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Abstract The study objective was to evaluate the effect of
occupational lead exposure on blood concentrations of zinc,
iron, copper, selenium and proteins related to them, such as
transferrin, caeruloplasmin and haptoglobin. The examined
group consisted of 192 healthy male employees of zinc–lead
works. By the degree of lead exposure, the exposed group
was subdivided into three subgroups. The control group was
composed of 73 healthy male administrative workers. The
markers of lead exposure (blood levels of lead and zinc
protoporphyrin) were significantly elevated in the exposed
group compared with the control group. Additionally, con-
centrations of copper and caeruloplasmin were raised. The
significant increase in haptoglobin level was observed only
in the low exposure group. Selenium levels were signifi-
cantly decreased, whereas iron, zinc and transferrin levels
were unchanged in the exposed group compared with the
control group. There were positive correlations between the
lead toxicity parameters and the copper and caeruloplasmin
levels. In conclusion, the effect of occupational exposure to
lead on the metabolism of trace metals appears to be limited.
However, significant associations between lead exposure
and levels of copper and selenium were shown. Changed
levels of positive acute-phase proteins, such as caeruloplas-
min and haptoglobin, were also observed.
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Introduction

Although lead induces physiological, biochemical and behav-
ioural disturbances in humans, exposure to this xenobiotic is
unavoidable because of its accumulation in the environment
and use in industrial applications [1, 2]. Being present in
contaminated water, air, food and dust [3], lead is mostly
absorbed by the lungs and gastrointestinal tract, whereas per-
cutaneous absorption of inorganic lead is minimal. In adults,
40–50 % of inhaled and approximately 10 % of ingested lead
are transferred to the bloodstream and then distributed by
plasma throughout the soft tissues and bones [4].

One of the major targets for lead toxicity is the thiol
group of enzymes. Consequently, lead has an inhibitory
effect on delta-aminolevulinic acid dehydratase. Because
lead also inhibits ferrochelatase, it impairs the chain reaction
that leads to the formation of haem; this impairment results
in anaemia and the accumulation of delta-aminolevulinic
acid (ALA) and zinc protoporphyrin (ZPP) in erythrocytes
[5, 6]. Concentrations of ALA and ZPP are used as bio-
markers of human lead exposure [4].

Lead is a redox inactive metal [5]. However, lead has pro-
oxidative activity and can generate reactive oxygen species
(ROS) and reduce cell antioxidant defences, such as antiox-
idant enzymes and glutathione [2]. Moreover, ALA that
accumulates in saturnism has pro-oxidant properties [7].

Furthermore, lead interacts with some essential metals
[2]. One of them is selenium (Se), which plays an important
role as an antioxidant [8]. Se is a cofactor of glutathione
peroxidase, decreases the amount of lipid peroxidation and
protects DNA, RNA and proteins from oxidative damage.
Additionally, Se forms inactive selenium–lead complexes
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[9] and, consequently, reduces the availability of free lead
ions in the body [10].

A lead–zinc interaction has been observed [11]. Zinc (Zn)
is essential for cellular membrane integrity and metabolism
[2] as a central part of over 300 enzymes and proteins [12].
Similar to Se, Zn has been shown to possess antioxidant
properties caused by its requirement for superoxide dismu-
tase (SOD) activity [13]. Therefore, Zn not only reduces
lead-induced oxidative stress but also competes with lead
for similar binding sites [11]. Competitive binding to
metallothionein-like transport protein in the rat duodenum
suggests the ability of Zn to reduce lead absorption [11, 14].

Additionally, copper (Cu) has been reported to bind to
metallothionein-like transport proteins [14]. Cu is contained
in caeruloplasmin, an α2-globulin having enzymatic prop-
erties, and is responsible for the oxidation of ferrous to ferric
iron and catalyses the transport of iron to transferrin, which
transfers bound ions to cells. Because lead binds to both
caeruloplasmin and transferrin, iron (Fe) metabolism in
exposed individuals could be impaired [15, 16]. Another
antagonism between these metals may occur in the intestine
because low dietary intake of Fe should increase the absorp-
tion of lead [17]. Moreover, limited Fe in the mitochondria
may enhance lead-induced haem synthesis inhibition [11].

In short, the presence of metals, such as Se, Zn, Cu and
Fe, modifies lead toxicity, but their interactions are unclear.

Therefore, the present study was undertaken to determine
the effect of occupational exposure to lead on blood levels
of the above-mentioned trace metals and proteins that are
related to them.

Materials and Methods

Study Population

The experimental protocol has been approved by the Bio-
ethics Committee of the Medical University of Silesia in
Katowice no. NN-6501-36/I/06. The examined group in-
cluded 192 male employees of zinc and lead works localised
in the southern region of Poland with an age range of 22–
58 years. The study subjects had been exposed to lead for 4
to 37 years. Workers suffering from chronic diseases were
excluded.

To determine the amount of lead exposure (exposure to
zinc was insignificant), the concentrations of lead and zinc
protoporphyrin in the blood samples were determined, on
average, every 3 months during the 2 years of observation.
From the collected data, the mean blood concentrations of
lead (PbBmean) and zinc protoporphyrin (ZPPmean) were
calculated. In view of the obtained values, the examined
population was divided into three subgroups: low exposure
to lead (LE), medium exposure to lead (ME) and high

exposure to lead (HE). The LE group consisted of 56 work-
ers with PbBmean less than 40 μg/dl. The ME group included
67 workers with a PbBmean from 40 to 50 μg/dl and a
ZPPmean from 5 to 7.5 μg/g Hgb, whereas 69 workers with
a PbBmean greater than 45 μg/dl and a ZPPmean greater than
7.5 μg/g Hgb were classified as the HE group.

In the last collected blood samples, blood lead level
(PbB), blood zinc protoporphyrin level (ZPP) and concen-
trations of iron, selenium, copper, zinc, caeruloplasmin,
haptoglobin and transferrin were measured concomitantly.

The control group consisted of 73 healthy male adminis-
trative workers who were exposed to lead only environmen-
tally and had no history of occupational exposure to lead.
The age range of the control group was 21 to 60 years. No
one from this group had PbB or ZPP levels greater than the
normal levels, which were 10 μg/dl and 2.5 μg/g Hgb,
respectively.

Sampling and Laboratory Procedures

By venipuncture, 10 ml of blood was collected into plain
tubes to obtain serum, whereas 15 ml was placed in tubes
containing an ethylenediaminetetraacetic disodium acid so-
lution as an anticoagulant to obtain plasma and erythrocytes.

Whole blood was used for the analysis of PbB and ZPP.
The determination of PbB was performed by graphite fur-
nace atomic absorption spectrophotometry, using Unicam
929 and 939OZ Atomic Absorption Spectrometers with
GF90 and GF90Z Graphite Furnaces. The data were reported
in micrograms per deciliter. ZPP was measured using an Aviv
Biomedical Hematofluorometer, Model 206. The results were
expressed as micrograms per gram of haemoglobin.

After centrifugation of the remaining blood, plasma was
separated for zinc, copper and selenium analysis. The sedi-
mented red blood cells were washed three times with 0.9 %
NaCl and then lysed with bidistilled water. In 10 % haemo-
lysate, the concentration of haemoglobin was determined
using the cyanmethaemoglobin method.

The concentrations of Zn, Cu and Se in plasma were
determined by atomic absorption spectrophotometer using
an acetylene-air flame. The results were reported in micro-
grams per deciliter. Serum Fe analysis was performed on
A25 Clinical Analyzer (BioSystems, Spain) according to the
manufacturer’s instructions. The obtained values were
expressed in micromoles per liter.

The concentration of caeruloplasmin in serum was deter-
mined by Richterich [18] and expressed in micrograms per
deciliter. Serum transferrin and haptoglobin levels were
measured by immunoturbidimetric assays. Specific rabbit
monoclonal antibodies (Dako-Cytomation, Denmark) were
used according to the manufacturer’s instructions. The
measurements were performed on Biochemical Analyzer
EM 280 (Emapol, Poland).
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Statistical Analysis

The statistical analysis was performed using Statistica 9.1
PL software. The statistical methods included the mean and
standard deviation. Shapiro–Wilk’s test was used to verify
normality, and Levene’s test was used to verify homogeneity
of variances. Either an analysis of variance or Kruskal–
Wallis ANOVA test was used for multiple comparisons of
data. Additional statistical comparisons were made using
either a t test, t test with separate variance estimates or a
Mann–Whitney U test. A Spearman non-parametric corre-
lation was calculated. A value of p<0.05 was considered to
be significant.

Results

There were no significant differences in age, body mass
index and smoking habits between the examined and control
groups (Table 1). Nevertheless, when comparing the control
group with the subgroups, the mean age was significantly
lower in the low exposure group (LE) by 10.5 %. The mean
PbB and ZPP levels were significantly higher in the LE
group by 492 and 242 %, respectively, in the medium
exposure group (ME) by 650 and 346 %, respectively, and
in the high exposure group (HE) by 680 and 420 %,
respectively.

The concentrations of iron, selenium, copper, zinc, caer-
uloplasmin, haptoglobin and transferrin in the examined

subgroups are shown in Fig. 1 as a percentage of the values
obtained from the control group.

The copper concentration significantly increased by 11.8%
in the LE group, by 13.6 % in the ME group and by 12.0 % in
the HE group compared to the control group. The concentra-
tions of caeruloplasmin increased by 23.2, 17.9 and 16.3 %,
respectively, for the LE, ME and HE groups compared to the
control group. However, the level of haptoglobin in the LE
group was significantly raised by 30.6 %, whereas in the ME
and HE groups, only an insignificant tendency to increase was
observed. Only the selenium levels were significantly lower
by 24.2 % in the LE group, by 21.4 % in the ME group and by
13.6 % in the HE group compared to the control group.

There were no significant changes in iron, zinc and
transferrin concentrations in the study population.

The Spearman correlation (Table 2) indicated that there is
a positive correlation between the lead toxicity parameters
(PbB, ZPP) and copper (R00.14–0.33) and caeruloplasmin
(R00.14–0.28) levels. There were no correlations with other
trace metals and proteins. However, caeruloplasmin corre-
lated positively with copper (R00.43; p<0.001).

Discussion

The aim of the study was to evaluate the effect of occupa-
tional exposure to lead on blood levels of Zn, Fe, Cu, Se and
related proteins, such as transferrin (TRF), caeruloplasmin
(CER) and haptoglobin (HPG). The association between

Table 1 Epidemiologic parameters: the blood lead level (PbB), zinc
protoporphyrin concentration in blood (ZPP) and concentrations of
iron (Fe), zinc (Zn), copper (Cu) and selenium (Se) in plasma as well

as caeruloplasmin (CER), transferrin (TRF) and haptoglobin (HPG)
serum levels in the study population (LE—the low exposure group,
ME—the medium exposure group, HE—the high exposure group)

Control group LE group ME group HE group ANOVA

Mean SD Mean SD p value Mean SD p value Mean SD p value p value

Age 41.5 9.23 37.2 8.80 0.007 43.0 10.2 0.382 43.9 7.53 0.102 0.100

Years of work 13.0 9.61 19.3 9.75 19.2 9.45 0.001

BMI (kg/m2) 26.2 3.05 26.7 3.46 0.382 26.6 3.92 0.459 27.2 3.69 0.069 0.098

Smokers (%) 47 % 45 % 0.829 49 % 0.753 62 % 0.060 0.270

PbBmean (μg/dl) 6.45 2.49 34.1 5.39 <0.001 43.4 2.35 <0.001 49.7 4.10 <0.001 <0.001

PbB (μg/dl) 6.39 2.47 37.8 10.0 <0.001 47.9 6.75 <0.001 49.8 5.98 <0.001 <0.001

ZPPmean (μg/g Hb) 1.93 0.47 6.03 3.07 <0.001 8.15 4.13 <0.001 10.2 2.41 <0.001 <0.001

ZPP (μg/g Hb) 1.96 0.51 6.68 3.73 <0.001 8.72 5.06 <0.001 10.2 3.10 <0.001 <0.001

Fe (μmol/l) 102 45.8 96.4 35.2 0.418 104 43.0 0.843 106 46.5 0.646 0.804

Se (μg/dl) 80.6 15.0 61.1 13.3 <0.001 63.3 9.83 <0.001 69.7 15.6 0.010 <0.001

Cu (μg/dl) 69.1 8.48 77.3 13.9 0.003 78.5 16.4 0.002 77.4 14.2 0.004 0.028

Zn (μg/dl) 70.4 11.2 75.5 12.9 0.071 74.5 10.4 0.085 72.2 12.2 0.497 0.029

CER (mg/dl) 36.6 12.4 45.0 8.64 <0.001 43.1 11.6 0.003 42.5 10.1 0.003 <0.001

HPG (mg/dl) 117 51.8 153 63.2 0.002 132 58.2 0.212 130 48.4 0.211 0.062

TRF (mg/dl) 253 33.7 269 42.8 0.074 264 47.3 0.235 257 42.3 0.588 0.469
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lead exposure and levels of Cu and Se was shown. Besides,
altered levels of acute-phase proteins, such as CER and
HPG, were observed.

The influence of trace metals on lead toxicity has been
reported in many animal studies. Klauder and Petering [19]
reported that adequate dietary Cu and Fe intake minimises
the toxic effect of orally administered lead in rats. Inconsis-
tent results were observed in a study by Cerklewski and
Forbes [14], who suggested that high dietary Cu might
increase lead toxicity. Conversely, other findings of Cer-
klewski and Forbes showed that there is a protective effect
of dietary Zn and Se on lead toxicity in rats [20, 21]. Similar
results have been reported by Batra et al. [22], who observed
a significant reduction in lead content in the kidney, liver,
spleen, testis, blood and bones because of Zn supplementa-
tion. The reports by Bandhu et al. [23] and Prasanthi et al.
[24] are in agreement with this study. The protective effect
from lead toxicity is attributed to dietary Se [8, 10, 25];
however, when Se was introduced through placental transfer

by Sidhu and Nehru [26] or intramuscular injection by
Othaman and El Missiry [9], consistent results were
obtained.

Animal studies are concordant with those reports that
included children populations. Zimmermann et al. [27] im-
proved the Fe status in iron-deficient children exposed en-
vironmentally to lead thereby reducing their lead levels by
33 %. Because most environmental lead is absorbed in the
intestine, the positive effects of Fe intake in this study might
be a result of an iron–lead competitive binding to divalent
metal transporter 1 (DMT1). Fe has a higher affinity to
DMT1 and could inhibit lead uptake in the intestine [27].
Zn competes with lead analogically, which is in agreement
with the results obtained by Ahamed et al. [11], who exam-
ined anaemic children environmentally exposed to lead and
observed a significant negative correlation between both Fe
and Zn blood levels and lead concentration. The Cu con-
centration in blood was not correlated with this parameter
[11]. An association between increased blood lead levels

Fig. 1 Plasma concentrations
of iron (Fe), zinc (Zn), copper
(Cu) and selenium (Se) as well
as caeruloplasmin (CER),
transferrin (TRF) and haptoglo-
bin (HPG) serum levels in lead-
exposed groups presented as
100 % of mean±SD of control

Table 2 Correlation between the study parameters (Spearman R values, p<0.05, NS—non significant)

Age Years of work BMI PbB mean PbB last ZPP mean ZPP last Fe Se Cu Zn CER HPG

Years of work 0.81

BMI 0.23 NS

PbBmean 0.20 0.27 0.16

PbB 0.23 0.31 NS 0.82

ZPPmean 0.18 0.24 NS 0.75 0.66

ZPP 0.14 0.18 NS 0.71 0.71 0.94

Fe NS NS NS NS NS NS NS

Se NS NS NS NS NS NS NS NS

Cu 0.24 0.22 NS 0.14 0.16 0.28 0.33 NS NS

Zn NS NS NS NS NS NS NS 0.25 NS 0.25

CER 0.23 0.26 NS NS 0.14 0.28 0.27 NS NS 0.43 NS

HPG 0.21 0.22 0.17 NS NS NS NS NS NS 0.23 NS 0.27

TRF NS NS 0.18 NS NS NS NS NS NS 0.25 NS NS 0.25
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and Fe deficiency was postulated by Muwakkit et al. [28]
and Hegazy et al. [29]. Another investigation revealed that
blood lead levels were negatively correlated with serum Zn
and Se concentrations [30]. Additionally, Diouf et al. [5]
demonstrated a negative significant correlation between Se
levels and blood lead levels in children who were environ-
mentally exposed to this xenobiotic.

Investigations in adult male workers occupationally ex-
posed to lead are inconsistent. The present study revealed
that there is no association between Fe and blood lead
levels, which is concordant with previous data [31–34].
However, Kim et al. [35] reported a decrease in the serum
Fe level in lead-exposed workers, but a significantly lower
dietary Fe intake was observed concurrently. Therefore, to
expect that increased lead levels inhibit the uptake of Fe as
is postulated by some authors would be unreasonable [28]
because workers are exposed to lead primarily through the
respiratory tract and competitive binding of lead and Fe or
Zn to divalent metal transporters in the intestine should have
marginal significance in occupational exposure.

In vitro studies indicate that lead not only impairs Fe
binding to TRF [16] but also suppresses its synthesis thus,
decreasing mRNA and protein levels [36]. There is no
corroboration of this observation in our study because a
decrease in TRF level was not observed.

In the present study, there was no significant difference in
the Zn plasma levels between the examined and the control
groups. Similar results have been reported by Mehdi et al.
[34] and Chiba et al. [32], whereas Dioka et al. [37] ob-
served that the Zn blood level decreased by 34 % in artisans
who were occupationally exposed to lead. When examining
zinc–lead miners, Malekirad et al. [2] observed a positive
correlation amongst Zn and lead blood levels and significant
elevation of these parameters in the examined workers com-
pared with the control group. Because elevated total antiox-
idant status and lower DNA damage were also indicated in
the examined workers, it is possible to expect that simulta-
neous exposure to Zn may improve antioxidant defence and,
therefore, alleviate lead toxicity.

Se should act analogically. In the present study, the Se
plasma level was significantly lower in the workers than in
the control group. In addition, lead-exposed smelter workers
observed by Gustafson et al. [38] had significantly lower
plasma Se levels than the control group. Additionally, there
was a significant negative correlation between blood lead
level and plasma Se level [38]. The findings of Chiba et al.
[32] support our study with the observation that plasma Se
levels had a tendency to decrease, whereas the Se concen-
tration in erythrocytes increased significantly with an in-
creasing blood lead level. A possible explanation for this
association may be that blood lead, which is predominantly
present in erythrocytes [11], forms a complex with Se and
reduces the lead level in plasma.

The findings concerning Cu levels are more difficult to
interpret than those for Se. Studies by Mehdi et al. [34],
Wasowicz et al. [39] and Chiba et al. [32] revealed no
association between Cu and lead levels in workers, whereas
Cu plasma levels in the present study were significantly
higher compared with the control group and correlated
positively with lead concentrations. Our earlier studies
[40] showed that lead exposure is associated with an elevat-
ed activity of superoxide dismutase isoenzyme that contains
Cu and Zn (CuZn-SOD) in both serum and erythrocytes.
Therefore, an increase in the Cu level, which was observed
in the present study, may be caused by increased CuZn-SOD
activity. This enzyme is part of the antioxidant defence
system and its activity may be elevated because of lead-
induced oxidative stress [40, 41]. The increase in plasma Cu
levels may also be caused by competitive displacement of
the metal from tissues by lead ions. Moreover, lead and Cu
compete for binding sites on proteins, such as the ATPase
complex [42]. Increased bioavailability of displaced Cu may
induce ROS generation via the Fenton reaction and contrib-
ute to oxidative stress enhancement.

The concentration of CER, which is an acute-phase pro-
tein, increased significantly. Therefore, in part, the increase
in plasma Cu level may be secondary to the increase in the
CER level. Mongiat et al. [43] obtained similar results in a
study of welders and suggested that the increase in CER
levels is related to the severity of the oxidative stress and
plays an adaptative role. A slight increase in the CER level
was observed in rats that were orally administered with lead
acetate in a dose of 1,000 mg/l for 4 weeks [44]. Neverthe-
less, Mehdi et al. [34] and Wasowicz et al. [39] showed that
there is no effect of lead exposure on CER levels. In con-
trast, Leelakunakorn et al. [15] postulated that inhibition of
CER oxidase activity was lead mediated. This hypothesis is
not in conflict with our study because a decrease in the
enzymatic activity of CER does not necessarily mean a
reduction in its concentration as a protein.

HPG is the second positive acute-phase protein indicated
in our study. The mean HPG serum levels increased signif-
icantly in the LE group and insignificantly in the ME and
HE groups. The increase in the serum levels of both proteins
may be caused by the pro-inflammatory properties of lead
[45]. Chang et al. [46] reported that 1 μM lead upregulates
the transcription of genes encoding cyclooxygenase-2
(COX-2) and cytosolic phospholipase A2 in vascular
smooth muscle cells. This causes an elevated PGE2 secre-
tion. Consistently, Chou et al. [47] showed that low lead ion
concentrations induce inflammation by increasing COX-2
gene expression via the EGFR/NF-κB signal transduction
pathway in A431 carcinoma cells. Lead exposure may also
be associated with altered levels of interleukin-6,
interleukin-10 or tumour necrosis factor-alpha [48, 49].
Additionally, Khan et al. [50] observed increased levels of
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C-reactive protein (CRP) in lead-exposed workers (PbB0
29.1 μg/dl). There was a strong positive correlation between
blood lead and CRP levels in this study (R00.75).

In the present study, the elevations of CER and HPG
levels were higher in the LE group than in the ME or HE
groups. The LE group was composed of workers who had
been exposed to significantly lower doses of lead for a
significantly shorter period. Therefore, our study indirectly
supports the hypothesis that reduced lead exposure exerts an
immunostimulatory effect, whereas higher exposure may
cause immunosuppression [51].

Conclusions

The effect of occupational exposure to lead on the metabo-
lism of trace metals appears to be limited and concerns
mainly their tissue distribution. However, results of the
present study indicate that exposure to lead significantly
influences blood levels of Cu and Se. Besides, altered levels
of CER and HPG were shown. This changes in levels of the
acute-phase proteins may be associated with lead-induced
modifications of the immune system.

The accumulated data indicate that Fe, Zn, Se and Cu
may reduce lead toxicity; thus, an adequate dietary intake of
the above-mentioned trace metals is necessary. However,
there is no evidence that additional supplementation would
be beneficial.
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