Skip to main content

Advertisement

Log in

Gut Microbiota and Its Role in Anti-aging Phenomenon: Evidence-Based Review

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The gut microbiota widely varies from individual to individual, but the variation shows stability over a period of time. The presence of abundant bacterial taxa is a common structure that determines the microbiota of human being. The presence of this microbiota greatly varies from geographic location, sex, food habits and age. Microbiota existing within the gut plays a significant role in nutrient absorption, development of immunity, curing of diseases and various developmental phases. With change in age, chronology diversification and variation of gut microbiota are observed within human being. But it has been observed that with the enhancement of age the richness of the microbial diversity has shown a sharp decline. The enhancement of age also results in the drift of the characteristic of the microbes associated with the microbiota from commensals to pathogenic. Various studies have shown that age associated gut-dysbiosis may result in decrease in tlongevity along with unhealthy aging. The host signalling pathways regulate the presence of the gut microbiota and their longevity. The presence of various nutrients regulates the presence of various microbial species. Innate immunity can be triggered due to the mechanism of gut dysbiosis resulting in the development of various age-related pathological syndromes and early aging. The gut microbiota possesses the ability to communicate with the host system with the help of various types of biomolecules, epigenetic mechanisms and various types of signalling-independent pathways. Drift in this mechanism of communication may affect the life span along with the health of the host. Thus, this review would focus on the use of gut-microbiota in anti-aging and healthy conditions of the host system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of Data and Material

The datasets used and analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

GI:

Gastro-intestine

SNP:

Single nucleotide polymorphism

TNF-α:

Tumour necrosis factor)

IL:

Interleukins

SCFA:

Short chain fatty acids

References

  1. Thursby, E., & Juge, N. (2017). Introduction to the human gut microbiota. The Biochemical Journal, 474, 1823–1836.

    Article  PubMed  CAS  Google Scholar 

  2. Ley, R. E., Turnbaugh, P. J., Klein, S., & Gordon, J. I. (2006). Microbial ecology: Human gut microbes associated with obesity. Nature, 444, 1022–1023.

    Article  PubMed  CAS  Google Scholar 

  3. Valdes, A. M., Walter, J., Segal, E., & Spector, T. D. (2018). Role of the gut microbiota in nutrition and health. BMJ, 361, 36–44.

    Google Scholar 

  4. Moore, W. E., & Holdeman, L. V. (1974). Human fecal flora: The normal flora of 20 Japanese-Hawaiians. Applied Microbiology, 27, 961–979.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Poretsky, R., Rodriguez-R, L. M., Luo, C., Tsementzi, D., & Konstantinidis, K. T. (2014). Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics. PLoS ONE, 9, e93827.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mizrahi-Man, O., Davenport, E. R., & Gilad, Y. (2013). Taxonomic classification of bacterial 16S rRNA genes using short sequencing reads: Evaluation of effective study designs. PLoS ONE, 8, e53608.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Dekaboruah, E., Suryavanshi, M. V., Chettri, D., & Verma, A. K. (2020). Human microbiome: an academic update on human body site specific surveillance and its possible role. Archives of Microbiology, 202(8), 2147–2167. https://doi.org/10.1007/s00203-020-01931-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Gill, S. R., Pop, M., Deboy, R. T., Eckburg, P. B., Turnbaugh, P. J., Samuel, B. S., Gordon, J. I., Relman, D. A., Fraser-Liggett, C. M., & Nelson, K. E. (2006). Metagenomic analysis of the human distal gut microbiome. Science, 312, 1355–1359.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Luckey, T. D. (1972). Introduction to intestinal microecology. American Journal of Clinical Nutrition, 25, 1292–1294.

    Article  PubMed  CAS  Google Scholar 

  10. Khosravi, A., & Mazmanian, S. K. (2013). Disruption of the gut microbiome as a risk factor for microbial infections. Curr. Opin. Microbiol, 16, 221.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Brestoff, J. R., & Artis, D. (2013). Commensal bacteria at the interface of host metabolism and the immune system. Nature Immunology, 14, 676–684.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Laterza, L., Rizzatti, G., Gaetani, E., Chiusolo, P., & Gasbarrini, A. (2016). The gut microbiota and immune system relationship in human graft-versus-host disease. Mediterr. J. Hematol. Infect. Dis., 8, e2016025.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D. R., Fernandes, G. R., Tap, J., Bruls, T., Batto, J. M., et al. (2011). Enterotypes of the human gut microbiome. Nature, 473, 174–180.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Flint, H. J., Scott, K. P., Louis, P., & Duncan, S. H. (2012). The role of the gut microbiota in nutrition and health. Nature Reviews. Gastroenterology & Hepatology, 9, 577–589.

    Article  CAS  Google Scholar 

  15. Arboleya, S., Binetti, A., Salazar, N., Fernández, N., Solís, G., Hernández-Barranco, A., Margolles, A., de Los Reyes-Gavilán, C. G., & Gueimonde, M. (2012). Establishment and development of intestinal microbiota in preterm neonates. FEMS Microbiology Ecology, 79, 763–772.

    Article  PubMed  CAS  Google Scholar 

  16. Ren, S., Hui, Y., Obelitz-Ryom, K., Brandt, A. B., Kot, W., Nielsen, D. S., Thymann, T., Sangild, P. T., & Nguyen, D. N. (2018). Neonatal gut and immune maturation is determined more by postnatal age than by post-conceptional age in moderately preterm pigs. American Journal of Physiology. Gastrointestinal and Liver Physiology, 315, G855–G867.

    Article  PubMed  CAS  Google Scholar 

  17. Butel, M. J., Suau, A., Campeotto, F., Magne, F., Aires, J., Ferraris, L., Kalach, N., Leroux, B., & Dupont, C. (2007). Conditions of bifidobacterial colonization in preterm infants: A prospective analysis. Journal of Pediatric Gastroenterology and Nutrition, 44, 577–582.

    Article  PubMed  Google Scholar 

  18. Gabrielli, O., Zampini, L., Galeazzi, T., Padella, L., Santoro, L., Peila, C., Giuliani, F., Bertino, E., Fabris, C., & Coppa, G. V. (2011). Preterm milk oligosaccharides during the first month of lactation. Pediatrics, 128, e1520–e1531.

    Article  PubMed  Google Scholar 

  19. Underwood, M. A., Gaerlan, S., De Leoz, M. L., Dimapasoc, L., Kalanetra, K. M., Lemay, D. G., German, J. B., Mills, D. A., & Lebrilla, C. B. (2015). Human milk oligosaccharides in premature infants: Absorption, excretion, and influence on the intestinal microbiota. Pediatric Research, 78, 670–677.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Praticò, G., Capuani, G., Tomassini, A., Baldassarre, M. E., Delfini, M., & Miccheli, A. (2014). Exploring human breast milk composition by NMR-based metabolomics. Natural Product Research, 28, 95–101.

    Article  PubMed  Google Scholar 

  21. Bering, S. B. (2018). Human milk oligosaccharides to prevent gut dysfunction and necrotizing enterocolitis in preterm neonates. Nutrients, 10, 1461.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mastromarino, P., Capobianco, D., Campagna, G., Laforgia, N., Drimaco, P., Dileone, A., & Baldassarre, M. E. (2014). Correlation between lactoferrin and beneficial microbiota in breast milk and infant’s feces. BioMetals, 27, 1077–1086.

    Article  PubMed  CAS  Google Scholar 

  23. Salminen, S., Gibson, G. R., McCartney, A. L., & Isolauri, E. (2004). Influence of mode of delivery on gut microbiota composition in seven year old children. Gut, 53, 1388–1389.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Dominguez-Bello, M. G., Costello, E. K., Contreras, M., Magris, M., Hidalgo, G., Fierer, N., & Knight, R. (2010). Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proceedings of the National academy of Sciences of the United States of America, 107, 11971–11975.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Biasucci, G., Benenati, B., Morelli, L., Bessi, E., & Boehm, G. (2008). Cesarean delivery may affect the early biodiversity of intestinal bacteria. Journal of Nutrition, 138, 1796S-1800S.

    Article  PubMed  CAS  Google Scholar 

  26. Mueller, N. T., Bakacs, E., Combellick, J., Grigoryan, Z., & Dominguez-Bello, M. G. (2015). The infant microbiome development: Mom matters. Trends in Molecular Medicine, 21, 109–117.

    Article  PubMed  Google Scholar 

  27. Pantoja-Feliciano, I. G., Clemente, J. C., Costello, E. K., Perez, M. E., Blaser, M. J., Knight, R., & Dominguez-Bello, M. G. (2013). Biphasic assembly of the murine intestinal microbiota during early development. ISME Journal, 7, 1112–1115.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Grönlund, M. M., Lehtonen, O. P., Eerola, E., & Kero, P. (1999). Fecal microflora in healthy infants born by different methods of delivery: Permanent changes in intestinal flora after cesarean delivery. Journal of Pediatric Gastroenterology and Nutrition, 28, 19–25.

    Article  PubMed  Google Scholar 

  29. Azad, M. B., Konya, T., Maughan, H., Guttman, D. S., Field, C. J., Chari, R. S., Sears, M. R., Becker, A. B., Scott, J. A., & Kozyrskyj, A. L. (2013). Gut microbiota of healthy Canadian infants: Profiles by mode of delivery and infant diet at 4 months. CMAJ, 185, 385–394.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sevelsted, A., Stokholm, J., Bønnelykke, K., & Bisgaard, H. (2015). Cesarean section and chronic immune disorders. Pediatrics, 135, e92–e98.

    Article  PubMed  Google Scholar 

  31. Chen, G., Chiang, W. L., Shu, B. C., Guo, Y. L., Chiou, S. T., & Chiang, T. L. (2017). Associations of caesarean delivery and the occurrence of neurodevelopmental disorders, asthma or obesity in childhood based on Taiwan birth cohort study. British Medical Journal Open, 7, e017086.

    Google Scholar 

  32. Penders, J., Thijs, C., Vink, C., Stelma, F. F., Snijders, B., Kummeling, I., van den Brandt, P. A., & Stobberingh, E. E. (2006). Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics, 118, 511–521.

    Article  PubMed  Google Scholar 

  33. Bezirtzoglou, E., Tsiotsias, A., & Welling, G. W. (2011). Microbiota profile in feces of breast- and formula-fed newborns by using fluorescence in situ hybridization (FISH). Anaerobe, 17, 478–482.

    Article  PubMed  Google Scholar 

  34. Roger, L. C., Costabile, A., Holland, D. T., Hoyles, L., & McCartney, A. L. (2010). Examination of faecal Bifidobacterium populations in breast- and formula-fed infants during the first 18 months of life. Microbiology, 156, 3329–3341.

    Article  PubMed  CAS  Google Scholar 

  35. Marcobal, A., Barboza, M., Froehlich, J. W., Block, D. E., German, J. B., Lebrilla, C. B., & Mills, D. A. (2010). Consumption of human milk oligosaccharides by gut-related microbes. Journal of Agriculture and Food Chemistry, 58, 5334–5340.

    Article  CAS  Google Scholar 

  36. Sakurama, H., Kiyohara, M., Wada, J., Honda, Y., Yamaguchi, M., Fukiya, S., Yokota, A., Ashida, H., Kumagai, H., Kitaoka, M., et al. (2013). Lacto-N-biosidase encoded by a novel gene of Bifidobacterium longum subspecies longum shows unique substrate specificity and requires a designated chaperone for its active expression. Journal of Biological Chemistry, 288, 25194–25206.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Matsuki, T., Yahagi, K., Mori, H., Matsumoto, H., Hara, T., Tajima, S., Ogawa, E., Kodama, H., Yamamoto, K., Yamada, T., et al. (2016). A key genetic factor for fucosyllactose utilization affects infant gut microbiota development. Nature Communications, 7, 11939.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Yaron, S., Shachar, D., Abramas, L., Riskin, A., Bader, D., Litmanovitz, I., Bar-Yoseph, F., Cohen, T., Levi, L., Lifshitz, Y., et al. (2013). Effect of high β-palmitate content in infant formula on the intestinal microbiota of term infants. Journal of Pediatric Gastroenterology and Nutrition, 56, 376–381.

    Article  PubMed  CAS  Google Scholar 

  39. Mastromarino, P., Capobianco, D., Miccheli, A., Praticò, G., Campagna, G., Laforgia, N., Capursi, T., & Baldassarre, M. E. (2015). Administration of a multistrain probiotic product (VSL#3) to women in the perinatal period differentially affects breast milk beneficial microbiota in relation to mode of delivery. Pharmacological Research, 95, 63–70.

    Article  PubMed  Google Scholar 

  40. Fallani, M., Amarri, S., Uusijarvi, A., Adam, R., Khanna, S., Aguilera, M., Gil, A., Vieites, J. M., Norin, E., Young, D., et al. (2011). Determinants of the human infant intestinal microbiota after the introduction of first complementary foods in infant samples from five European centres. Microbiology, 157, 1385–1392.

    Article  PubMed  CAS  Google Scholar 

  41. Tanaka, M., & Nakayama, J. (2017). Development of the gut microbiota in infancy and its impact on health in later life. Allergology International, 66, 515–522.

    Article  PubMed  CAS  Google Scholar 

  42. Tidjani Alou, M., Lagier, J. C., & Raoult, D. (2016). Diet influence on the gut microbiota and dysbiosis related to nutritional disorders. Hum. Microbiome J., 1, 3–11.

    Article  Google Scholar 

  43. Yatsunenko, T., Rey, F. E., Manary, M. J., Trehan, I., Dominguez-Bello, M. G., Contreras, M., Magris, M., Hidalgo, G., Baldassano, R. N., Anokhin, A. P., et al. (2012). Human gut microbiome viewed across age and geography. Nature, 486, 222–227.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Toshitaka, O., Kumiko, K., Hirosuke, S., Nanami, H., Sachiko, T., Jin-Zhong, X., Fumiaki, A., & Ro, O. (2016). Age-related changes in gut microbiota composition from newborn to centenarian: A cross-sectional study. BMC Microbiology, 16, 90.

    Article  Google Scholar 

  45. Guigoz, Y., Doré, J., & Schiffrin, E. J. (2008). The inflammatory status of old age can be nurtured from the intestinal environment. Current Opinion in Clinical Nutrition and Metabolic Care, 11, 13–20.

    Article  PubMed  Google Scholar 

  46. Pérez-Cobas, A. E., Artacho, A., Knecht, H., Ferrús, M. L., Friedrichs, A., Ott, S. J., Moya, A., Latorre, A., & Gosalbes, M. J. (2013). Differential effects of antibiotic therapy on the structure and function of human gut microbiota. PLoS ONE, 8, e80201.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Iizumi, T., Battaglia, T., Ruiz, V., & Perez, G. I. (2017). Gut microbiome and antibiotics. Archives of Medical Research, 48, 727–734.

    Article  PubMed  CAS  Google Scholar 

  48. Dethlefsen, L., & Relman, D. A. (2011). Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proceedings of the National academy of Sciences of the United States of America, 108, 4554–4561.

    Article  PubMed  CAS  Google Scholar 

  49. Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K., & Knight, R. (2012). Diversity, stability and resilience of the human gut microbiota. Nature, 489, 220–230.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Karlsson, C. L., Onnerfält, J., Xu, J., Molin, G., Ahrné, S., & Thorngren-Jerneck, K. (2012). The microbiota of the gut in preschool children with normal and excessive body weight. Obesity, 20, 2257–2261.

    Article  PubMed  Google Scholar 

  51. Yun, Y., Kim, H. N., Kim, S. E., Heo, S. G., Chang, Y., Ryu, S., Shin, H., & Kim, H. L. (2017). Comparative analysis of gut microbiota associated with body mass index in a large Korean cohort. BMC Microbiology, 17, 151.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bervoets, L., Van Hoorenbeeck, K., Kortleven, I., Van Noten, C., Hens, N., Vael, C., Goossens, H., Desager, K. N., & Vankerckhoven, V. (2013). Differences in gut microbiota composition between obese and lean children: A cross-sectional study. Gut Pathog., 5, 10.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Riva, A., Borgo, F., Lassandro, C., Verduci, E., Morace, G., Borghi, E., & Berry, D. (2017). Pediatric obesity is associated with an altered gut microbiota and discordant shifts in Firmicutes populations. Environmental Microbiology, 19, 95–105.

    Article  PubMed  CAS  Google Scholar 

  54. Borgo, F., Riva, A., Benetti, A., Casiraghi, M. C., Bertelli, S., Garbossa, S., Anselmetti, S., Scarone, S., Pontiroli, A. E., Morace, G., et al. (2017). Microbiota in anorexia nervosa: The triangle between bacterial species, metabolites and psychological tests. PLoS ONE, 12, e0179739.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wu, G. D., Chen, J., Hoffmann, C., Bittinger, K., Chen, Y. Y., Keilbaugh, S. A., Bewtra, M., Knights, D., Walters, W. A., Knight, R., et al. (2011). Linking long-term dietary patterns with gut microbial enterotypes. Science, 334, 105–108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. De Filippo, C., Cavalieri, D., Di Paola, M., Ramazzotti, M., Poullet, J. B., Massart, S., Collini, S., Pieraccini, G., & Lionetti, P. (2010). Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proceedings of the National academy of Sciences of the United States of America, 107, 14691–14696.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Schnorr, S. L., Candela, M., Rampelli, S., Centanni, M., Consolandi, C., Basaglia, G., Turroni, S., Biagi, E., Peano, C., Severgnini, M., et al. (2014). Gut microbiome of the Hadza hunter-gatherers. Nature Communications, 5, 3654.

    Article  PubMed  CAS  Google Scholar 

  58. David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E., Wolfe, B. E., Ling, A. V., Devlin, A. S., Varma, Y., Fischbach, M. A., et al. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505, 559–563.

    Article  PubMed  CAS  Google Scholar 

  59. Monda, V., Villano, I., Messina, A., Valenzano, A., Esposito, T., Moscatelli, F., Viggiano, A., Cibelli, G., Chieffi, S., Monda, M., & Messina, G. (2017). Exercise modifies the gut microbiota with positive health effects. Oxidative Medicine and Cellular Longevity, 2017, 3831972. https://doi.org/10.1155/2017/3831972

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Clarke, S. F., Murphy, E. F., O’Sullivan, O., Lucey, A. J., Humphreys, M., Hogan, A., Hayes, P., O’Reilly, M., Jeffery, I. B., Wood-Martin, R., et al. (2014). Exercise and associated dietary extremes impact on gut microbial diversity. Gut, 63, 1913–1920.

    Article  PubMed  CAS  Google Scholar 

  61. Bhattarai, Y., Muniz Pedrogo, D. A., & Kashyap, P. C. (2017). Irritable bowel syndrome: A gut microbiota-related disorder? American Journal of Physiology. Gastrointestinal and Liver Physiology, 312, 52–62.

    Article  Google Scholar 

  62. Carroll, I. M., Chang, Y. H., Park, J., Sartor, R. B., & Ringel, Y. (2010). Luminal and mucosal-associated intestinal microbiota in patients with diarrhea-predominant irritable bowel syndrome. Gut Pathog., 2, 19.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Krogius-Kurikka, L., Lyra, A., Malinen, E., Aarnikunnas, J., Tuimala, J., Paulin, L., Mäkivuokko, H., Kajander, K., & Palva, A. (2009). Microbial community analysis reveals high level phylogenetic alterations in the overall gastrointestinal microbiota of diarrhoea-predominant irritable bowel syndrome sufferers. BMC Gastroenterology, 9, 95.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Salonen, A., De Vos, W. M., & Palva, A. (2010). Gastrointestinal microbiota in irritable bowel syndrome: Present state and perspectives. Microbiology, 156, 3205–3215.

    Article  PubMed  CAS  Google Scholar 

  65. Frank, D. N., St Amand, A. L., Feldman, R. A., Boedeker, E. C., Harpaz, N., & Pace, N. R. (2007). Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proceedings of the National academy of Sciences of the United States of America, 104, 13780–13785.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Machiels, K., Joossens, M., Sabino, J., De Preter, V., Arijs, I., Eeckhaut, V., Ballet, V., Claes, K., Van Immerseel, F., Verbeke, K., et al. (2014). A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut, 63, 1275–1283.

    Article  PubMed  CAS  Google Scholar 

  67. Hansen, R., Russell, R. K., Reiff, C., Louis, P., McIntosh, F., Berry, S. H., Mukhopadhya, I., Bisset, W. M., Barclay, A. R., Bishop, J., et al. (2012). Microbiota of de-novo pediatric IBD: Increased Faecalibacterium prausnitzii and reduced bacterial diversity in Crohn’s but not in ulcerative colitis. American Journal of Gastroenterology, 107, 1913–1922.

    Article  PubMed  CAS  Google Scholar 

  68. Joossens, M., Huys, G., Cnockaert, M., De Preter, V., Verbeke, K., Rutgeerts, P., Vandamme, P., & Vermeire, S. (2011). Dysbiosis of the faecal microbiota in patients with Crohn’s disease and their unaffected relatives. Gut, 60, 631–637.

    Article  PubMed  Google Scholar 

  69. Sokol, H., Pigneur, B., Watterlot, L., Lakhdari, O., Bermúdez-Humarán, L. G., Gratadoux, J. J., Blugeon, S., Bridonneau, C., Furet, J. P., Corthier, G., et al. (2008). Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proceedings of the National academy of Sciences of the United States of America, 105, 16731–16736.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Marasco, G., Di Biase, A. R., Schiumerini, R., Eusebi, L. H., Iughetti, L., Ravaioli, F., Scaioli, E., Colecchia, A., & Festi, D. (2016). Gut microbiota and celiac disease. Digestive Diseases and Sciences, 61, 1461–1472.

    Article  PubMed  CAS  Google Scholar 

  71. Chander, A. M., Yadav, H., Jain, S., Bhadada, S. K., & Dhawan, D. K. (2018). Cross-talk between gluten, intestinal microbiota and intestinal mucosa in celiac disease: Recent advances and basis of autoimmunity. Frontiers in Microbiology, 9, 2597.

    Article  PubMed  PubMed Central  Google Scholar 

  72. De Palma, G., Nadal, I., Medina, M., Donat, E., Ribes-Koninckx, C., Calabuig, M., & Sanz, Y. (2010). Intestinal dysbiosis and reduced immunoglobulin-coated bacteria associated with coeliac disease in children. BMC Microbiology, 10, 63.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Nadal, I., Donat, E., Ribes-Koninckx, C., Calabuig, M., & Sanz, Y. (2007). Imbalance in the composition of the duodenal microbiota of children with coeliac disease. Journal of Medical Microbiology, 56, 1669–1674.

    Article  PubMed  CAS  Google Scholar 

  74. Collado, M. C., Donat, E., Ribes-Koninckx, C., Calabuig, M., & Sanz, Y. (2008). Imbalances in faecal and duodenal Bifidobacterium species composition inactive and non-active coeliac disease. BMC Microbiology, 8, 232.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Collado, M. C., Donat, E., Ribes-Koninckx, C., Calabuig, M., & Sanz, Y. (2009). Specific duodenal and faecal bacterial groups associated with paediatric coeliac disease. Journal of Clinical Pathology, 62, 264–269.

    Article  PubMed  CAS  Google Scholar 

  76. Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., & Forman, D. (2011). Global cancer statistics. CA: A Cancer Journal for Clinicians, 61, 69–90.

    PubMed  Google Scholar 

  77. Wang, T., Cai, G., Qiu, Y., Fei, N., Zhang, M., Pang, X., Jia, W., Cai, S., & Zhao, L. (2012). Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME Journal, 6, 320–329.

    Article  PubMed  CAS  Google Scholar 

  78. Shen, X. J., Rawls, J. F., Randall, T., Burcal, L., Mpande, C. N., Jenkins, N., Jovov, B., Abdo, Z., Sandler, R. S., & Keku, T. O. (2010). Molecular characterization of mucosal adherent bacteria and associations with colorectal adenomas. Gut Microbes, 1, 138–147.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kostic, A. D., Gevers, D., Pedamallu, C. S., Michaud, M., Duke, F., Earl, A. M., Ojesina, A. I., Jung, J., Bass, A. J., Tabernero, J., et al. (2012). Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res, 22, 292–298.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Mayer, E. A., Tillisch, K., & Gupta, A. (2015). Gut/brain axis and the microbiota. The Journal of Clinical Investigation, 125, 926–938.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Rinninella, E., Mele, M. C., Merendino, N., Cintoni, M., Anselmi, G., Caporossi, A., Gasbarrini, A., & Minnella, A. M. (2018). The role of diet, micronutrients and the gut microbiota in age-related macular degeneration: New perspectives from the gut-retina axis. Nutrients, 10, 1677.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Ley, R. E., Bäckhed, F., Turnbaugh, P., Lozupone, C. A., Knight, R. D., & Gordon, J. I. (2005). Obesity alters gut microbial ecology. Proceedings of the National academy of Sciences of the United States of America, 102, 11070–11075.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Geurts, L., Lazarevic, V., Derrien, M., Everard, A., Van Roye, M., Knauf, C., Valet, P., Girard, M., Muccioli, G. G., & François, P. (2011). Altered gut microbiota and endocannabinoid system tone in obese and diabetic leptin-resistant mice: Impact on apelin regulation in adipose tissue. Frontiers in Microbiology, 2, 149.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Kim, K. A., Gu, W., Lee, I. A., Joh, E. H., & Kim, D. H. (2012). High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PLoS ONE, 7, e47713.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Cani, P. D. (2013). Gut microbiota and obesity: Lessons from the microbiome. Brief. Funct. Genom., 12, 381–387.

    Article  CAS  Google Scholar 

  86. Zhang, C., Zhang, M., Wang, S., Han, R., Cao, Y., Hua, W., Mao, Y., Zhang, X., Pang, X., Wei, C., et al. (2010). Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. SME J., 4, 232–241.

    CAS  Google Scholar 

  87. Rizzatti, G., Lopetuso, L. R., Gibiino, G., Binda, C., & Gasbarrini, A. (2017). Proteobacteria: A common factor in human diseases. Biotechnology Research International, 2017, 9351507. https://doi.org/10.1155/2017/9351507

    Article  CAS  Google Scholar 

  88. Everard, A., Belzer, C., Geurts, L., Ouwerkerk, J. P., Druart, C., Bindels, L. B., Guiot, Y., Derrien, M., Muccioli, G. G., Delzenne, N. M., et al. (2013). Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proceedings of the National academy of Sciences of the United States of America, 110, 9066–9071.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Derrien, M., Vaughan, E. E., Plugge, C. M., & de Vos, W. M. (2004). Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol, 54, 1469–1476.

    Article  PubMed  CAS  Google Scholar 

  90. Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R., & Gordon, J. I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444, 1027–1031.

    Article  PubMed  Google Scholar 

  91. Larsen, N., Vogensen, F. K., van den Berg, F. W., Nielsen, D. S., Andreasen, A. S., Pedersen, B. K., Al-Soud, W. A., Sørensen, S. J., Hansen, L. H., & Jakobsen, M. (2010). Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE, 5, e9085.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Walsh, C. J., Guinane, C. M., O’Toole, P. W., & Cotter, P. D. (2014). Beneficial modulation of the gut microbiota. FEBS Letters, 588, 4120–4130.

    Article  PubMed  CAS  Google Scholar 

  93. Qin, J., Li, Y., Cai, Z., Li, S., Zhu, J., Zhang, F., Liang, S., Zhang, W., Guan, Y., Shen, D., et al. (2012). A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 490, 55–60.

    Article  PubMed  CAS  Google Scholar 

  94. Li, X., Watanabe, K., & Kimura, I. (1882). Gut microbiota dysbiosis drives and implies novel therapeutic strategies for diabetes mellitus and related metabolic diseases. Frontiers in Immunology, 2017, 8.

    Google Scholar 

  95. Prince, M., Ali, G. C., Guerchet, M., Prina, A. M., Albanese, E., & Wu, Y. T. (2016Jul 30). Recent global trends in the prevalence and incidence of dementia, and survival with dementia. Alzheimer’s Research & Therapy, 8(1), 23. https://doi.org/10.1186/s13195-016-0188-8

  96. Cattaneo, A., Cattane, N., Galluzzi, S., Provasi, S., Lopizzo, N., Festari, C., Ferrari, C., Guerra, U. P., Paghera, B., Muscio, C., et al. (2017). Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiology of Aging, 49, 60–68.

    Article  PubMed  CAS  Google Scholar 

  97. Vogt, N. M., Kerby, R. L., Dill-McFarland, K. A., Harding, S. J., Merluzzi, A. P., Johnson, S. C., Carlsson, C. M., Asthana, S., Zetterberg, H., Blennow, K., et al. (2017). Gut microbiome alterations in Alzheimer’s disease. Science and Reports, 7, 13537.

    Article  Google Scholar 

  98. Hopfner, F., Künstner, A., Müller, S. H., Künzel, S., Zeuner, K. E., Margraf, N. G., Deuschl, G., Baines, J. F., & Kuhlenbäumer, G. (2017). Gut microbiota in Parkinson disease in a northern German cohort. Brain Research, 1667, 41–45.

    Article  PubMed  CAS  Google Scholar 

  99. Hill-Burns, E. M., Debelius, J. W., Morton, J. T., Wissemann, W. T., Lewis, M. R., Wallen, Z. D., Peddada, S. D., Factor, S. A., Molho, E., Zabetian, C. P., et al. (2017). Parkinson’s disease and Parkinson’s disease medications have distinct signatures of the gut microbiome. Movement Disorders, 32, 739–749.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Keshavarzian, A., Green, S. J., Engen, P. A., Voigt, R. M., Naqib, A., Forsyth, C. B., Mutlu, E., & Shannon, K. M. (2015). Colonic bacterial composition in Parkinson’s disease. Movement Disorders, 30, 1351–1360.

    Article  PubMed  CAS  Google Scholar 

  101. Scheperjans, F., Aho, V., Pereira, P. A., Koskinen, K., Paulin, L., Pekkonen, E., Haapaniemi, E., Kaakkola, S., Eerola-Rautio, J., Pohja, M., et al. (2015). Gut microbiota are related to Parkinson’s disease and clinical phenotype. Movement Disorders, 30, 350–358.

    Article  PubMed  Google Scholar 

  102. Bajaj, J. S., Ridlon, J. M., Hylemon, P. B., Thacker, L. R., Heuman, D. M., Smith, S., Sikaroodi, M., & Gillevet, P. M. (2012). Linkage of gut microbiome with cognition in hepatic encephalopathy. American Journal of Physiology Gastrointestinal and Liver Physiology, 302, 168–175.

    Article  Google Scholar 

  103. Finegold, S. M., Molitoris, D., Song, Y., Liu, C., Vaisanen, M. L., Bolte, E., McTeague, M., Sandler, R., Wexler, H., Marlowe, E. M., et al. (2002). Gastrointestinal microflora studies in late-onset autism. Clinical Infectious Diseases, 35, S6–S16.

    Article  PubMed  Google Scholar 

  104. Finegold, S. M. (2011). Desulfovibrio species are potentially important in regressive autism. Medical Hypotheses, 77, 270–274.

    Article  PubMed  Google Scholar 

  105. Finegold, S. M., Downes, J., & Summanen, P. H. (2012). Microbiology of regressive autism. Anaerobe, 18, 260–262.

    Article  PubMed  CAS  Google Scholar 

  106. Li, Q., Han, Y., Dy, A. B. C., & Hagerman, R. J. (2017). The gut microbiota and autism spectrum disorders. Frontiers in Cellular Neuroscience, 11, 120.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Wang, L., Christophersen, C. T., Sorich, M. J., Gerber, J. P., Angley, M. T., & Conlon, M. A. (2011). Low relative abundances of the mucolytic bacterium Akkermansia muciniphila and Bifidobacterium spp. in feces of children with autism. Appl Environ Microbiol, 77, 6718–6721.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Williams, B. L., Hornig, M., Parekh, T., & Lipkin, W. I. (2012). Application of novel PCR-based methods for detection, quantitation, and phylogenetic characterization of Sutterella species in intestinal biopsy samples from children with autism and gastrointestinal disturbances. MBio, 3, e00261-e311.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Collins, S. M., Surette, M., & Bercik, P. (2012). The interplay between the intestinal microbiota and the brain. Nature Reviews Microbiology, 10, 735–742.

    Article  PubMed  CAS  Google Scholar 

  110. Bailey, M. T., Dowd, S. E., Galley, J. D., Hufnagle, A. R., Allen, R. G., & Lyte, M. (2011). Exposure to a social stressor alters the structure of the intestinal microbiota: Implications for stressor-induced immunomodulation. Brain, Behavior, and Immunity, 25, 397–407.

    Article  PubMed  CAS  Google Scholar 

  111. Lee, Y. K., Menezes, J. S., Umesaki, Y., & Mazmanian, S. K. (2011). Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proceedings of the National academy of Sciences of the United States of America, 108, 4615–4622.

    Article  PubMed  CAS  Google Scholar 

  112. Patterson, E., Cryan, J. F., Fitzgerald, G. F., Ross, R. P., Dinan, T. G., & Stanton, C. (2014). Gut microbiota, the pharmabiotics they produce and host health. The Proceedings of the Nutrition Society, 73, 477–489.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to this work.

Corresponding author

Correspondence to Ruishan Li.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

All the authors gave their consent to participate.

Consent for Publication

All the authors gave their consent to publish their work.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Roy, R. Gut Microbiota and Its Role in Anti-aging Phenomenon: Evidence-Based Review. Appl Biochem Biotechnol 195, 6809–6823 (2023). https://doi.org/10.1007/s12010-023-04423-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04423-y

Keywords

Navigation