Skip to main content

Advertisement

Log in

Potent FOXO3a Activators from Biologically Active Compound Library for Cancer Therapeutics: An in silico Approach

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The forkhead transcription factor FOXO3a is a member of the FOXO subfamily, which controls a number of cellular processes including apoptosis, proliferation, cell cycle progression, DNA damage, and carcinogenesis. In addition, it reacts to a number of biological stressors such as oxidative stress and UV radiation. FOXO3a has been predominantly associated with many diseases including cancer. Recent research suggests that FOXO3a suppresses tumor growth in cancer. By cytoplasmic sequestration of the FOXO3a protein or mutation of the FOXO3a gene, FOXO3a is commonly rendered inactive in cancer cells. Furthermore, the onset and development of cancer are linked to its inactivation. In order to reduce and prevent tumorigenesis, FOXO3a needs to be activated. So, it is critical to develop new strategies to enhance FOXO3a expression for cancer therapy. Hence, the present study has been aimed to screen small molecules targeting FOXO3a using bioinformatics tools. Molecular docking and molecular dynamic simulation studies reveal the potent FOXO3a activating small molecules such as F3385-2463, F0856-0033, and F3139-0724. These top three compounds will be subjected to further wet experiments. The findings of this study will lead us to explore the potent FOXO3a activating small molecules for cancer therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All data generated and analyzed during this study are included in this article.

References

  1. Lam, E. W. F., Brosens, J. J., Gomes, A. R., & Koo, C. Y. (2013). Forkhead box proteins: Tuning forks for transcriptional harmony. Nature Reviews Cancer, 13(7), 482–495.

    CAS  PubMed  Google Scholar 

  2. GreerEL, B. (2008). FOXO transcription factors in ageing and cancer. Acta Psychologica, 192, 19–28.

    Google Scholar 

  3. Calnan, D. R., & Brunet, A. (2008). The foxo code. Oncogene, 27(16), 2276–2288.

    CAS  PubMed  Google Scholar 

  4. Psenakova, K., Kohoutova, K., Obsilova, V., Ausserlechner, M. J., Veverka, V., & Obsil, T. (2019). Forkhead domains of FOXO transcription factors differ in both overall conformation and dynamics. Cells, 8(9), 966.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu, Y., Ao, X., Ding, W., Ponnusamy, M., Wu, W., Hao, X., & Wang, J. (2018). Critical role of FOXO3a in carcinogenesis. Molecular Cancer, 17(1), 1–12.

  6. Habrowska-Górczyńska, D. E., Kozieł, M. J., Kowalska, K., & Piastowska-Ciesielska, A. W. (2021). FOXO3a and its regulators in prostate cancer. International Journal of Molecular Sciences, 22(22), 12530.

    PubMed  PubMed Central  Google Scholar 

  7. Wang, Y., Zhou, Y., & Graves, D. T. (2014). FOXO transcription factors: Their clinical significance and regulation. BioMed Research International, 2014.

  8. Nielsen, M. D., Luo, X., Biteau, B., Syverson, K., & Jasper, H. (2008). 14-3-3ɛ antagonizes FoxO to control growth, apoptosis and longevity in Drosophila. Aging Cell, 7(5), 688–699.

    CAS  PubMed  Google Scholar 

  9. Zou, Y., Tsai, W. B., Cheng, C. J., Hsu, C., Chung, Y. M., Li, P. C., & Hu, M. C. (2008). Forkhead box transcription factor FOXO3a suppresses estrogen-dependent breast cancer cell proliferation and tumorigenesis. Breast Cancer Research, 10(1), 1–13.

    Google Scholar 

  10. Seshacharyulu, P., Rachagani, S., Muniyan, S., Siddiqui, J. A., Cruz, E., Sharma, S., & Batra, S. K. (2019). FDPS cooperates with PTEN loss to promote prostate cancer progression through modulation of small GTPases/AKT axis. Oncogene, 38(26), 5265–5280.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Tarrado-Castellarnau, M., Cortés, R., Zanuy, M., Tarragó-Celada, J., Polat, I. H., Hill, R., & Cascante, M. (2015). Methylseleninic acid promotes antitumour effects via nuclear FOXO3a translocation through Akt inhibition. Pharmacological Research, 102, 218–234.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Sharma, G., Kar, S., Palit, S., & Das, P. K. (2012). 18β-glycyrrhetinic acid induces apoptosis through modulation of Akt/FOXO3a/Bim pathway in human breast cancer MCF-7 cells. Journal of Cellular Physiology, 227(5), 1923–1931.

    CAS  PubMed  Google Scholar 

  13. Yan, F., Liao, R., Silva, M., Li, S., Jiang, Y., Peng, T., & Zheng, W. (2020). Pristimerin-induced uveal melanoma cell death via inhibiting PI3K/Akt/FoxO3a signalling pathway. Journal of Cellular and Molecular Medicine, 24(11), 6208–6219.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lam, M., Carmichael, A. R., & Griffiths, H. R. (2012). An aqueous extract of Fagonia cretica induces DNA damage, cell cycle arrest and apoptosis in breast cancer cells via FOXO3a and p53 expression. PLoS One, 7(6), e40152.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao, X. C., Cao, X. C., Liu, F., Quan, M. F., Ren, K. Q., & Cao, J. G. (2013). Regulation of the FOXO3a/Bim signaling pathway by 5, 7-dihydroxy-8-nitrochrysin in MDA-MB-453 breast cancer cells. Oncology Letters, 5(3), 929–934.

    CAS  PubMed  Google Scholar 

  16. Hui, R. C., Francis, R. E., Guest, S. K., Costa, J. R., Gomes, A. R., Myatt, S. S., & Lam, E. W. (2008). Doxorubicin activates FOXO3a to induce the expression of multidrug resistance gene ABCB1 (MDR1) in K562 leukemic cells. Molecular Cancer Therapeutics, 7(3), 670–678.

  17. Giordano, F., Naimo, G. D., Nigro, A., Romeo, F., Paolì, A., De Amicis, F., & Panno, M. L. (2019). Valproic acid addresses neuroendocrine differentiation of LNCaP cells and maintains cell survival. Drug Design Development and Therapy, 13, 4265.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu, Z., Shi, Z., Lin, J., Zhao, S., Hao, M., Xu, J., & Diao, A. (2019). Piperlongumine-induced nuclear translocation of the FOXO3A transcription factor triggers BIM-mediated apoptosis in cancer cells. Biochemical Pharmacology, 163, 101–110.

    CAS  PubMed  Google Scholar 

  19. Balsano, C., & Alisi, A. (2009). Antioxidant effects of natural bioactive compounds. Current Pharmaceutical Design, 15(26), 3063–3073.

  20. Gugliandolo, A., Bramanti, P., & Mazzon, E. (2020). Activation of Nrf2 by natural bioactive compounds: A promising approach for stroke? International Journal of Molecular Sciences, 21(14), 4875.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. McIntyre, R. L., Liu, Y. J., Hu, M., Morris, B. J., Willcox, B. J., Donlon, T. A., ... & Janssens, G. E. (2022). Pharmaceutical and nutraceutical activation of FOXO3 for healthy longevity. Ageing Research Reviews, 101621.

  22. Bhansali, S. G., & Kulkarni, V. M. (2014). Pharmacophore generation, atom-based 3D-QSAR, docking, and virtual screening studies of p38-α mitogen activated protein kinase inhibitors: Pyridopyridazin-6-ones (part 2). Research and Reports in Medicinal Chemistry, 4, 1.

    Google Scholar 

  23. Sastry, G. M., Dixon, S. L., & Sherman, W. (2011). Rapid shape-based ligand alignment and virtual screening method based on atom/feature-pair similarities and volume overlap scoring. Journal of Chemical Information and Modeling, 51(10), 2455–2466.

  24. Miller, M. D., Sheridan, R. P., & Kearsley, S. K. (1999). SQ: A program for rapidly producing pharmacophorically relevent molecular superpositions. Journal of Medicinal Chemistry, 42(9), 1505–1514.

    CAS  PubMed  Google Scholar 

  25. Dixon, S. L., Smondyrev, A. M., Knoll, E. H., Rao, S. N., Shaw, D. E., & Friesner, R. A. (2006). PHASE: A new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1 Methodology and preliminary results. Journal of Computer-Aided Molecular Design, 20(10), 647–671.

  26. Vanajothi, R., Hemamalini, V., Jeyakanthan, J., & Premkumar, K. (2020). Ligand-based pharmacophore mapping and virtual screening for identification of potential discoidin domain receptor 1 inhibitors. Journal of Biomolecular Structure and Dynamics, 38(9), 2800–2808.

    CAS  PubMed  Google Scholar 

  27. Ding, Y. L., Lyu, Y. C., & Leong, M. K. (2017). In silico prediction of the mutagenicity of nitroaromatic compounds using a novel two-QSAR approach. Toxicology in Vitro, 40, 102–114.

    CAS  PubMed  Google Scholar 

  28. Drwal, M. N., & Griffith, R. (2013). Combination of ligand-and structure-based methods in virtual screening. Drug Discovery Today: Technologies, 10(3), e395–e401.

    PubMed  Google Scholar 

  29. Wang, Y., Feng, S., Gao, H., & Wang, J. (2020). Computational investigations of gram-negative bacteria phosphopantetheine adenylyltransferase inhibitors using 3D-QSAR, molecular docking and molecular dynamic simulations. Journal of Biomolecular Structure and Dynamics, 38(5), 1435–1447.

    CAS  PubMed  Google Scholar 

  30. Halgren, T. (2007). New method for fast and accurate binding-site identification and analysis. Chemical Biology and Drug Design, 69(2), 146–148.

  31. Halgren, T. A. (2009). Identifying and characterizing binding sites and assessing druggability. Journal of Chemical Information and Modeling, 49(2), 377–389.

  32. Kaushik, A. C., Kumar, S., Wei, D. Q., & Sahi, S. (2018). Structure based virtual screening studies to identify novel potential compounds for GPR142 and their relative dynamic analysis for study of type 2 diabetes. Frontiers in Chemistry, 6, 23.

  33. Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., & Shenkin, P. S. (2004). Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47(7), 1739–1749.

  34. Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., & Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein−ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196.

    CAS  PubMed  Google Scholar 

  35. Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: A new approach for rapid, accurate docking and scoring 2 Enrichment factors in database screening. Journal of Medicinal Chemistry, 47(7), 1750–1759.

    CAS  PubMed  Google Scholar 

  36. Jorgensen, W. L., & Tirado-Rives, J. (1988). The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. Journal of the American Chemical Society, 110(6), 1657–1666.

    CAS  PubMed  Google Scholar 

  37. Jorgensen, W. L., Maxwell, D. S., & Tirado-Rives, J. (1996). Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 118(45), 11225–11236.

    CAS  Google Scholar 

  38. Shivakumar, D., Williams, J., Wu, Y., Damm, W., Shelley, J., & Sherman, W. (2010). Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. Journal of Chemical Theory and Computation, 6(5), 1509–1519.

    CAS  PubMed  Google Scholar 

  39. Release, S. (2015). LigPrep, version 3.3, Schrödinger. New York, NY: LLC.[Google Scholar].

  40. Shelley, J. C., Cholleti, A., Frye, L. L., Greenwood, J. R., Timlin, M. R., & Uchimaya, M. (2007). Epik: A software program for pK a prediction and protonation state generation for drug-like molecules. Journal of Computer-aided Molecular Design, 21(12), 681–691.

    CAS  PubMed  Google Scholar 

  41. Greenwood, J. R., Calkins, D., Sullivan, A. P., & Shelley, J. C. (2010). Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. Journal of Computer-aided Molecular Design, 24(6), 591–604.

    CAS  PubMed  Google Scholar 

  42. Farid, R., Day, T., Friesner, R. A., & Pearlstein, R. A. (2006). New insights about HERG blockade obtained from protein modeling, potential energy mapping, and docking studies. Bioorganic and Medicinal Chemistry, 14(9), 3160–3173.

    CAS  PubMed  Google Scholar 

  43. Sherman, W., Beard, H. S., & Farid, R. (2006). Use of an induced fit receptor structure in virtual screening. Chemical Biology and Drug Design, 67(1), 83–84.

    CAS  PubMed  Google Scholar 

  44. Sherman, W., Day, T., Jacobson, M. P., Friesner, R. A., & Farid, R. (2006). Novel procedure for modeling ligand/receptor induced fit effects. Journal of Medicinal Chemistry, 49(2), 534–553.

    CAS  PubMed  Google Scholar 

  45. Jacobson, M. P., Friesner, R. A., Xiang, Z., & Honig, B. (2002). On the role of the crystal environment in determining protein side-chain conformations. Journal of Molecular Biology, 320(3), 597–608.

    CAS  PubMed  Google Scholar 

  46. Jacobson, M. P., Pincus, D. L., Rapp, C. S., Day, T. J., Honig, B., Shaw, D. E., & Friesner, R. A. (2004). A hierarchical approach to all-atom protein loop prediction. Proteins Structure, Function, and Bioinformatics, 55(2), 351–367.

    CAS  Google Scholar 

  47. Durán-Iturbide, N. A., Díaz-Eufracio, B. I., & Medina-Franco, J. L. (2020). In silico ADME/Tox profiling of natural products: A focus on BIOFACQUIM. ACS Omega, 5(26), 16076–16084.

    PubMed  PubMed Central  Google Scholar 

  48. Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 1–13.

    Google Scholar 

  49. Release, S. (2017). 3: Desmond molecular dynamics system, DE Shaw research, New York, NY, 2017. Schrödinger, New York, NY: Maestro-Desmond Interoperability Tools.

    Google Scholar 

  50. Harder, E., Damm, W., Maple, J., Wu, C., Reboul, M., Xiang, J. Y., & Friesner, R. A. (2016). OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. Journal of Chemical Theory and Computation, 12(1), 281–296.

    CAS  PubMed  Google Scholar 

  51. Neria, E., Fischer, S., & Karplus, M. (1996). Simulation of activation free energies in molecular systems. The Journal of Chemical Physics, 105(5), 1902–1921.

    CAS  Google Scholar 

  52. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935.

    CAS  Google Scholar 

  53. Release, S. (2017). 4: Desmond molecular dynamics system. New York, NY: DE Shaw Research.

    Google Scholar 

  54. Martyna, G. J., Klein, M. L., & Tuckerman, M. (1992). Nosé-Hoover chains: The canonical ensemble via continuous dynamics. The Journal of Chemical Physics, 97(4), 2635–2643.

    Google Scholar 

  55. Martyna, G. J., Tobias, D. J., & Klein, M. L. (1994). Constant pressure molecular dynamics algorithms. The Journal of Chemical Physics, 101(5), 4177–4189.

    CAS  Google Scholar 

  56. Alnajjar, R., Mohamed, N., & Kawafi, N. (2021). Bicyclo [1.1. 1] Pentane as phenyl substituent in atorvastatin drug to improve physicochemical properties: Drug-likeness, DFT, pharmacokinetics, docking, and molecular dynamic simulation. Journal of Molecular Structure, 1230, 129628.

    CAS  Google Scholar 

  57. Rubin Grandis, J., Zeng, Q., & Drenning, S. D. (2000). Epidermal growth factor receptor–mediated stat3 signaling blocks apoptosis in head and neck cancer. The Laryngoscope, 110(5), 868–874.

    CAS  PubMed  Google Scholar 

  58. Nepomuceno, R. R., Snow, A. L., Beatty, P. R., Krams, S. M., & Martinez, O. M. (2002). Constitutive activation of Jak/STAT proteins in Epstein-Barr virus-infected B-cell lines from patients with posttransplant lymphoproliferative disorder1. Transplantation, 74(3), 396–402.

    CAS  PubMed  Google Scholar 

  59. Samaan, A., & Mahana, W. (2007). Constitutive and induced activation of JAK/Stat pathway in leukemogenic and asymptomatic human T-cell lymphoptropic virus type 1 (HTLV-1) transformed rabbit cell lines. Immunology Letters, 109(2), 113–119.

  60. Iwaloye, O., Elekofehinti, O. O., Oluwarotimi, E. A., & Fadipe, T. M. (2020). Insight into glycogen synthase kinase-3β inhibitory activity of phyto-constituents from Melissa officinalis: In silico studies. In Silico Pharmacology, 8(1), 1–13.

    Google Scholar 

  61. Manoharan, S., Balakrishnan, A., Hemamalini, V., & Perumal, E. (2022). Screening of potent STAT3-SH2 domain inhibitors from JAK/STAT compound library through molecular dynamics simulation. Molecular Diversity, 1–12.

  62. Mishra, S., & Dahima, R. (2019). In vitro ADME studies of TUG-891, a GPR-120 inhibitor using SWISS ADME predictor. Journal of Drug Delivery and Therapeutics, 9(2-s), 366–369.

    Google Scholar 

  63. Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1–3), 3–25.

    CAS  Google Scholar 

  64. Baell, J., Congreve, M., Leeson, P., & Abad-Zapatero, C. (2013). Ask the experts: Past, present and future of the rule of five. Future Medicinal Chemistry, 5(7), 745–752.

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by MHRD-Rashtriya Uchchatar Shiksha Abhiyan (RUSA) 2.0-Bharathiar Cancer and Theragnostic Research Centre (BCTRC), Bharathiar University, Coimbatore, India (BU./RUSA2.0/BCTRC/2020/BCTRC-CT06). The authors also thank Ajithkumar Balakrishnan, Department of Bioinformatics, Bharathiar University for his valuable inputs in this study.

Author information

Authors and Affiliations

Authors

Contributions

EP: supervision, methodology, editing, and review; SM: methodology, data curation, writing—original draft, review, and editing. VH: software and investigation.

Corresponding author

Correspondence to Ekambaram Perumal.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors have their consent to publish their work.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 654 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manoharan, S., Vedagiri, H. & Perumal, E. Potent FOXO3a Activators from Biologically Active Compound Library for Cancer Therapeutics: An in silico Approach. Appl Biochem Biotechnol 195, 4995–5018 (2023). https://doi.org/10.1007/s12010-023-04470-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04470-5

Keywords

Navigation