture and the role of remote sensing: a review. Can J Remote Sens 24(3):315–327. https://doi.org/10.1080/07038992.1998.10855254

    Article  Google Scholar 

  19. Wolski T, Baj T, Kwiatkowski S (2006) Hyzop lekarski [Hyssopus officinalis L.] zapomniana roslina lecznicza, przyprawowa oraz miododajna. Annales Universitatis Mariae Curie-Skłodowska. Sectio DD: Arch Med Vet 61:1–10. https://www.up.lublin.pl/files/wydawnictwoczasopisma//annales/Veterinaria/2006/annales_2006_vet_art_01.PDF

  20. Page AL (1965) Methods of soil analysis. Part 2. Chemical and microbiological properties. American Society of Agronomy, Soil Sci Soc Am J

  21. Ghani A, Ali Z, Ishtiaq M, Maqbool M, Parveen S (2012) Estimation of macro and micro nutrients in some important medicinal plants of Soon Valley, District Khushab, Pakistan. Afr J Biotechnol 11(78):14386–14391. https://doi.org/10.5897/AJB12.762

    Article  CAS  Google Scholar 

  22. Nataraja S, Meghalatha R, Ashok C, Krishnappa M (2014) Comparative primary phyto and physico-chemical properties of Phellinus spp. WJPPS 3(3):1852–1861 https://www.cabdirect.org/cabdirect/abstract/20143148753

    Google Scholar 

  23. Zhu F, Wang X, Fan W, Qu L, Qiao M, Yao S (2013) Assessment of potential health risk for arsenic and heavy metals in some herbal flowers and their infusions consumed in China. Environ Monit Assess 185(5):3909–3916. https://doi.org/10.1007/s10661-012-2839-y

    Article  CAS  PubMed  Google Scholar 

  24. Zhu G, Xiao H, Guo Q, Song B, Zheng G, Zhang Z, Zhang Z, Zhao J, Okoli CP (2018) Heavy metal contents and enrichment characteristics of dominant plants in wasteland of the downstream of a lead-zinc mining area in Guangxi, Southwest China. Ecotoxicol Environ Saf 151:266–271. https://doi.org/10.1016/j.ecoenv.2018.01.011

    Article  CAS  PubMed  Google Scholar 

  25. Bloom AJ (2015) Photorespiration and nitrate assimilation: a major intersection between plant carbon and nitrogen. Photosynth Res 123(2):117–128. https://doi.org/10.1007/s11120-014-0056-y

    Article  CAS  PubMed  Google Scholar 

  26. Imelouane B, Tahri M, Elbastrioui M, Aouinti F, Elbachiri A (2011) Mineral contents of some medicinal and aromatic plants growing in eastern Morocco. JMES 2(2):104–111 http://www.jmaterenvironsci.com/Document/vol2/13-JMES-52-2010-Emelouane.pdf

    CAS  Google Scholar 

  27. Reddy PRK, Reddy SJ (1997) Elemental concentrations in medicinally important leafy materials. Chemosphere 34(9–10):2193–2212. https://doi.org/10.1016/S0045-6535(97)00078-7

    Article  CAS  PubMed  Google Scholar 

  28. Lajayer HA, Hadian J, Motesharezadeh B, Ghorbanpour M (2014) Assessing different levels of zinc and copper impacts on micro-and macro elements accumulation and translocation in various parts of Ocimum basilicum L. plant. SwJHBE 5(2):105–123 http://biozoojournals.ro/swjhbe/v5n2/04_swjhbe_v5n2_Lajayer.pdf

    Google Scholar 

  29. Matsuura H, Hokura A, Katsuki F, Itoh A, Haraguchi H (2001) Multielement determination and speciation of major-to-trace elements in black tea leaves by ICP-AES and ICP-MS with the aid of size exclusion chromatography. Anal Sci 17(3):391–398. https://doi.org/10.2116/analsci.17.391

    Article  CAS  PubMed  Google Scholar 

  30. Pytlakowska K, Kita A, Janoska P, Połowniak M, Kozik V (2012) Multi-element analysis of mineral and trace elements in medicinal herbs and their infusions. Food Chem 135(2):494–501. https://doi.org/10.1016/j.foodchem.2012.05.002

    Article  CAS  PubMed  Google Scholar 

  31. Wang Z, Wang H, Wang H, Li Q, Li Y (2019) Heavy metal pollution and potential health risks of commercially available Chinese herbal medicines. Sci Total Environ 653:748–757. https://doi.org/10.1016/j.scitotenv.2018.10.388

    Article  CAS  PubMed  Google Scholar 

  32. Hać E, Czarnowski W, Gos T, Krechniak J (1997) Lead and fluoride content in human bone and hair in the Gdańsk region. Sci Total Environ 206(2–3):249–254. https://doi.org/10.1016/S0048-9697(97)80013-7

    Article  PubMed  Google Scholar 

  33. Kuo HW, Kuo SM, Chou CH, Lee TC (2000) Determination of 14 elements in Taiwanese bones. Sci Total Environ 255(1–3):45–54. https://doi.org/10.1016/S0048-9697(00)00448-4

    Article  CAS  PubMed  Google Scholar 

  34. Kim SJ, Chang AC, Page AL, Warneke JE (1988) Relative concentrations of cadmium and zinc in tissue of selected food plants grown on sludge-treated soils. J Environ Qual 17(4):568–573. https://doi.org/10.2134/jeq1988.00472425001700040008x

    Article  CAS  Google Scholar 

  35. Päivöke AE (2003) Mineral elements and phytase activity in Pisum sativum grown at different Zn supply levels in the greenhouse. Environ Exp Bot 49(3):285–294. https://doi.org/10.1016/S0098-8472(02)00092-8

    Article  CAS  Google Scholar 

  36. He D, Qiu B, Peng JH, Peng L, Hu LX, Hu Y (2013) Heavy metal contents and enrichment characteristics of dominant plants in a lead-zinc tailing in Xiashuiwan of Hunan Province. J Environ Sci 34(9):3595–3600. https://doi.org/10.1016/j.ecoenv.2018.01.011

    Article  CAS  Google Scholar 

  37. Küpper H, Andresen E (2016) Mechanisms of metal toxicity in plants. Metallomics 8(3):269–285. https://doi.org/10.1039/C5MT00244C

    Article  PubMed  Google Scholar 

  38. Lewis S, Donkin ME, Depledge MH (2001) Hsp70 expression in Enteromorpha intestinalis (Chlorophyta) exposed to environmental stressors. Aquat Toxicol 51(3):277–291. https://doi.org/10.1016/S0166-445X(00)00119-3

    Article  CAS  PubMed  Google Scholar 

  39. Zheljazkov VD, Craker LE, Xing B, Nielsen NE, Wilcox A (2008) Aromatic plant production on metal contaminated soils. Sci Total Environ 395(2–3):51–62. https://doi.org/10.1016/j.scitotenv.2008.01.041

    Article  CAS  PubMed  Google Scholar 

  40. Başgel S, Erdemoğlu SB (2006) Determination of mineral and trace elements in some medicinal herbs and their infusions consumed in Turkey. Sci Total Environ 359(1–3):82–89. https://doi.org/10.1016/j.scitotenv.2005.04.016

    Article  CAS  PubMed  Google Scholar 

  41. Łozak A, Sołtyk K, Ostapczuk P, Fijałek Z (2002) Determination of selected trace elements in herbs and their infusions. Sci Total Environ 289(1–3):33–40. https://doi.org/10.1016/S0048-9697(01)01015-4

    Article  PubMed  Google Scholar 

  42. Zhan H, Jiang Y, Yuan J, Hu X, Nartey OD, Wang B (2014) Trace metal pollution in soil and wild plants from lead–zinc smelting areas in Huixian County, Northwest China. J Geochem Explor 147:182–188. 147, 182–188. https://doi.org/10.1016/j.gexplo.2014.10.007

    Article  CAS  Google Scholar 

  43. Bachheti RK, Rai I, Joshi A, Pandey DP, Sharma A (2012) Physico-chemical and elemental analysis of ash of some medicinal plants from Garhwal region, Uttarakhand, India by atomic absorption spectrophotometer (AAS). Int J Pharm Pharm Sci 4:359–362 https://innovareacademics.in/journal/ijpps/Vol4Suppl4/4448.pdf

    CAS  Google Scholar 

  44. Chandrashekar C, Kulkarni VR (2011) Isolation, characterizations and free radical scavenging activity of Annona squamosa leaf. J Pharm Res 4(3):610–611 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.736.3470&rep=rep1&type=pdf

    CAS  Google Scholar 

  45. Gupta AK (2003) Quality standards of Indian medicinal plants. Volume 1. Quality standards of Indian medicinal plants. Volume 1

  46. Kirtikar KR, Basu BD (1999) Indian medicinal plants, volume III. International book distributors, Dehradun, India

  47. Bhargava VV, Saluja AK, Dholwani KK (2013) Detection of heavy metal contents and proximate analysis of roots of Anogeissus latifolia. J Pharmacogn Phytochem 1(6) http://www.phytojournal.com/archives/2013/vol1issue6/PartA/17.pdf

  48. Nagannawar AG, Jayaraj M (2018) Pharmacognosy and preliminary phytochemical investigation on Mollugo oppositifolia L., a traditional medicinal herb. J Pharmacogn Phytochem 7(4):509–512 http://www.phytojournal.com/archives/2018/vol7issue4/PartI/7-4-68-983.pdf

    CAS  Google Scholar 

  49. Singh A, Sharma RK, Agrawal M, Marshall F (2009) Effects of wastewater irrigation on physicochemical properties of soil and availability of heavy metals in soil and vegetables. Commun Soil Sci Plant Anal 40(21–22):3469–3490. https://doi.org/10.1080/00103620903327543

    Article  CAS  Google Scholar 

  50. Srivastava A, Awasthi K, Kumar B, Misra A, Srivastava S (2018) Pharmacognostic and pharmacological evaluation of Hyssopus officinalis L. (Lamiaceae) collected from Kashmir Himalayas, India. J Pharmacognosy 10(4). https://doi.org/10.5530/pj.2018.4.114

Download references

Funding

This study is financially supported by the Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran. We extend special thanks to the Departments of Biosystems Engineering and Horticultural Science for supporting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid Minaei.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saebi, A., Minaei, S., Mahdavian, A.R. et al. Precision Harvesting of Medicinal Plants: Elements and Ash Content of Hyssop (Hyssopus officinalis L.) as Affected by Harvest Height. Biol Trace Elem Res 199, 753–762 (2021). https://doi.org/10.1007/s12011-020-02171-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02171-2

Keywords

Navigation