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Abstract
Vanadium compounds are promising antidiabetic agents. In addition to regulating glucosemetabolism, they also alter lipidmetabolism.
Due to the clear association between diabetes and atherosclerosis, the purpose of the present study was to assess the effect of sodium
orthovanadate on the amount of individual fatty acids and the expression of stearoyl-coenzyme A desaturase (SCD orΔ9-desaturase),
Δ5-desaturase, and Δ6-desaturase in macrophages. THP-1 macrophages differentiated with phorbol 12-myristate 13-acetate (PMA)
were incubated in vitro for 48 h with 1 μM or 10 μM sodium orthovanadate (Na3VO4). The estimation of fatty acid composition was
performed by gas chromatography. Expressions of the genes SCD, fatty acid desaturase 1 (FADS1), and fatty acid desaturase 2
(FADS2) were tested by qRT-PCR. Sodium orthovanadate in THP-1 macrophages increased the amount of saturated fatty acids (SFA)
such as palmitic acid and stearic acid, as well as monounsaturated fatty acids (MUFA)—oleic acid and palmitoleic acid. Sodium
orthovanadate caused an upregulation of SCD expression. Sodium orthovanadate at the given concentrations did not affect the amount
of polyunsaturated fatty acids (PUFA) such as linoleic acid, arachidonic acid, eicosapentaenoic acid (EPA), docosapentaenoic acid
(DPA), and docosahexaenoic acid (DHA). In conclusion, sodium orthovanadate changed SFA and MUFA composition in THP-1
macrophages and increased expression of SCD. Sodium orthovanadate did not affect the amount of any PUFA. This was associated
with a lack of influence on the expression of FADS1 and FADS2.
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Introduction

Vanadium is a metal that forms numerous inorganic compounds
and complexes with organic substances. They are the subject of
growing interest among researchers thanks to their antitumor
properties [1]. All vanadium compounds are competitive

inhibitors of protein tyrosine phosphatases (PTP) [2, 3]. In ex-
periments on cancer cells, vanadium compounds inhibited cell
cycle at checkpoints G0/G1, G1/S, and G2/M [4–9]. This is partly
related to the inactivation of PTP involved in the correct course
of the cell cycle [10]. Vanadium compounds also act pro-
apoptotically on tumor cells [4–7, 9]. In particular, they cause
the opening of the mitochondrial permeability transition pore
which initiates apoptosis [11]. They also increase the expression
of Bax and decrease the expression of Bcl-2, i.e., proteins regu-
lating apoptosis [9]. Vanadium compounds also inhibit the
epithelial–mesenchymal transition, which inhibits the formation
of tumor metastases [12]. Due to these properties, they are inten-
sively tested for use as antineoplastic drugs [1, 13].

There are also advanced studies on the potential use of
vanadium compounds in the treatment of diabetes [14, 15].
Vanadium compounds, due to the inhibition of PTP, increase
the phosphorylation of proteins on tyrosine residues. This
causes changes in various signaling pathways. In particular,
vanadium compounds by inhibiting PTP-1B cause an increase
in phosphorylation of the insulin receptor [16–19]. Thanks to
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this, they abolish insulin resistance and potentiate the effect of
insulin. They also strengthen the signal transmission from the
insulin receptor and inhibit phosphatase and tensin homolog
(PTEN). PTEN is an enzyme that catalyzes a reverse reaction
to that catalyzed by phosphatidylinositol 3-kinases (PI3K)
[20]. Nevertheless, vanadium compounds not only increase
the action of insulin but also exert other acts than insulin.
They can inhibit the activity of protein kinase A (PKA) which
inhibits gluconeogenesis and lipolysis [21]. Vanadium com-
pounds, when compared with insulin, also have a more pro-
mitogenic effect inter alia, by affecting the activity of mitogen-
activated protein kinases (MAPK) cascades [22].

Previous studies carried out in vivo [23–25] and in vitro
[26] confirm the antidiabetic and insulin-enhancing properties
of vanadium compounds, in particular vanadyl sulfate
(VOSO4), sodium orthovanadate (Na3VO4), and the organic
derivatives: bis(ethylmaltolato)oxovanadium(IV) (BEOV)
and bis(maltolato)oxovanadium(IV) (BMOV). These com-
pounds reduce blood glucose levels in many ways. In the
muscles, they increase the expression of GLUT4, which in-
creases the absorption of glucose from the blood. In liver and
muscle cells, vanadium compounds stimulate glycogen syn-
thesis [27] and increase glucose processing via the glycolysis
pathway [27, 28]. They also reduce the intensity of gluconeo-
genesis [29]. Vanadium compounds also reduce cholesterol
and LDL levels, which were very elevated in streptozotocin-
induced [30] or alloxan-induced [31] diabetic rats. Vanadium
compounds also cause an increase in the number of beta-cells
in the pancreas of streptozotocin-induced diabetic rats [24,
25]. Clinical trials involving VOSO4 have shown that vanadi-
um compounds can be used in therapy [32–34]. It was shown
that at a blood concentration of approximately 4 μM (75 mg
VOSO4 daily, route of administration: oral 5 mg/day/kg body
weight VOSO4) was not toxic, even after 6-week therapy of
patients with type 2 diabetes mellitus (T2DM) [33, 34] or
supplementation with insulin through 2.5 years of therapy of
patients with type 1 diabetes mellitus (T1DM) [32]. In a
higher dose (300 mg orally), it caused mild diarrhea and mal-
aise [32]. However, the therapeutic window for vanadium
compounds is very narrow. Vanadium compounds in a dose
above 30 mg/day/kg body weight are toxic, cause oxidative
stress, and are harmful to the liver and kidneys. That has been
proven in experiments on broilers [35] and on rats [36] and
mice [36]. Vanadium compounds accumulate in the acidic
environment of mitochondria in the form of decavanadate,
which disturbs the functioning of these organelles [37, 38].

Diabetes has not only increased blood glucose levels, but
also increased levels of plasma lipids, such as total cholesterol,
low-density lipids (LDL), and triglyceride (TAG) as demon-
strated in streptozotocin-induced [30] or alloxan-induced [31]
diabetic rats as well as in patients with T2DM [39]. Increased
blood glucose causes oxidative stress and inflammatory reac-
tions in the blood vessels [40]. This process, combinedwith an

increased amount of lipids in the plasma, causes the formation
of oxysterols which are accumulated in macrophages [41].
This results in the formation of foam cells in the blood vessels
and inflammation, resulting in atherosclerotic lesions. This
increases the prevalence of atherosclerosis in patients with
T2DM [42].

Macrophages play an important role in diseases associated
with diabetes, such as nephropathy or diabetic retinopathy
[43–45]. Infiltration and accumulation of these cells occur in
the kidney and retina, especially in diabetes. In addition, ele-
vated glucose levels result in macrophages producing and se-
creting various proinflammatory cytokines and reactive oxy-
gen species (ROS) that contribute to the development of dia-
betic nephropathy and retinopathy.

An important role in the course of atherosclerosis is
played by the macrophages and lipid metabolism in these
cells. Therefore, the main objective of the study was to
investigate the effect of selected vanadium compounds on
the concentration of individual fatty acids and the expres-
sion of desaturases responsible for the formation of unsat-
urated bonds in fatty acids in macrophages. THP-1 macro-
phages grown with sodium orthovanadate at 1 μM and
10 μM were used for this purpose. These are the concen-
trations at which the vanadium compounds exhibit hypo-
glycemic properties and do not show toxic properties in
humans and laboratory animals [32, 34, 46–49].

Materials and Methods

Cell Culture

THP-1 cells are a monocyte cell line commonly used in re-
search on inflammatory reactions and atherosclerotic mecha-
nisms [50–54]. Cultures of THP-1 cells (ATCC, Rockville,
USA) were grown at 37 °C in 5% CO2 on RPMI-1640 medi-
um (BIOMED-LUBLIN, Poland) with the addition of 10%
FBS (ALAB, Poland), along with penicillin (40 U/ml) and
streptomycin (40 mg/l) (Sigma–Aldrich, Poland). Cells with
a viability of over 97% were placed into 6-well plates, 3 × 106

wells altogether. The number of cells and their viability were
determined using a Bright Line Hemacytometer (Sigma–
Aldrich, Poznań, Poland) and trypan blue staining [55].
After inoculation, THP-1 monocytes were differentiated into
macrophages by adding 100 nM phorbol 12-myristate 13-ac-
etate (PMA) (carrier: DMSO) (Sigma–Aldrich, Poland) to the
culture. After 24 h of incubation, the cells were washed with
PBS (BIOMED-LUBLIN, Poland) and incubated in Na3VO4

(Sigma–Aldrich, Poland) (carrier: PBS). One micrometer and
10 μM Na3VO4 were used in the experiment. These concen-
trations were determined on the basis of in vitro studies on the
antidiabetic properties [32, 34, 49, 56] and antineoplastic
properties [4–7] of vanadium compounds. Cells were
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incubated in a medium supplemented with FBS. After 48 h of
incubation with Na3VO4, THP-1 macrophages were scraped
from the plate. After centrifugation (4 °C, 800×g, 10 min), the
supernatant was discarded and the obtained cell pellet was
frozen at − 80 °C for further analysis.

Isolation and Analysis of Fatty Acid Concentration

The fatty acids from the collected cells were extracted
using Folch mixture [57] (2:1, chloroform:methanol),
and heneicosanoic acid (21:0) was added as an internal
standard to the collected cells. The fatty acids were sa-
ponified and methylated with KOH and BF3 in methanol.
Extraction of the obtained fatty acid methyl esters was
then carried out with hexane. They were then analyzed
by gas chromatography, with the use of an Agilent
Technologies 7890A GC System (SUPELCOWAX™ 10
Capillary GC Column (15 m × 0.1 mm × 0.1 μm))
(Supelco, Bellefonte, PA, USA). The following chro-
matographic conditions were applied: from an initial
temperature of 60 °C increasing at a rate of 40 °C/min
to 160 °C, then increasing at a rate of 30 °C/min to
190 °C, and then increasing at a rate of 30 °C/min to
230 °C for 2.6 min, where it was maintained for 4.9 min.
The total analysis took approximately 8 min. The gas
flow rate was 0.8 ml/min; the carrier gas was comprised
of hydrogen. The identification of fatty acids was done
by comparing their retention times with those of com-
mercially available standards. The fatty acid concentra-
tions were determined based on standard curves and
were expressed in mg/ml.

Quantitative Real-time Polymerase Chain Reaction

Quantitative analyses of mRNA expression of stearoyl-
coenzyme A desaturase (SCD), fatty acid desaturase 1
(FADS1), and fatty acid desaturase 2 (FADS2) were per-
formed by two-step reverse transcription PCR. Total
RNA was extracted from cells using an RNeasy Kit
(Qiagen, USA). cDNA was prepared from 1 μg of total
cellular RNA in 20 μl of reaction volume using a
FirstStrand cDNA synthesis kit and oligo-dT primers
(Fermentas, USA). The quantitative assessment of
mRNA levels was performed by real-time RT-PCR
using an ABI 7500Fast instrument with Power SYBR
Green PCR Master Mix reagent. Real-time conditions
were as follows: 95 °C (15 s), 40 cycles at 95 °C
(15 s), and 60 °C (1 min). According to melting point
analysis, only one PCR product was amplified under
these conditions. Each sample was analyzed in two
technical replicates, and the mean Ct values were used
for further analysis. The relative quantity of the target,
normalized to the endogenous control GAPDH gene and

relative to a calibrator, is expressed as 2−ΔΔCt (fold dif-
ference), where Ct is the threshold cycle, ΔCt = (Ct of
target genes) − (Ct of endogenous control gene), and
ΔΔCt = (ΔCt of samples for target gene) − (ΔCt of cali-
brator for the target gene). The following primer pairs
were used: FADS1 forward: CCAACTGCTTCCGC
AAAGAC, FADS1 reverse: GCTGGTGGTTGTAC
GGCATA, FADS2 forward: TGACCGCAAGGTTT
ACAACAT, FADS2 reverse: AGGCATCCGTTGCA
TCTTCTC, SCD forward: TTCCTACCTGCAAG
TTCTACACC, SCD reverse: CCGAGCTTTGTAAG
AGCGGT.

Determination of Protein Content in the Sample

The results of the fatty acid content in the cells were
converted to the protein content on the sample, which
was determined using a Micro BCA Protein Assay Kit
(Thermo Scientific, Pierce Biotechnology, USA) and
spectrophotometer (UVM340, ASYS). The determination
used biscynchonia acid (BCA), which allows detection of
Cu1+ copper ions formed during Cu2+ reduction by pro-
teins in alkaline environment. As a result of the chelation
reaction of two molecules of BCA acid with one Cu1+

copper ion, the sample becomes violet. The method is
based on the measurement of absorbance of the test sub-
stance at a wavelength of 562 nm. There is a linear
relationship between the increase in protein concentration
and intensity of the color.

Statistical Analysis

The obtained results were analyzed using the Statistica 10.0
software package. The arithmetical mean ± SD was calculated
for each of the studied parameters. The distribution of results
for individual variables was obtained with the Shapiro–Wilk
W test. As most of the distributions deviated from the normal
distribution, non-parametric tests were used for further analy-
ses. To assess the differences between the groups studied, the
non-parametric Kruskal–Wallis ANOVA followed by the
Mann–Whitney U test was used. A probability at p ≤ 0.05
was considered statistically significant.

Results

Sodium Orthovanadate Increased the Amount
of Saturated Fatty Acids in THP-1 Macrophages

Sodium orthovanadate in THP-1 macrophages increased the
amount of saturated fatty acids (SFA) (Fig. 1). At 10 μM, it
statistically significantly increased the amount of palmitic acid
by almost 50% (p = 0.005). The vanadium compound tested
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increased statistically the amount of palmitic acid and stearic
acid in comparison with the two tested concentrations (p =
0.041 and p = 0.032 appropriately).

Sodium Orthovanadate Increased the Amount
of Monounsaturated Fatty Acids in THP-1
Macrophages

Sodium orthovanadate increased the amount of monounsatu-
rated fatty acids (MUFA) in THP-1 macrophages (Fig. 2). It
statistically significantly increased the amount of oleic acid at
both concentrations tested. At a concentration of 1 μM, the
concentration of this fatty acid increased by 50% (p = 0.032),
and with a concentration of 10 μMby 90% (p = 0.012). At the
1 μM concentration, the tested vanadium compound signifi-
cantly increased the amount of palmitoleic acid by 70% (p =
0.036).

Sodium Orthovanadate Did Not Affect the Amount
of Polyunsaturated Fatty Acids in THP-1 Macrophages

Sodium orthovanadate at the applied concentrations did not
change the amount of polyunsaturated fatty acids (PUFA) in

Fig. 1 Effect of sodium orthovanadate on SFA concentration in THP-1
macrophages. The effect of sodium orthovanadate on the amount of a
myristic acid, b palmitic acid, and c stearic acid. PMA-activated
macrophages of the THP-1 cell line were cultured at two concentrations
of sodium orthovanadate. After 48 h of incubation, the cells were scraped
and analyzed using a gas chromatograph. Data represent means ± SD for
six independent experiments. Double asterisks indicate statistically
significant difference in the amount of fatty acid in macrophages
relative to control with PBS, p ≤ 0.01. A number sign indicates a
statistically significant difference in the amount of fatty acid in
macrophages between two concentrations of sodium orthovanadate,
p ≤ 0.05

Fig. 2 Effect of sodium orthovanadate on the concentration of MUFA in
THP-1 macrophages. The effect of sodium orthovanadate on the amount
of a palmitoleic acid and b oleic acid. PMA-activated macrophages of the
THP-1 cell line were cultured at two concentrations of sodium
orthovanadate. After 48 h of incubation, the cells were scraped and
analyzed using a gas chromatograph. Data represent means ± SD for six
independent experiments. An asterisk indicates a statistically significant
difference in the amount of fatty acid in macrophages relative to control
with PBS, p ≤ 0.05
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THP-1 macrophages (Fig. 3). The concentration of linoleic
acid, arachidonic acid, eicosapentaenoic acid (EPA),
docosapentaenoic acid (DPA), and docosahexaenoic acid
(DHA) did not significantly change relative to the control with
PBS.

Sodium Orthovanadate Increased the Expression
of Stearoyl-Coenzyme A Desaturase

Sodium orthovanadate at the concentrations used increased the
SCD expression (Fig. 4). At 1 μM and 10 μM, it increased the
expression of this gene four times (p < 0.0001) and above six
times (p< 0.0001) relative to control, respectively. At 10 μM, it
also significantly increased the SCD expression in comparison
with 1 μM (p = 0.0022). At 1 μM, sodium orthovanadate in-
creased the expression of FADS1 two times. At all concentra-
tions, it increased FADS2 expression by two times relative to the
control. Nevertheless, the effect on the expression of FADS1 and
FADS2 was statistically insignificant (p > 0.05).

Discussion

Vanadium compounds are tested as promising drugs against
T2DM [14, 15]. In addition to the effects on glucose metabo-
lism, vanadium compounds such as sodium orthovanadate or
vanadyl sulfate also reduce plasma cholesterol and LDL [30,

31]. These effects are the result of stimulating glycolysis, gly-
cogen synthesis, and fatty acid synthesis in the liver, muscles,
and adipose tissue [28, 31, 49, 58].

In this study, we found that sodium orthovanadate changed
the fatty acid composition in THP-1 macrophages, increasing
the amount of palmitic and stearic acids, as well as oleic and
palmitoleic acids. This is associated with increased expression
and activity of fatty acid synthase (FAS) and Δ9-desaturase,
enzymes responsible for SFA and MUFA biosynthesis. The
results obtained in this work confirm numerous scientific re-
ports. In a streptozotocin-induced diabetic rat model which
caused deregulation of glucose and lipid metabolism enzymes
as well as decreased expression and activity of FAS and
acetyl-CoA carboxylase in the liver, an increased expression
and activity of these enzymes after exposure to vanadium
compounds was demonstrated [28, 31, 58]. This may result
in increased plasma glucose uptake by various tissues and its
incorporation into fatty acid metabolism, thereby normalizing
blood glucose levels. In our study, sodium orthovanadate also
increased the expression of SCD and hence the activity ofΔ9-
desaturase. The expression of this enzyme is significantly al-
tered by insulin and therefore decreases in diabetes [59].
Therefore, our results are consistent with the previously indi-
cated insulin-enhancing property of vanadium compounds.
This confirms the results by Arbo et al. where insulin in-
creased the expression of SCD and thus the activity of Δ9-
desaturase [60].

Fig. 3 Effect of sodium
orthovanadate on PUFA
concentration in THP-1
macrophages. The effect of
sodium orthovanadate on the
amount of a linoleic acid, b
arachidonic acid, c
eicosapentaenoic acid, d
docosapentaenoic acid, and e
docosahexaenoic acid. PMA-
activated macrophages of the
THP-1 cell line were cultured at
two concentrations of sodium
orthovanadate. After 48 h of
incubation, the cells were scraped
and analyzed using a gas
chromatograph. Data represent
means ± SD for six independent
experiments
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The present work is the first to show that in addition to the
effects on the liver, muscle, and adipose tissue, macrophages
under incubation conditions with vanadium compounds may
participate in glucose uptake and incorporation into lipid me-
tabolism pathways, thereby contributing to the normalization
of blood glucose.

In this work, sodium orthovanadate did not affect the amount
of any PUFA in THP-1 macrophages. This was associated with
the lack of influence on the expression of FADS1 and FADS2,
genes encoding Δ5-desaturase and Δ6-desaturase, respectively,
i.e., enzymes involved in the conversion of α-linolenic acid to
EPA, DPA, and DHA and linoleic acid to γ-linolenic acid and
arachidonic acid. We were the first to investigate the effect of
sodium orthovanadate on the expression of FADS1 and FADS2.
The lack of effect on the expression of these enzymes to some
extent contradicts the properties of vanadium compounds. In
THP-1 macrophages, insulin increases the expression of
FADS1 and FADS2 and hence the activity of enzymes they en-
code, i.e., Δ5-desaturase and Δ6-desaturase [60]. In

streptozotocin-induced diabetic rats, disorders in the action of
insulin resulted in the reduced expression of Δ6-desaturase in
the liver [61]. However, a study by Mašek et al. showed that
the expression of FADS2 does not change in diabetic rat liver
[59]. The reason for these results may be the very properties of
vanadium compounds. In particular, vanadium compounds affect
metabolism via insulin-like growth factor 1 receptor (IGF-1R)
[62]. Therefore, they have a more inductive effect on the prolif-
eration of cells than insulin. Thanks to this action, vanadium
compounds are more effective in increasing the expression of
SCD, an enzyme involved in the proliferation of cells [63].
Vanadium compounds to a lesser extent affect the expression of
FADS1 and FADS2 than insulin, which has a greater effect on
metabolism. Another significant factor was the concentration of
sodium orthovanadate, since the expression of FADS1 and
FADS2 was affected at the higher concentration used (10 μM).

The results of our work show that sodium orthovanadate
can affect the mechanisms involved in the development of
atherosclerosis. Increased SCD expression and increased Δ9-
desaturase activity protect macrophages from the proinflam-
matory action of SFA [64–66]. Among other things, it reduces
the activation of NLRP3 inflammasome and NF-κB and thus
inflammatory reactions that are important in the development
of atherosclerosis. Also, the increased expression and activity
of this enzyme causes the efflux of cholesterol from macro-
phages [67]. These processes protect against the development
of atherosclerosis.

On the other hand, in the same model of THP-1 macro-
phages, sodium orthovanadate increased the synthesis of pros-
taglandin E2 (PGE2) with arachidonic acid [68]. This may
promote the development of atherosclerosis [69]. In addition,
the sodium orthovanadate–induced increase in the amount of
fatty acids in THP-1 macrophages demonstrated in our work
may be not beneficial. Increased accumulation of SFA may
cause inflammatory reactions and uptake of oxidized low-
density lipoprotein (oxLDL) [66, 70]. Increased accumulation
of SFA inmacrophages may disturb cholesterol metabolism in
them [71] and contribute to the formation of atherosclerosis,
where macrophages are an important link. The accumulation
of cholesterol esters derived from lipoproteins is followed by
the de-esterification of cholesterol and removal of free choles-
terol from these cells [72]. Low activity of FAS increases the
process of removing free cholesterol from macrophages and
thus slows down atherosclerosis [73].

Vanadium compounds generate ROS, which can conse-
quently accelerate the development of atherosclerosis. As
has been shown so far, vanadyl, a vanadium compound at
the +4 oxidation state, is responsible for this process. It
caused the oxidation of plasma lipids in in vitro and in vivo
experiments [30, 74]. After entering the cytoplasm, vanadium
compounds at the +5 oxidation state (vanadates, including
sodium orthovanadate) are reduced by intracellular antioxi-
dants to vanadium compounds at the +4 oxidation state to

Fig. 4 The effect of sodium orthovanadate on the expression of
desaturases involved in the conversion of fatty acids. The effect of
sodium orthovanadate on the expression of a SCD, b FADS1, and c
FADS2. PMA-activated macrophages of the THP-1 cell line were
cultured at two concentrations of sodium orthovanadate. After 48 h of
incubation, the cells were scraped and analyzed using qRT-PCR. Data
represent means ± SD for six independent experiments. Triple asterisks
indicate statistically significant difference in the expression of the given
gene in macrophages relative to control with PBS, p ≤ 0.0001. Double
number signs indicate statistically significant difference in expression
between two concentrations of sodium orthovanadate, p ≤ 0.01
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give ROS [75, 76]. The inorganic vanadium compounds at the
+4 oxidation state undergo Fenton reaction to form ROS and
vanadate at +5 oxidation state [77, 78]. A cycle is formed in
which ROS is constantly generated, compounds that destruc-
tively affect various molecules in the cell and cause formation
of oxLDL [70, 74, 79].

The compounds with a large number of double bonds are
particularly sensitive to oxidation by ROS. An example of
such compounds is PUFA. These fatty acids contain many
double bonds in one molecule, making them susceptible to
oxidation by ROS. Therefore, increasing the amount of
PUFA fatty acids in macrophage cells may exacerbate oxida-
tive stress in them [80–82]. In our study, sodium
orthovanadate did not increase the amount of PUFA fatty
acids in the studied macrophages. Due to the generation of
ROS by vanadium compounds, the lack of effect on the
amount of PUFA in cells appears to be a positive property of
the vanadium compound tested.

Increased expression of SCD by sodium orthovanadate
may intensify cancer mechanisms. During its intensive
division, a tumor cell synthesizes its components, includ-
ing fatty acids, hence the increased expression of SCD in
tumors, e.g., observed in human hepatocellular carcino-
ma [83], anaplastic thyroid carcinoma [84], breast can-
cers [85], prostate cancers [85], or lung adenocarcinoma
[86]. The greater the SCD expression in a tumor, the
worse the prognosis. Therefore, Δ9-desaturase inhibitors
are being investigated as potential anticancer drugs [87,
88]. If vanadium compounds increase the expression of
SCD, they also increase tumor growth.

In conclusion, sodium orthovanadate changed SFA and
MUFA composition in THP-1 macrophages and increased
expression of SCD. Sodium orthovanadate did not affect the
amount of any PUFA. This was associated with the lack of
influence on the expression of FADS1 and FADS2.
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