Skip to main content

Advertisement

Log in

Chemo-Photothermal Combination Therapy of HER-2 Overexpressing Breast Cancer Cells with Dual-Ordered Mesoporous Carbon@Silica Nanocomposite

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In cancer treatment, the complexity of tumors seriously affects the therapeutic potential of the treatment. Treatments with combination therapy result in more potent effects than monotherapy or their theoretical combination in cancer treatment. Photothermal therapy (PTT) includes applying phototherapeutic agents that cause local hyperthermia responsible for the thermal ablation of tumor cells after applying near-infrared light and is often applied with other combination therapies. In this study, the chemo-PTT potential of synthesized drug-loaded and targeted GEM/TRA-MC@Si nanocomposite on Her2 positive breast cancer cell line (SK-BR-3) and human triple-negative breast cancer cell line (MDA-MB-231) was investigated using NIR application as in vitro. First, the cell viability (IC50) value of the GEM/TRA-MC@Si nanocomposite was determined as 25 µg/µL. Then, chemo-PTT was performed, and the viability of the cells was evaluated. In addition, the live/dead cell rate was established by staining with the Calcein-AM and EthD-1, and apoptosis tests were completed. When the surface temperature of Her2 positive SK-BR-3 cells exceeded 47 °C during PTT with an irradiation time of > 100 s, it caused cell death. In this study, it was demonstrated that in vitro PTT (1 W/cm2, 180 s) was applied using GEM/TRA-MC@Si nanocomposite (25 µg/mL) on her2 + SK-BR-3 cell line, which contributed to the reduction of cell viability. In addition, this study demonstrates that chemo-PTT with targeted GEM/TRA-MC@Si nanocomposite induced SK-BR-3 cell viability and can initiate cell death through the apoptosis pathway under optimized irradiation conditions. Herewith chemo-PTT combination therapy of targeted GEM-TRA/MC@Si nanocomposite was found to be effective on SK-BR-3 cells as in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

References

  1. Xu, Z., Zhang, Y., Zhou, W., Wang, L., Xu, G., Ma, M., … Yang, C. (2021). NIR-II-activated biocompatible hollow nanocarbons for cancer photothermal therapy. Journal of Nanobiotechnology, 19(1), 137. https://doi.org/10.1186/s12951-021-00884-7

  2. Zhang, Y., Leonard, M., Shu, Y., Yang, Y., Shu, D., Guo, P., & Zhang, X. (2017). Overcoming tamoxifen resistance of human breast cancer by targeted gene silencing using multifunctional pRNA nanoparticles. ACS Nano, 11(1), 335–346. https://doi.org/10.1021/acsnano.6b05910

    Article  CAS  PubMed  Google Scholar 

  3. Huang, H., & Lovell, J. F. (2017). Advanced functional nanomaterials for theranostics. Advanced Functional Materials, 27(2), 1603524. https://doi.org/10.1002/adfm.201603524

    Article  CAS  PubMed  Google Scholar 

  4. Poudel, B. K., Gupta, B., Ramasamy, T., Thapa, R. K., Pathak, S., Oh, K. T., … Kim, J. O. (2017). PEGylated thermosensitive lipid-coated hollow gold nanoshells for effective combinational chemo-photothermal therapy of pancreatic cancer. Colloids and Surfaces B: Biointerfaces, 160, 73–83. https://doi.org/10.1016/j.colsurfb.2017.09.010

  5. Shen, S., Liu, M., Li, T., Lin, S., & Mo, R. (2017). Recent progress in nanomedicine-based combination cancer therapy using a site-specific co-delivery strategy. Biomaterials Science, 5(8), 1367–1381. https://doi.org/10.1039/c7bm00297a

    Article  CAS  PubMed  Google Scholar 

  6. Li, X., Liu, C., Wang, S., Jiao, J., Di, D., Jiang, T., … Wang, S. (2017). Poly(acrylic acid) conjugated hollow mesoporous carbon as a dual-stimuli triggered drug delivery system for chemo-photothermal synergistic therapy. Materials Science and Engineering C, 71, 594–603. https://doi.org/10.1016/j.msec.2016.10.037

  7. Zhao, Q., Wang, X., Yan, Y., Wang, D., Zhang, Y., Jiang, T., & Wang, S. (2017). The advantage of hollow mesoporous carbon as a near-infrared absorbing drug carrier in chemo-photothermal therapy compared with IR-820. European Journal of Pharmaceutical Sciences, 99, 66–74. https://doi.org/10.1016/j.ejps.2016.11.031

    Article  CAS  PubMed  Google Scholar 

  8. Lu, H., Zhao, Q., Wang, X., Mao, Y., Chen, C., Gao, Y., … Wang, S. (2020). Multi-stimuli responsive mesoporous silica-coated carbon nanoparticles for chemo-photothermal therapy of tumor. Colloids and Surfaces B: Biointerfaces, 190, 110941. https://doi.org/10.1016/j.colsurfb.2020.110941

  9. Li, X., Yan, Y., Lin, Y., Jiao, J., Wang, D., Di, D., … Wang, S. (2017). Hollow mesoporous carbon as a near-infrared absorbing carrier compared with mesoporous carbon nanoparticles for chemo-photothermal therapy. Journal of Colloid and Interface Science, 494, 159–169. https://doi.org/10.1016/j.jcis.2017.01.090

  10. Feng, S., Lu, J., Wang, K., Di, D., Shi, Z., Zhao, Q., & Wang, S. (2022). Advances in smart mesoporous carbon nanoplatforms for photothermal–enhanced synergistic cancer therapy. Chemical Engineering Journal, 435, 134886. https://doi.org/10.1016/j.cej.2022.134886

    Article  CAS  Google Scholar 

  11. Wang, Y., Zhang, H., Xie, J., Liu, Y., Wang, S., & Zhao, Q. (2020). Three dimensional mesoporous carbon nanospheres as carriers for chemo-photothermal therapy compared with two dimensional graphene oxide nanosheets. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 590, 124498. https://doi.org/10.1016/j.colsurfa.2020.124498

    Article  CAS  Google Scholar 

  12. Zhang, Y., Zhu, J., Huang, G., Zhu, J., & He, D. (2020). Potential applications of multifunctional mesoporous carbon nanoplatform for tumor microenvironment improving by combined chemo-/phototherapy. Carbon, 163, 128–136. https://doi.org/10.1016/j.carbon.2020.02.029

    Article  CAS  Google Scholar 

  13. Zhou, M., Zhao, Q., Wu, Y., Feng, S., Wang, D., Zhang, Y., & Wang, S. (2020). Mesoporous carbon nanoparticles as multi-functional carriers for cancer therapy compared with mesoporous silica nanoparticles. An Official Journal of the American Association of Pharmaceutical Scientists, 21(2), 42. https://doi.org/10.1208/s12249-019-1604-8

    Article  CAS  Google Scholar 

  14. Li, Y., Xiao, B. X., Dong, J., Liu, Y., Gao, S., Pang, J., & Sun, Z. (2018). Near-infrared light-responsive nanoparticles for improved anticancer efficacy through synergistic chemo-photothermal therapy. Pharmaceutical Development and Technology, 23(1), 116–124. https://doi.org/10.1080/10837450.2017.1402934

    Article  CAS  PubMed  Google Scholar 

  15. Yang, K., Feng, L., & Liu, Z. (2016). Stimuli responsive drug delivery systems based on nano-graphene for cancer therapy. Advanced Drug Delivery Reviews, 105(Pt B), 228–241. https://doi.org/10.1016/j.addr.2016.05.015

    Article  CAS  PubMed  Google Scholar 

  16. Wang, X., Liu, Y., Liu, Z., Hu, J., Guo, H., & Wang, F. (2018). Synergistic chemo-photothermal therapy of tumor by hollow carbon nanospheres. Biochemical and Biophysical Research Communications, 495(1), 867–872. https://doi.org/10.1016/j.bbrc.2017.11.130

    Article  CAS  PubMed  Google Scholar 

  17. Wang, J., & Li, N. (2017). Functional hollow nanostructures for imaging and phototherapy of tumors. Journal of Materials Chemistry B, 5(43), 8430–8445. https://doi.org/10.1039/c7tb02381b

    Article  CAS  PubMed  Google Scholar 

  18. Lim, W. Q., Phua, S. Z. F., Xu, H. V., Sreejith, S., & Zhao, Y. (2016). Recent advances in multifunctional silica-based hybrid nanocarriers for bioimaging and cancer therapy. Nanoscale, 8(25), 12510–12519. https://doi.org/10.1039/c5nr07853a

    Article  CAS  PubMed  Google Scholar 

  19. Park, W., Cho, S., Han, J., Shin, H., Na, K., Lee, B., & Kim, D. H. (2018). Advanced smart-photosensitizers for more effective cancer treatment. Biomaterials Science, 6(1), 79–90. https://doi.org/10.1039/c7bm00872d

    Article  CAS  Google Scholar 

  20. Petrilli, R., Pinheiro, D. P., de Cássia Evangelista de Oliveira, F., Galvão, G. F., Marques, L. G. A., Lopez, R. F. V., … Eloy, J. O. (2021). Immunoconjugates for cancer targeting: A review of antibody-drug conjugates and antibody-functionalized nanoparticles. Current medicinal chemistry, 28(13), 2485–2520. https://doi.org/10.2174/0929867327666200525161359

  21. Wathoni, N., Puluhulawa, L. E., Joni, I. M., Muchtaridi, M., Mohammed, A. F. A., Elamin, K. M., … Gozali, D. (2022). Monoclonal antibody as a targeting mediator for nanoparticle targeted delivery system for lung cancer. Drug Delivery, 29(1), 2959–2970. https://doi.org/10.1080/10717544.2022.2120566

  22. Kirpotin, D., Park, J. W., Hong, K., Zalipsky, S., Li, W. L., Carter, P., … Papahadjopoulos, D. (1997). Sterically stabilized anti-HER2 immunoliposomes: Design and targeting to human breast cancer cells in vitro. Biochemistry, 36(1), 66–75. https://doi.org/10.1021/bi962148u

  23. Xu, R., Sui, J., Zhao, M., Yang, Y., Tong, L., Liu, Y., … Zhang, X. (2022). Targeted inhibition of HER-2 positive breast cancer cells by trastuzumab functionalized pullulan-doxorubicin nanoparticles. Polymer Testing, 113, 107669. https://doi.org/10.1016/j.polymertesting.2022.107669

  24. Mozafarinia, M., Karimi, S., Farrokhnia, M., & Esfandiari, J. (2021). In vitro breast cancer targeting using Trastuzumab-conjugated mesoporous silica nanoparticles: Towards the new strategy for decreasing size and high drug loading capacity for drug delivery purposes in MSN synthesis. Microporous and Mesoporous Materials, 316, 110950. https://doi.org/10.1016/j.micromeso.2021.110950

    Article  CAS  Google Scholar 

  25. Catala, A., Dzieciatkowska, M., Wang, G., Gutierrez-Hartmann, A., Simberg, D., Hansen, K. C., … Catalano, C. E. (2021). Targeted ıntracellular delivery of trastuzumab using designer phage lambda nanoparticles alters cellular programs in human breast cancer cells. ACS Nano, 15(7), 11789–11805. https://doi.org/10.1021/acsnano.1c02864

  26. Zhang, X., Liu, J., Li, X., Li, F., Lee, R. J., Sun, F., … Teng, L. (2019). Trastuzumab-coated nanoparticles loaded with docetaxel for breast cancer therapy. Dose-response : a publication of International Hormesis Society, 17(3), 1559325819872583–1559325819872583. https://doi.org/10.1177/1559325819872583

  27. Niza, E., Noblejas-López, M. D. M., Bravo, I., Nieto-Jiménez, C., Castro-Osma, J. A., Canales-Vázquez, J., … Alonso-Moreno, C. (2019). Trastuzumab-targeted biodegradable nanoparticles for enhanced delivery of dasatinib in HER2+ metastasic breast cancer. Nanomaterials (Basel, Switzerland), 9(12), 1793. https://doi.org/10.3390/nano9121793

  28. Wang, Y., Wang, K., Zhang, R., Liu, X., Yan, X., Wang, J., … Huang, R. (2014). Synthesis of core-shell graphitic carbon@silica nanospheres with dual-ordered mesopores for cancer-targeted photothermochemotherapy. ACS Nano, 8(8), 7870–7879. https://doi.org/10.1021/nn5027214

  29. Quan, G., Pan, X., Wang, Z., Wu, Q., Li, G., Dian, L., … Wu, C. (2015). Lactosaminated mesoporous silica nanoparticles for asialoglycoprotein receptor targeted anticancer drug delivery. Journal of Nanobiotechnology (Vol. 13). https://doi.org/10.1186/s12951-015-0068-6

  30. Freitas, L. B. de O., Corgosinho, L. de M., Faria, J. A. Q. A., dos Santos, V. M., Resende, J. M., Leal, A. S., … Sousa, E. M. B. de. (2017). Multifunctional mesoporous silica nanoparticles for cancer-targeted, controlled drug delivery and imaging. Microporous and Mesoporous Materials, 242, 271–283. https://doi.org/10.1016/j.micromeso.2017.01.036

  31. Meng, H., Liong, M., Xia, T., Li, Z., Ji, Z., Zink, J. I., & Nel, A. E. (2010). Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and p-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano, 4(8), 4539–4550. https://doi.org/10.1021/nn100690m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yu, K., Zhao, J., Zhang, Z., Gao, Y., Zhou, Y., Teng, L., & Li, Y. (2016). Enhanced delivery of Paclitaxel using electrostatically-conjugated Herceptin-bearing PEI/PLGA nanoparticles against HER-positive breast cancer cells. International Journal of Pharmaceutics, 497(1–2), 78–87. https://doi.org/10.1016/j.ijpharm.2015.11.033

    Article  CAS  PubMed  Google Scholar 

  33. Papa, A. L., Sidiqui, A., Balasubramanian, S. U. A., Sarangi, S., Luchette, M., Sengupta, S., & Harfouche, R. (2013). PEGylated liposomal Gemcitabine: Insights into a potential breast cancer therapeutic. Cellular Oncology, 36(6), 449–457. https://doi.org/10.1007/s13402-013-0146-4

    Article  CAS  Google Scholar 

  34. Zhao, R., Han, X., Li, Y., Wang, H., Ji, T., Zhao, Y., & Nie, G. (2017). Photothermal effect enhanced cascade-targeting strategy for ımproved pancreatic cancer therapy by gold nanoshell@mesoporous silica nanorod. ACS Nano, 11(8), 8103–8113. https://doi.org/10.1021/acsnano.7b02918

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, X., Wu, J., Williams, G. R., Niu, S., Qian, Q., & Zhu, L. M. (2019). Functionalized MoS 2 -nanosheets for targeted drug delivery and chemo-photothermal therapy. Colloids and Surfaces B: Biointerfaces, 173, 101–108. https://doi.org/10.1016/j.colsurfb.2018.09.048

    Article  CAS  PubMed  Google Scholar 

  36. Kaur, T., Kaur, S., & Kaur, P. (2017). Development and validation of UV-spectrophotometric methods for determination of gemcitabine hydrochloride in bulk and polymeric nanoparticles. International Journal of Applied Pharmaceutics, 9(5), 60–65. https://doi.org/10.22159/ijap.2017v9i5.19726

    Article  CAS  Google Scholar 

  37. Ariyasu, S., Mu, J., Zhang, X., Huang, Y., Yeow, E. K. L., Zhang, H., & Xing, B. (2017). Investigation of thermally ınduced cellular ablation and heat response triggered by planar MoS2-based nanocomposite. Bioconjugate Chemistry, 28(4), 1059–1067. https://doi.org/10.1021/acs.bioconjchem.6b00741

    Article  CAS  PubMed  Google Scholar 

  38. Geretto, M., Ponassi, M., Casale, M., Pulliero, A., Cafeo, G., Malagreca, F., … Izzotti, A. (2018). A novel calix[4]pyrrole derivative as a potential anticancer agent that forms genotoxic adducts with DNA. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-29314-9

  39. Fang, Y., Zheng, G., Yang, J., Tang, H., Zhang, Y., Kong, B., … Zhao, D. (2014). Dual-pore mesoporous carbon@silica composite core-shell nanospheres for multidrug delivery. Angewandte Chemie - International Edition, 53(21), 5366–5370. https://doi.org/10.1002/anie.201402002

  40. Fang, Y., Gu, D., Zou, Y., Wu, Z., Li, F., Che, R., … Zhao, D. (2010). A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size. Angewandte Chemie - International Edition, 49(43), 7987–7991. https://doi.org/10.1002/anie.201002849

  41. Wang, Y., Santos, A., Evdokiou, A., & Losic, D. (2015). An overview of nanotoxicity and nanomedicine research: Principles, progress and implications for cancer therapy. Journal of Materials Chemistry B, 3(36), 7153–7172. https://doi.org/10.1039/c5tb00956a

    Article  CAS  PubMed  Google Scholar 

  42. Meng, H., Wang, M., Liu, H., Liu, X., Situ, A., Wu, B., … Nel, A. E. (2015). Use of a lipid-coated mesoporous silica nanoparticle platform for synergistic gmcitabine and pclitaxel dlivery to hman pncreatic cncer in mice. ACS Nano, 9(4), 3540–3557. https://doi.org/10.1021/acsnano.5b00510

  43. Malfanti, A., Miletto, I., Bottinelli, E., Zonari, D., Blandino, G., Berlier, G., & Arpicco, S. (2016). Delivery of gemcitabine prodrugs employing mesoporous silica nanoparticles. Molecules, 21(4), 522. https://doi.org/10.3390/molecules21040522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Patra, C. R., Bhattacharya, R., Wang, E., Katarya, A., Lau, J. S., Dutta, S., … Mukhopadhyay, D. (2008). Targeted delivery of gemcitabine to pancreatic adenocarcinoma using cetuximab as a targeting agent. Cancer Research, 68(6), 1970–1978. https://doi.org/10.1158/0008-5472.CAN-07-6102

  45. Birhanu, G., Javar, H. A., Seyedjafari, E., & Zandi-Karimi, A. (2017). Nanotechnology for delivery of gemcitabine to treat pancreatic cancer. Biomedicine and Pharmacotherapy. Elsevier Masson SAS. https://doi.org/10.1016/j.biopha.2017.01.071

  46. Han, H., Li, S., Zhong, Y., Huang, Y., Wang, K., Jin, Q., … Yao, K. (2022). Emerging pro-drug and nano-drug strategies for gemcitabine-based cancer therapy. Asian Journal of Pharmaceutical Sciences, 17(1), 35–52. https://doi.org/10.1016/j.ajps.2021.06.001

  47. Zaharudin, N. S., Mohamed Isa, E. D., Ahmad, H., Abdul Rahman, M. B., & Jumbri, K. (2020). Functionalized mesoporous silica nanoparticles templated by pyridinium ionic liquid for hydrophilic and hydrophobic drug release application. Journal of Saudi Chemical Society, 24(3), 289–302. https://doi.org/10.1016/j.jscs.2020.01.003

    Article  CAS  Google Scholar 

  48. Xue, Z., Zhang, F., Qin, D., Wang, Y., Zhang, J., Liu, J., … Lu, X. (2014). One-pot synthesis of silver nanoparticle catalysts supported on N-doped ordered mesoporous carbon and application in the detection of nitrobenzene. Carbon, 69, 481–489. https://doi.org/10.1016/j.carbon.2013.12.051

  49. Melamed, J. R., Edelstein, R. S., & Day, E. S. (2015). Elucidating the fundamental mechanisms of cell death triggered by photothermal therapy. ACS Nano, 9(1), 6–11. https://doi.org/10.1021/acsnano.5b00021

    Article  CAS  PubMed  Google Scholar 

  50. Martin, S. J., Henry, C. M., & Cullen, S. P. (2012). A perspective on mammalian caspases as positive and negative regulators of ınflammation. Molecular Cell, 46(4), 387–397. https://doi.org/10.1016/j.molcel.2012.04.026

    Article  CAS  PubMed  Google Scholar 

  51. Li, J. L., & Gu, M. (2010). Surface plasmonic gold nanorods for enhanced two-photon microscopic imaging and apoptosis induction of cancer cells. Biomaterials, 31(36), 9492–9498. https://doi.org/10.1016/j.biomaterials.2010.08.068

    Article  CAS  PubMed  Google Scholar 

  52. Mocan, T., Matea, C. T., Cojocaru, I., Ilie, I., Tabaran, F. A., Zaharie, F., … Mocan, L. (2014). Photothermal treatment of human pancreatic cancer using PEGylated multi-walled carbon nanotubes induces apoptosis by triggering mitochondrial membrane depolarization mechanism. Journal of Cancer, 5(8), 679–688. https://doi.org/10.7150/jca.9481

  53. Tong, L., & Cheng, J. X. (2009). Gold nanorod-mediated photothermolysis induces apoptosis of macrophages via damage of mitochondria. Nanomedicine, 4(3), 265–276. https://doi.org/10.2217/nnm.09.4

    Article  CAS  PubMed  Google Scholar 

  54. Freeman, Starr, D. A., & O’connor. (2016). 乳鼠心肌提取 HHS public access. Physiology & behavior, 176(1), 139–148. https://doi.org/10.1016/j.biomaterials.2015.04.013.Single

  55. Shih, E. C. (2015). PhD thesis, University of Nevada, Las Vegas, ABD.

  56. Chen, W., Zeng, K., Liu, H., Ouyang, J., Wang, L., Liu, Y., … Liu, Y. N. (2017). Cell membrane camouflaged hollow Prussian blue nanoparticles for synergistic photothermal-/chemotherapy of cancer. Advanced Functional Materials, 27(11). https://doi.org/10.1002/adfm.201605795

  57. Su, J., Sun, H., Meng, Q., Yin, Q., Zhang, P., Zhang, Z., … Li, Y. (2016). Bioinspired nanoparticles with NIR-controlled drug release for synergetic chemophotothermal therapy of metastatic breast cancer. Advanced Functional Materials, 26(41), 7495–7506. https://doi.org/10.1002/adfm.201603381

  58. Yi, X., Yang, K., Liang, C., Zhong, X., Ning, P., Song, G., … Liu, Z. (2015). Imaging-guided combined photothermal and radiotherapy to treat subcutaneous and metastatic tumors using ıodine-131-doped copper sulfide nanoparticles. Advanced Functional Materials, 25(29), 4689–4699. https://doi.org/10.1002/adfm.201502003

  59. Perez, R. A., Singh, R. K., Kim, T. H., & Kim, H. W. (2017). Silica-based multifunctional nanodelivery systems toward regenerative medicine. Materials Horizons, 4(5), 772–799. https://doi.org/10.1039/c7mh00017k

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors kindly thank Fiber Last cooperation (Ankara/Turkey) for providing the laser device. Also, we are grateful to Ege University Planning and Monitoring Coordination of Organizational Development and the Directorate of Library and Documentation for their support in the editing and proofreading service of this study.

Funding

Financial support was provided by Ege University Scientific Research Projects (BAP) Coordinator ship (Project Number: FDK-2020–21380) and the Scientific and Technical Research Council of Turkey (TÜBİTAK) with 2211-C and 2214-A coded doctoral research support (grant number, respectively: 1649B031802269 and 1059B141801597).

Author information

Authors and Affiliations

Authors

Contributions

FY: writing—review and editing, resources, supervision, project administration, funding acquisition. AT: conceptualization, investigation, data curation, formal analysis, writing—original draft, validation, methodology, software.

Corresponding author

Correspondence to Fatma Yurt.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 629 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tunçel, A., Yurt, F. Chemo-Photothermal Combination Therapy of HER-2 Overexpressing Breast Cancer Cells with Dual-Ordered Mesoporous Carbon@Silica Nanocomposite. Appl Biochem Biotechnol 195, 1904–1927 (2023). https://doi.org/10.1007/s12010-022-04235-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04235-6

Keywords

Navigation