Skip to main content
Log in

Preparation of Yeast Extract from Brewer’s Yeast Waste and Its Potential Application as a Medium Constituent

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Yeast extract serves as a source of nutritional components essential for human dietary requirements, feed formulations, and the vital growth factors and nutrients necessary for microorganisms. However, the production cost of yeast extract using cultivated active dry yeast is relatively high. This study aims to utilize the autolysis of discarded yeast post beer brewing to produce yeast extract. The concentration, temperature, pH, and time conditions are systematically optimized. It reveals that the yield of amino nitrogen and solids in the extract was increased by 3.3% and 20.9% under the optimized conditions (1.2% wall-breaking enzyme, 1% yeast extract enzyme, and a hydrolysis time of 24 h) than that of the documented 4.03% and 69.05%. Additionally, a comparative analysis with commercially available yeast powder demonstrates that the yeast extract derived from this study adequately fulfills the nutritional requirements for microbial growth. Hence, the utilization of discarded beer yeast presents an opportunity for the valuable reclamation of waste yeast, showcasing promising potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Jacob, F. F., Striegel, L., Rychlik, M., Hutzler, M., & Methner, F. J. (2019). Yeast extract production using spent yeast from beer manufacture: Influence of industrially applicable disruption methods on selected substance groups with biotechnological relevance. European Food Research and Technology, 245, 1169–1182. https://doi.org/10.1007/s00217-019-03237-9

    Article  CAS  Google Scholar 

  2. San Martin, D., Ibarruri, J., Iñarra, B., Luengo, N., Ferrer, J., Alvarez-Ossorio, C., Bald, C., Gutierrez, M., & Zufía, J. (2021). Valorisation of brewer’s spent yeasts’ hydrolysates as high-value bioactive molecules. Sustainability, 13, 6520. https://doi.org/10.3390/su13126520

    Article  CAS  Google Scholar 

  3. Podpora, B., Świderski, F., Sadowska, A., Piotrowska, A., & Rakowska, R. (2015). Spent brewer’s yeast autolysates as a new and valuable component of functional food and dietary supplements. Journal of Food Processing & Technology, 6, 1000526. https://doi.org/10.4172/2157-7110.1000526

    Article  CAS  Google Scholar 

  4. Jacob, F. F., Hutzler, M., & Methner, F. J. (2018). Comparison of various industrially applicable disruption methods to produce yeast extract using spent yeast from top-fermenting beer production: Influence on amino acid and protein content. European Food Research and Technology, 245, 95–109. https://doi.org/10.1007/s00217-018-3143-z

    Article  CAS  Google Scholar 

  5. Pan, L., Ma, X. K., Wang, H. L., Xu, X., Zeng, Z. K., Tian, Q. Y., Zhao, P. F., Zhang, S., Yang, Z. Y., & Piao, X. S. (2016). Enzymatic feather meal as an alternative animal protein source in diets for nursery pigs. Animal Feed Science and Technology, 212, 112–121. https://doi.org/10.1016/j.anifeedsci.2015.12.014

    Article  CAS  Google Scholar 

  6. Alim, A., Yang, C., Song, H. L., Liu, Y., Zou, T. T., Zhang, Y., & Zhang, S. P. (2019). The behavior of umami components in thermally treated yeast extract. Food Research International, 120, 534–543. https://doi.org/10.1016/j.foodres.2018.11.002

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, L. H., Zhang, M., Adhikari, B., & Zhang, L. J. (2023). Salt reducing and saltiness perception enhancing strategy for shiitake (Lentinus edodes) bud using novel combined treatment of yeast extract and radio frequency. Food Chemistry, 402, 134149. https://doi.org/10.1016/j.foodchem.2022.134149

    Article  CAS  PubMed  Google Scholar 

  8. Alim, A., Song, H. L., Liu, Y., Zou, T. T., Zhang, Y., Zhang, S. P., & Raza, A. (2019). Research of beef-meaty aroma compounds from yeast extract using carbon module labeling (CAMOLA) technique. LWT-Food Science and Technology, 112, 108329. https://doi.org/10.1016/j.lwt.2019.06.006

    Article  CAS  Google Scholar 

  9. Zhou, X. Y., Guo, T., Lu, Y. L., Hadiatullah, H., Li, P., Ding, K. L., & Zhao, G. Z. (2022). Effects of amino acid composition of yeast extract on the microbiota and aroma quality of fermented soy sauce. Food Chemistry, 393, 133289. https://doi.org/10.1016/j.foodchem.2022.133289

    Article  CAS  PubMed  Google Scholar 

  10. An, Y. Q., Liu, N., Xiong, J., Li, P., Shen, S., Qin, X. W., Xiong, S. B., Wu, D., & Huang, Q. L. (2023). Quality changes and shelf-life prediction of pre-processed snakehead fish fillet seasoned by yeast extract: Affected by packaging method and storage temperature. Food Chemistry Advances, 3, 100418. https://doi.org/10.1016/j.focha.2023.100418

    Article  Google Scholar 

  11. Baker, L. M., Kraft, J., Karnezos, T. P., & Greenwood, S. L. (2022). Review: The effects of dietary yeast and yeast-derived extracts on rumen microbiota and their function. Animal Feed Science and Technology, 294, 115476. https://doi.org/10.1016/j.anifeedsci.2022.115476

    Article  CAS  Google Scholar 

  12. Oliveira, A. S., Pereira, J. O., Ferreira, C., Faustino, M., Durão, J., Pintado, M. E., & Carvalho, A. P. (2022). Peptide-rich extracts from spent yeast waste streams as a source of bioactive compounds for the nutraceutical market. Innovative Food Science & Emerging Technologies, 81, 103148. https://doi.org/10.1016/j.ifset.2022.103148

    Article  CAS  Google Scholar 

  13. Spearman, M., Chan, S., Jung, V., Kowbel, V., Mendoza, M., Miranda, V., & Butler, M. (2016). Components of yeast (Sacchromyces Cervisiae) extract as defined media additives that support the growth and productivity of CHO cells. Journal of Biotechnology, 233, 129–142. https://doi.org/10.1016/j.jbiotec.2016.04.031

    Article  CAS  PubMed  Google Scholar 

  14. Frohn, L., Peixoto, D., Guyomar, C., Teixeira, C., Terrier, F., Aguirre, P., Maman Haddad, S., Bobe, J., Costas, B., Richard, N., Pinel, K., & Skiba-Cassy, S. (2024). Yeast extract improves growth in rainbow trout (Oncorhynchus mykiss) fed a fishmeal-free diet and modulates the hepatic and distal intestine transcriptomic profile. Aquaculture, 579, 740226. https://doi.org/10.1016/j.aquaculture.2023.740226

    Article  CAS  Google Scholar 

  15. Li, P., & Gatlin, D. M. (2003). Evaluation of brewers yeast (Saccharomyces cerevisiae) as a feed supplement for hybrid striped bass (Morone chrysops×M. Saxatilis). Aquaculture, 219, 681–692. https://doi.org/10.1016/s0044-8486(02)00653-1

    Article  Google Scholar 

  16. Vieira, E. F., Carvalho, J., Pinto, E., Cunha, S., Almeida, A. A., & Ferreira, I. M. P. L. V. O. (2016). Nutritive value, antioxidant activity and phenolic compounds profile of brewer’s spent yeast extract. Journal of Food Composition and Analysis, 52, 44–51. https://doi.org/10.1016/j.jfca.2016.07.006

    Article  CAS  Google Scholar 

  17. Ferreira, I. M. P. L. V. O., Pinho, O., Vieira, E., & Tavarela, J. G. (2010). Brewer’s Saccharomyces yeast biomass: Characteristics and potential applications. Trends in Food Science & Technology, 21, 77–84. https://doi.org/10.1016/j.tifs.2009.10.008

    Article  CAS  Google Scholar 

  18. Puligundla, P., Mok, C., & Park, S. (2020). Advances in the valorization of spent brewer’s yeast. Innovative Food Science & Emerging Technologies, 62, 102350. https://doi.org/10.1016/j.ifset.2020.102350

    Article  CAS  Google Scholar 

  19. Estévez, A., Padrell, L., Iñarra, B., Orive, M., & Martin, D. S. (2021). Brewery by-products (yeast and spent grain) as protein sources in gilthead seabream (Sparus aurata) feeds. Aquaculture, 543, 736921. https://doi.org/10.1016/j.aquaculture.2021.736921

    Article  Google Scholar 

  20. Zeng, D. F., Jiang, Y. F., Su, Y. Y., & Zhang, Y. F. (2022). Upcycling waste organic acids and nitrogen into single cell protein via brewer’s yeast. Journal of Cleaner Production, 369, 133279. https://doi.org/10.1016/j.jclepro.2022.133279

    Article  CAS  Google Scholar 

  21. Mihajlovski, K., Radovanović, Ž, Carević, M., & Dimitrijević-Branković, S. (2018). Valorization of damaged rice grains: Optimization of bioethanol production by waste brewer’s yeast using an amylolytic potential from the Paenibacillus chitinolyticus CKS1. Fuel, 224, 591–599. https://doi.org/10.1016/j.fuel.2018.03.135

    Article  CAS  Google Scholar 

  22. Oliveira, A. S., Ferreira, C., Pereira, J. O., Pintado, M. E., & Carvalho, A. P. (2022). Valorisation of protein-rich extracts from spent brewer’s yeast (Saccharomyces cerevisiae): An overview. Biomass Conversion and Biorefinery, 1, 23. https://doi.org/10.1007/s13399-022-02636-5

    Article  CAS  Google Scholar 

  23. Tao, Z., Yuan, H., Liu, M., Liu, Q., Zhang, S., Liu, H., Jiang, Y., Huang, D., & Wang, T. (2023). Yeast extract: Characteristics, production, applications and future perspectives. Journal of Microbiology and Biotechnology, 33, 151–166. https://doi.org/10.4014/jmb.2207.07057

    Article  CAS  PubMed  Google Scholar 

  24. Postacchini, P., Menin, L., Piazzi, S., Grimalt-Alemany, A., Patuzzi, F., & Baratieri, M. (2023). Syngas biomethanation by co-digestion with brewery spent yeast in a lab-scale reactor. Biochemical Engineering Journal, 193, 108863. https://doi.org/10.1016/j.bej.2023.108863

    Article  CAS  Google Scholar 

  25. Tanguler, H., & Erten, H. (2008). Utilisation of spent brewer’s yeast for yeast extract production by autolysis: The effect of temperature. Food and Bioproducts Processing, 86, 317–321. https://doi.org/10.1016/j.fbp.2007.10.015

    Article  Google Scholar 

  26. Takalloo, Z., Nikkhah, M., Nemati, R., Jalilian, N., & Sajedi, R. H. (2020). Autolysis, plasmolysis and enzymatic hydrolysis of baker’s yeast (Saccharomyces cerevisiae): A comparative study. World Journal of Microbiology and Biotechnology, 36, 68. https://doi.org/10.1007/s11274-020-02840-3

    Article  CAS  PubMed  Google Scholar 

  27. Toldrá, F., Reig, M., Aristoy, M. C., & Mora, L. (2018). Generation of bioactive peptides during food processing. Food Chemistry, 267, 395–404. https://doi.org/10.1016/j.foodchem.2017.06.119

    Article  CAS  PubMed  Google Scholar 

  28. Hou, Y., Wu, Z., Dai, Z., Wang, G., & Wu, G. (2017). Protein hydrolysates in animal nutrition: Industrial production, bioactive peptides, and functional significance. Journal of Animal Science and Biotechnology, 8, 24. https://doi.org/10.1186/s40104-017-0153-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Marson, G. V., Machado, M. T. d. C., de Castro, R. J. S., & Hubinger, M. D. (2019). Sequential hydrolysis of spent brewer’s yeast improved its physico-chemical characteristics and antioxidant properties: A strategy to transform waste into added-value biomolecules. Process Biochemistry, 84, 91–102. https://doi.org/10.1016/j.procbio.2019.06.018

    Article  CAS  Google Scholar 

  30. Babalola, B. A., Akinwande, A. I., Gboyega, A. E., & Otunba, A. A. (2023). Extraction, purification and characterization of papain cysteine-proteases from the leaves of Carica papaya Scientific African, 19, e01538. https://doi.org/10.1016/j.sciaf.2022.e01538

    Article  CAS  Google Scholar 

  31. Babalola, B. A., Akinwande, A. I., Otunba, A. A., EAdebami, G. E., Babalola, O., & Nwuofo, C. (2023). Therapeutic benefits of Carica papaya: A review on its pharmacological activities and characterization of papain. Arabian Journal of Chemistry, 17, 105369. https://doi.org/10.1016/j.arabjc.2023.105369

    Article  CAS  Google Scholar 

  32. Bavaro, T., Cattaneo, G., Serra, I., Benucci, I., Pregnolato, M., & Terreni, M. (2016). Immobilization of neutral protease from Bacillus subtilis for regioselective hydrolysis of acetylated nucleosides: Application to capecitabine synthesis. Molecules, 21, 1621. https://doi.org/10.3390/molecules21121621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu, Q., Yao, Y., Ibrahim, M. A. A., Halawany, A. M. E., Yang, L., & Zhang, X. (2022). Production of dual inhibitory hydrolysate by enzymatic hydrolysis of squid processing by-product. Marine Biotechnology, 24, 293–302. https://doi.org/10.1007/s10126-022-10104-4

    Article  CAS  PubMed  Google Scholar 

  34. Hurtado-Guerrero, R., Schüttelkopf, A. W., Mouyna, I., Ibrahim, A. F. M., Shepherd, S., Fontaine, T., Latgé, J. P., & van Aalten, D. M. (2009). Molecular mechanisms of yeast cell wall glucan remodeling. Journal of Biological Chemistry, 284, 8461–8469. https://doi.org/10.1074/jbc.M807990200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, J. J., Li, M. Q., Zheng, F. Y., Niu, C. T., Liu, C. F., Li, Q., & Sun, J. Y. (2018). Cell wall polysaccharides: Before and after autolysis of brewer’s yeast. World Journal of Microbiology and Biotechnology, 34, 137. https://doi.org/10.1007/s11274-018-2508-6

    Article  CAS  PubMed  Google Scholar 

  36. Tangüler, H., & Erten, H. (2009). The effect of different temperatures on autolysis of baker’s yeast for the production of yeast extract. Turkish Journal of Agriculture and Forestry, 33, 149–154. https://doi.org/10.3906/tar-0803-17

    Article  Google Scholar 

  37. Jach, M. E., Serefko, A., Ziaja, M., & Kieliszek, M. (2022). Yeast protein as an easily accessible food source. Metabolites, 12, 63. https://doi.org/10.3390/metabo12010063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX23_1852) and the Huai’an Natural Science Research Project (HAB202361).

Author information

Authors and Affiliations

Authors

Contributions

FG and QL performed the experiments and drafted the manuscript. WW, YW, and WS drafted the manuscript. XY and HJ performed the data analysis. JZ, YX, ZT, and JP revised the manuscript. HS administered the work and critically revised the manuscript.

Corresponding author

Correspondence to Hao Shi.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 21.6 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, F., Li, Q., Wei, W. et al. Preparation of Yeast Extract from Brewer’s Yeast Waste and Its Potential Application as a Medium Constituent. Appl Biochem Biotechnol (2024). https://doi.org/10.1007/s12010-024-04885-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-024-04885-8

Keywords

Navigation