Skip to main content

Advertisement

Log in

Comparison of Anti-Trop2 Extracellular Domain Antibodies Generated Against Peptide and Protein Immunogens for Targeting Trop2-Positive Tumour Cells

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Trophoblast antigen 2 (Trop2) is a transmembrane glycoprotein upregulated in multiple solid tumours. Trop2-based passive immunotherapies are in clinical trials, while Trop2 targeting CAR-T cell-based therapies are also reported. Information about its T- and B-cell epitopes is needed for it to be pursued as an active immunotherapeutic target. This study focused on identification of immunodominant epitopes in the Trop2 extracellular domain (ECD) that can mount an efficient anti-Trop2 antibody response. In silico analysis using various B-cell epitope prediction tools was carried out to identify linear and conformational B-cell epitopes in the ECD of Trop2. Three linear peptide immunogens were shortlisted and synthesized. Along with linear peptides, truncated Trop2 ECD that possesses combination of linear and conformational epitopes was also selected. Recombinant protein immunogen was produced in 293-F suspension culture system and affinity purified. Antisera against different immunogens were characterized by ELISA and Western blotting. Two anti-peptide antisera detected recombinant and ectopically expressed Trop2 protein; however, they were unable to recognize the endogenous Trop2 protein expressed by cancer cells. Antibodies against truncated Trop2 ECD could bind to the endogenous Trop2 expressed on the surface of cancer cells. In addition to their high avidity, these polyclonal anti-sera against truncated Trop2 protein also mediated antibody-dependent cell-mediated cytotoxicity (ADCC). In summary, our comparative analysis demonstrated the utility of truncated Trop2 ECD as a promising candidate to be pursued as an active immunotherapeutic molecule against Trop2-positive cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data can be made available upon request to the corresponding author.

References

  1. Shvartsur, A., & Bonavida, B. (2015). Trop2 and its overexpression in cancers: Regulation and clinical/therapeutic implications. Genes & Cancer, 6(3-4), 84–105.

    Article  CAS  Google Scholar 

  2. Lenárt, S., Lenárt, P., Šmarda, J., et al. (2020). Trop2: Jack of all trades, master of none. Cancers, 12(11), 3328.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zeng, P., Chen, M. B., Zhou, L. N., et al. (2016). Impact of TROP2 expression on prognosis in solid tumors: A systematic review and meta-analysis. Scientific Reports, 6, 33658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bignotti, E., Ravaggi, A., Romani, C., et al. (2011). Trop-2 overexpression in poorly differentiated endometrial endometrioid carcinoma: Implications for immunotherapy with hRS7, a humanized anti-trop-2 monoclonal antibody. International Journal of Gynecological Cancer, 21(9), 1613–1621.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lin, H., Zhang, H., Wang, J., et al. (2014). A novel human Fab antibody for Trop2 inhibits breast cancer growth in vitro and in vivo. International Journal of Cancer, 134(5), 1239–1249.

    Article  CAS  PubMed  Google Scholar 

  6. Liu, J., Yang, D., Yin, Z., et al. (2019). A novel human monoclonal Trop2-IgG antibody inhibits ovarian cancer growth in vitro and in vivo. Biochemical and Biophysical Research Communications, 512(2), 276–282.

    Article  CAS  PubMed  Google Scholar 

  7. Tanaka, T., Ohishi, T., Asano, T., et al. (2021). An anti-TROP2 monoclonal antibody TrMab-6 exerts antitumor activity in breast cancer mouse xenograft models. Oncology Reports, 46(1), 132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fenn, K. M., & Kalinsky, K. (2019). Sacituzumab govitecan: Antibody-drug conjugate in triple-negative breast cancer and other solid tumors. Drugs Today, 55(9), 575–585.

    Article  CAS  Google Scholar 

  9. Chen, H., Wei, F., Yin, M., et al. (2021). CD27 enhances the killing effect of CAR T cells targeting trophoblast cell surface antigen 2 in the treatment of solid tumors. Cancer Immunology, Immunotherapy, 70(7), 2059–2071.

    Article  CAS  PubMed  Google Scholar 

  10. Zhu, H., Fang, X., Tuhin, I. J., Tan, J., et al. (2022). CAR T cells equipped with a fully human scFv targeting Trop2 can be used to treat pancreatic cancer. J Cancer Res Clin Oncol, 148(9), 2261–2274.

    Article  CAS  PubMed  Google Scholar 

  11. Liu, J., Fu, M., Wang, M., et al. (2022). Cancer vaccines as promising immuno-therapeutics: Platforms and current progress. Journal of Hematology & Oncology, 15(1), 28.

    Article  Google Scholar 

  12. Rubinstein, D. B., Karmely, M., Ziv, R., et al. (2006). MUC1/X protein immunization enhances cDNA immunization in generating anti-MUC1 alpha/beta junction antibodies that target malignant cells. Cancer Research, 66(23), 11247–11253.

    Article  CAS  PubMed  Google Scholar 

  13. Li, M., Yu, F., Yao, C., et al. (2018). Synthetic and immunological studies on trimeric MUC1 immunodominant motif antigen-based anti-cancer vaccine candidates. Organic & Biomolecular Chemistry, 16(6), 993–999.

    Article  CAS  Google Scholar 

  14. Thomas, R., Al-Khadairi, G., Roelands, J., et al. (2018). NY-ESO-1 based immunotherapy of cancer: Current perspectives. Frontiers in Immunology, 9, 947.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tobias, J., Garner-Spitzer, E., Drinić, M., & Wiedermann, U. (2022). Vaccination against Her-2/neu, with focus on peptide-based vaccines. ESMO Open, 7(1), 100361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sun, M., Zhang, H., Jiang, M., et al. (2021). Structural insights into the cis and trans assembly of human trophoblast cell surface antigen 2. iScience, 24(10), 103190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kamble, P. R., Patkar, S. R., Breed, A. A., & Pathak, B. R. (2021). N-glycosylation status of Trop2 impacts its surface density, interaction with claudin-7 and exosomal release. Archives of Biochemistry and Biophysics, 714, 109084.

    Article  CAS  PubMed  Google Scholar 

  18. Wu, C. J., Lu, M., Feng, X., et al. (2020). Matriptase cleaves EpCAM and TROP2 in keratinocytes, destabilizing both proteins and associated claudins. Cells, 9(4), 1027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kamble, P. R., Rane, S., Breed, A. A., et al. (2020). Proteolytic cleavage of Trop2 at Arg87 is mediated by matriptase and regulated by Val194. FEBS Letters, 594(19), 3156–3169.

    Article  CAS  PubMed  Google Scholar 

  20. Stoyanova, T., Goldstein, A. S., Cai, H., et al. (2012). Regulated proteolysis of Trop2 drives epithelial hyperplasia and stem cell self-renewal via β-catenin signaling. Genes & Development, 26(20), 2271–2285.

    Article  CAS  Google Scholar 

  21. Emini, E. A., Hughes, J. V., Perlow, D. S., & Boger, J. (1985). Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. Journal of Virology, 55, 836–839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kolaskar, A. S., & Tongaonkar, P. C. (1990). A semi-empirical method for prediction of antigenic determinants onprotein antigens. FEBS Letters, 276, 172–174.

    Article  CAS  PubMed  Google Scholar 

  23. Karplus, P. A., & Schulz, G. E. (1985). Prediction of chain flexibility in proteins. Naturwissenschaften, 72, 212–213.

    Article  CAS  Google Scholar 

  24. Parker, J. M., Guo, D., & Hodges, R. S. (1986). New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochemistry, 25, 5425–5432.

    Article  CAS  PubMed  Google Scholar 

  25. Lynch, H. E., Stewart, S. M., Kepler, T. B., et al. (2014). Surface plasmon resonance measurements of plasma antibody avidity during primary and secondary responses to anthrax protective antigen. Journal of Immunological Methods, 404, 1–12.

    Article  CAS  PubMed  Google Scholar 

  26. Trerotola, M., Cantanelli, P., Guerra, E., et al. (2013). Upregulation of Trop-2 quantitatively stimulates human cancer growth. Oncogene, 32(2), 222–233. https://doi.org/10.1038/onc.2012.36

    Article  CAS  PubMed  Google Scholar 

  27. King, G. T., Eaton, K. D., Beagle, B. R., et al. (2018). A phase 1, dose-escalation study of PF-06664178, an anti-Trop-2/Aur0101 antibody-drug conjugate in patients with advanced or metastatic solid tumors. Investigational New Drugs, 36(5), 836–847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu, H., Bai, L., Huang, L., et al. (2021). Bispecific antibody targeting TROP2xCD3 suppresses tumor growth of triple negative breast cancer. Journal for Immunotherapy of Cancer, 9(10), e003468.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhao, W., Jia, L., Zhang, M., et al. (2019). The killing effect of novel bi-specific Trop2/PD-L1 CAR-T cell targeted gastric cancer. American Journal of Cancer Research, 9(8), 1846–1856.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Cubas, R., Zhang, S., Li, M., et al. (2011). Chimeric Trop2 virus-like particles: a potential immunotherapeutic approach against pancreatic cancer. Journal of Immunotherapy, 34(3), 251–263.

    Article  CAS  PubMed  Google Scholar 

  31. Fisk, B., Blevins, T. L., Wharton, J. T., & Ioannides, C. G. (1995). Identification of an immunodominant peptide of HER-2/neu protooncogene recognized by ovarian tumor-specific cytotoxic T lymphocyte lines. The Journal of Experimental Medicine, 181(6), 2109–2117.

    Article  CAS  PubMed  Google Scholar 

  32. You, Z., Zhou, W., Weng, J., et al. (2021). Application of HER2 peptide vaccines in patients with breast cancer: a systematic review and meta-analysis. Cancer Cell International, 21(1), 489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Guo, L., Overholser, J., Good, A. J., et al. (2022). Preclinical studies of a novel human PD-1 B-cell peptide cancer vaccine PD1-Vaxx from BALB/c mice to beagle dogs and to non-human primates (cynomolgus monkeys). Frontiers in Oncology, 12, 826566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Davis, I. D., Chen, W., Jackson, H., et al. (2004). Recombinant NY-ESO-1 protein with ISCOMATRIX adjuvant induces broad integrated antibody and CD4(+) and CD8(+) T cell responses in humans. Proceedings of the National Academy of Sciences of the United States of America, 101(29), 10697–10702. https://doi.org/10.1073/pnas.0403572101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Trerotola, M., Guerra, E., Ali, Z., et al. (2021). Trop-2 cleavage by ADAM10 is an activator switch for cancer growth and metastasis. Neoplasia, 23(4), 415–428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Salo, A. M., & Myllyharju, J. (2021). Prolyl and lysyl hydroxylases in collagen synthesis. Experimental Dermatology, 30(1), 38–49.

    Article  CAS  PubMed  Google Scholar 

  37. Goth, C. K., Vakhrushev, S. Y., Joshi, H. J., et al. (2018). Fine-tuning limited proteolysis: A major role for regulated site-specific O-glycosylation. Trends in Biochemical Sciences, 43(4), 269–284.

    Article  CAS  PubMed  Google Scholar 

  38. Velders, M., van Rhijn, C., Oskam, E., et al. (1998). The impact of antigen density and antibody affinity on antibody-dependent cellular cytotoxicity: Relevance for immunotherapy of carcinomas. British Journal of Cancer, 78, 478–483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ikeda, M., Kato, K., Yamaguchi, M., et al. (2016). Cell surface antibody retention influences in vivo antitumor activity mediated by antibody-dependent cellular cytotoxicity. Anticancer Research, 36(11), 5937–5944.

    Article  CAS  PubMed  Google Scholar 

  40. Kantoff, P. W., Higano, C. S., Shore, N. D., Berger, E. R., et al. (2010). Sipuleucel-T immunotherapy for castration-resistant prostate cancer. The New England Journal of Medicine, 363(5), 411–422.

    Article  CAS  PubMed  Google Scholar 

  41. Tada, F., Abe, M., Hirooka, M., Ikeda, Y., Hiasa, Y., Lee, Y., Jung, N. C., Lee, W. B., Lee, H. S., Bae, Y. S., & Onji, M. (2012). Phase I/II study of immunotherapy using tumor antigen-pulsed dendritic cells in patients with hepatocellular carcinoma. International Journal of Oncology, 41(5), 1601–1609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mitchell, P. L., Quinn, M. A., Grant, P. T., Allen, D. G., Jobling, T. W., White, S. C., Zhao, A., Karanikas, V., Vaughan, H., Pietersz, G., McKenzie, I. F., Gargosky, S. E., & Loveland, B. E. (2014). A phase 2, single-arm study of an autologous dendritic cell treatment against mucin 1 in patients with advanced epithelial ovarian cancer. Journal for Immunotherapy of Cancer, 2, 16.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Su, H., Li, B., Zheng, L., Wang, H., & Zhang, L. (2016). Immunotherapy based on dendritic cells pulsed with CTPFoxM1 fusion protein protects against the development of hepatocellular carcinoma. Oncotarget, 7(30), 48401–48411.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the technical support provided by Dr. S. Mukherjee, Ms. N. Joshi, Ms. G. Shinde and Ms. S. Khavale from DNA sequencing and Flow Cytometry Core Facility of ICMR-NIRRCH.

Funding

This study received financial support from Indian Council of Medical Research (ICMR), New Delhi, India (RA/1281/07-2022). ICMR Senior Research Fellowship (RBMH/FW/2020/36) has been granted to author Ms. Pradnya Kamble.

Author information

Authors and Affiliations

Authors

Contributions

PK, experimental planning and execution, data analysis and interpretation and manuscript writing original draft preparation and editing; BK, assistance in peptide synthesis, immunization and SPR analysis; AM, MB and AB, assistance in experimentation; DJ, data analysis and editing the manuscript; SM, planning and supervision; BP, conceptualization, design and planning, data analysis and interpretation, manuscript writing and reviewing and editing.

Corresponding author

Correspondence to Bhakti R. Pathak.

Ethics declarations

Ethics Approval

All animal procedures were approved by the Institutional Animal Ethics Committee (Project no: 21/15) recognized by the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA).

Consent to Participate

No human participants were involved in this study.

Consent for Publication

Not applicable

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamble, P.R., Kulkarni, B., Malaviya, A. et al. Comparison of Anti-Trop2 Extracellular Domain Antibodies Generated Against Peptide and Protein Immunogens for Targeting Trop2-Positive Tumour Cells. Appl Biochem Biotechnol (2023). https://doi.org/10.1007/s12010-023-04706-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-023-04706-4

Keywords

Navigation