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Abstract
Catalytic antibodies made it feasible to develop new catalysts, which had previously been the 
subject of research. Scientists have discovered natural antibodies that can hydrolyze substrates 
such as nucleic acids, proteins, and polysaccharides during decades of research, as well as 
several ways of producing antibodies with specialized characteristics and catalytic functions. 
These antibodies are widely used in chemistry, biology, and medicine. Catalytic antibodies 
can continue to play a role and even fully prevent the emergence of autoimmune disorders, 
especially in the field of infection and immunity, where the process of its occurrence and 
development often takes a long time. In this work, the development, design and evolution 
methodologies, and the expression systems and applications of catalytic antibodies, are 
discussed. Trial registration: not applicable.

Keywords  Catalytic Antibodies · Design and Evolution · Expression Systems · Infection 
and Immunity · COVID-19

Introduction

The catalytic antibody, also known as antibody-enzyme, is a type of immunoglobulin with 
catalytic ability, meaning it can not only bind to antigen but also catalyze certain reactions 
like an enzyme [1–4]. Pauling developed the transition state theory to explain the nature of 
enzyme catalysis in 1946, stating that an enzyme has catalytic activity when it can selec-
tively bind and stable the transition state of a chemical reaction, lowering the reaction 
energy level [5]. Jencks hypothesized in 1969, based on the transition state theory, that if 
the antibody could bind to the transition state of the reaction, it could theoretically acquire 
catalytic characteristics [6]. Lerner [7] postulated in 1984 that the antibody generated by 
the transition state analogs(TSA) might have complementary confirmation to the analog. 
The antibody could cause catalysis by forcing the substrate to enter the transition state after 
binding [7]. According to this hypothesis, in the research of antibodies against a tetrahedral 
charged phosphate hapten, Schultz and Lerner [8, 9] discovered that they could selectively 
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catalyze the hydrolysis of corresponding carbonate and carboxylic esters in 1986. The cata-
lytic antibody is the name for this type of antibody [8, 9]. In 1989, Paul et al. [10, 11] iden-
tified autoantibodies from human serum that can hydrolyze vasoactive intestinal peptide 
(VIP), indicating that the research was progressing. For the first time, the study demon-
strates that antibodies with catalytic activity can be produced in the body without the use 
of synthetic chemicals as vaccines. A huge number of catalytic antibodies were promptly 
extracted from patients with various autoimmune disorders as a result of this investigation 
[12–19]. Patients with thyroiditis, multiple myeloma, and hemophilia, for example, have 
catalytic antibodies against thyroglobulin, prothrombin, and factor VIII (FVIII) [13, 16, 
20, 21]. Patients with systemic autoimmune symptoms such as systemic lupus erythema-
tosus, scleroderma, rheumatoid arthritis, or multiple sclerosis had catalytic antibodies with 
DNA and RNA hydrolysis activity isolated from their serum [12, 22, 23]. Catalytic anti-
bodies with different activities have been found (summarized in Table 1). In addition, many 
approaches and tactics have been developed in order to obtain catalytic antibodies suited 
for a range of unique functions, particularly those that do not occur in nature [24].

Catalytic Antibody Design and Evolution Strategy

Production of Catalytic Antibodies Based on Transition State Analogs

Traditional catalytic antibody preparation involves in vivo immunization followed by cell 
fusion. Enzyme catalysis is attributed to the complementarity between enzyme and tran-
sition state rather than the substrate of catalytic activity, according to the transition state 
theory of enzyme catalysis (Fig. 1) [9, 12, 44–46]. A suitable and stable transition state 
analog is designed as a semi-antigen using the chemical molecular design method, and 
the desired catalytic antibody is tested using the hybridoma technique (Fig. 2A). The first 
catalytic antibodies were produced using alkaline hydrolysates of esters and carbonates. A 
negatively charged tetrahedral transition state is one of the hydrolysates of esters, which 
can be adequately imitated by phosphonates. After the hapten has been designed and man-
ufactured, it binds to the carrier protein to create an antigen that is immunogenic enough 
[45]. The antibody produced by transition state theory binds to the transition state more 
strongly than the ground state of the substrate, resulting in a perfect catalytic antibody [45]. 
These transition state analogs have been utilized as haptens in the production of hydrolytic 
antibodies for a long time [46–51]. And catalytic antibodies that can catalyze peroxy reac-
tion [52], decarboxylation [53–55], cyclization [56–58], lactonization [59], bimolecular 
amide-bond formation, and even reactions that are not catalyzed by natural enzymes [50]. 
The design of the transition state analog determines whether or not the desired catalytic 
antibody can be generated using this procedure. Reaction immunity [12, 22, 23, 60], induc-
tion and transformation design [58], “latent transition state” semi-antigen design [21], and 
so on are some of the most common design methodologies.

Production of Catalytic Antibodies by Genetic Engineering

Site-directed mutagenesis of the variable region of the antibody or the introduction 
of known catalytic amino acid residues into the antigen-binding site of the antibody 
can often yield the desired antibody with catalytic activity (Fig.  2B). Liu [64] com-
bined antibody Jel42 with bacterial protein HPr, added glutamic acid to increase the 
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nucleophilicity of nearby water molecules, lysine to increase the polarizability of water 
molecules, carbonyl and histidine to provide protons to convert amines into better-leav-
ing groups, and changed the fourth residue to glycine to maintain the integrity of com-
plementary determining region 3 of the heavy chain (CDRH3) at the binding interface. 
Finally, the bacterial protein HPr’s single-chain antibody (scFV) possesses protease 
activity [64]. By adding a histidine residue into the antibody Jel103, Fletcher et  al. 
[65] were able to create catalytic antibodies with RNA-specific ribonuclease activity. 
Okochi et al. [66] produced antibodies with peptidase activity by adding mutations to 
generate catalytic triplets among the residues of Asp1, Ser27a, and the original His93. 
These findings suggest that novel ways for tailoring catalytic antibodies beyond the 
restrictions of existing vaccination methods may be possible [50].

Manipulation Based on the Idiotypic Network to Produce Catalytic Antibodies

Jerne [67] proposed the “idiotypic network theory” in 1974. According to this theory, 
animals are immunized with enzymes as antigens to produce monoclonal antibodies 
(called Ab1). The antigen-binding site of the antibody is complementary to the active 
site of the enzyme, and the antibody is then vaccinated against the antigen-binding 
site of Ab1 (the variable region of Ab1). Finally, the catalytic antibody (called Ab2) is 
obtained (Fig. 2C). Antibodies with amidase activity were produced using this method 
[68], which used lactamase as an antigen and used subtilisin and acetylcholinesterase 
as antigens, the researchers created catalytic antibodies with serine protease [69] and 
esterase activity [47]. Antibodies containing allicin and carboxypeptidase activity 
were also produced [21, 70, 71]. This approach has been used to create antibodies with 
various catalytic activities [46–49, 62, 68, 69, 71, 72].

Fig. 1   Energy profiles for 
enzyme-catalyzed and uncata-
lyzed reactions. Chemical 
transformation proceeds through 
the high-energy transition state 
(S#) to make the products (P). 
In enzymatic reactions, an 
enzyme (E) strongly binds to 
the transition state to lower the 
activation energy (△GTS) and 
thus catalyze the reaction. But an 
enzyme binds to the ground state 
of the substrate (S) very weakly. 
Enzyme achieves efficient cataly-
sis by maximizing the differential 
binding affinities between the 
transition state (KTS) and the 
substrate (KS). The ratio of KS to 
KTS is equal to the ratio of Kcat to 
Kuncat [44]

E+S

E+S

△△Gcat

△△Guncat

△△GS
(KTm)

Process of reaction 
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G
)

E·S

E·P

E·S

E+P

△△GTS
(KTS)

1518 Applied Biochemistry and Biotechnology  (2023) 195:1514–1540

1 3



Production of Catalytic Antibodies by Phage Display Technology

Phage display technology can introduce the DNA sequence of a foreign protein or peptide 
into the right position of the phage’s coat protein structure gene as an in vitro selection 
system, allowing the foreign gene to be produced alongside the coat protein. At the same 
time, the foreign protein is displayed on the surface of the phage with the phage is reas-
sembled, achieving the goal of antibody screening (Fig. 2D). Smith invented the technique 
in 1985 [73], which was later modified by McCafferty and his colleagues in 1990 [74–76]. 
In comparison to the other three methods, phage display technology offers the following 
advantages: high speed, a relatively straightforward screening process, and the ability to 
display recombinant antibody fragments using libraries for human applications. Nishi’s 
team used transition state modeling technologies to create 6D9, a catalytic antibody with 
low catalytic activity. They then randomly altered 6D9 and showed a library of mutants on 
the phage before screening the catalytic antibody with 20 times higher activity [45, 62, 76]. 

Fig. 2   Different methods to generate catalytic antibodies. A. Based on known chemical reactions, stable 
transition state analogs are synthesized and used as haptens to immunize animals. Monoclonal antibodies 
with high affinity and good complementarity to the transition state are selected,thus enabling the accel-
eration of catalysis when incubated with the substrate [50, 61]. B. The antibody with catalytic function is 
obtained by recombining or replacing the catalytic domain fragment of the enzyme with the variable region 
of the antibody [50]. C. Generation of catalytic antibodies based on “idiotypic network theory” [50, 62]. D. 
Generation of catalytic antibodies by phage display technology [45, 63]
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By displaying the biased scFv produced from the spleen of mice previously immunized 
with cocaine phosphonate transition analog hapten, McKenzie et al. [77] were able to iden-
tify the antibody capable of binding and hydrolyzing cocaine. He then used site-directed 
mutagenesis to obtain the antibody with a three-fold increase in catalytic rate [75, 77]. To 
create catalytic antibodies, Li’s team combined the idiotypic network method with phage 
display technology, combining numerous methodologies [49].

Other Methods of Producing Catalytic Antibodies

In addition to the methods mentioned above, catalytic antibodies can also be obtained by 
screening electrophilic covalent reactive analogs (CRA) [50]. Paul’s team developed a 
monoclonal antibody against the HIV-1 gp120 coat protein and an scFv library against the 
amyloid β peptide generated from CRA-coupled gp120 as the immunogen [50, 78, 79]. 
In addition, normal or autoimmune mice immunized with ground state antigens could be 
examined for antibodies with expected catalytic activity [80–85]. In addition, bioinformat-
ics methods can help understand the specificity of catalytic antibodies to assist repeated 
tests in the laboratory, thus saving time and money. The related tools are applicable for 
autoimmune analysis of binding sites, prediction of binding activity and most likely motifs 
of antibody binding, and dynamics simulation of catalytic reaction [41, 48, 86–88]. Luo 
designed the new catalytic ability into the antibody scFv2F3 by combining computational 
design and site-directed mutagenesis [89]. The resulting antibody enzyme Se-scFv2F3 
showed high glutathione peroxidase activity, which was close to the natural enzyme activ-
ity. Molecular dynamics simulations showed that the designed catalytic triplet was very 
stable and the conformational flexibility caused by Tyr101 occurred mainly in the loop 
of complementary determination region 3. Docking studies showed that this loop facili-
tates the conformational transfer of Tyr54, Asn55, and Gly56 to stabilize substrate bind-
ing. Molecular dynamics free energy and molecular mechanics Poisson-Boltzmann surface 
area calculation estimated the pKa shifts of catalytic residues and the binding free energy 
of docking complexes, indicating that the dipole–dipole interaction between Trp29-Sec52-
Gln72 leads to the change of free energy, which promotes the residual catalytic activity and 
substrate binding capacity [89].

In the above methods, catalytic antibodies are prepared based on transition state ana-
logs, and the quality of the designed transition state analogues is the key to this method, 
and it is necessary to use transition state analogues as antigens or semi-antigens to immu-
nize the host [22, 23, 60]. Genetic engineering techniques are usually used to design and 
introduce catalytic sequences or bases into antibodies [64, 65]. The “idiotypic network the-
ory” method usually takes more time [68, 69]. However, It is usually possible to combine 
the above two or more methods to produce the required catalytic antibodies, assisted by 
bioinformatics analysis tools. Paul’s team developed a platform for the preparation of cata-
lytic antibodies (catabody) for age-related amyloid diseases [90]. First, electrophilic target 
analogues (ETA) were screened, and ETA mimics a high-energy covalent intermediate of 
the target protein, which recombines with the nucleophilic catalytic site. ETA capture the 
structure of specific covalent intermediates with their targets. Then the human antibody 
was produced by B cell library, and the catalytic antibody with a fast catalytic rate and 
no off-target reaction was screened by phage display, and finally, the cell lines producing 
therapeutic-grade CAT with different targets were isolated [90].
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Catalytic Antibody Expression System

After the catalytic antibodies have been designed and modified using the methods 
described above, the catalytic antibodies must be produced with soluble and properly 
folded spatial structure before further research and application. As a result, it is crucial 
to select the appropriate expression system based on the characteristics of different cata-
lytic antibodies, research goals, and application scenarios. The following are the three most 
often used catalytic antibody expression systems: prokaryotic expression system, eukary-
otic expression system using yeast as host, and mammalian cell expression system.

Expression of Catalytic Antibodies in a Prokaryotic Expression System

Before catalytic antibodies are employed, they must be thoroughly examined, and the 
prokaryotic expression system offers the advantages of the fast growth of host cells, ease 
of operation, high yield, short production cycle, and low cost. It is frequently chosen as the 
method of expression for catalytic antibodies. In this technique, various catalytic antibod-
ies have been effectively expressed (summarized in Table 2). The most common host is 
Escherichia coli, which can be expressed in cytoplasm or periplasm depending on the fea-
tures of catalytic antibodies. The yield was rather high when expressed in the cytoplasm. 
However, because the catalytic antibody’s binding antigen region is usually derived from 
the variable domain of the antibody’s heavy chain or light chain (VH or VL), and the VH 
and VL domains are usually assembled in tandem during immunoglobulin folding, recom-
binant catalytic antibodies are often unstable and easy to aggregate [91, 92]. The crowded 
cytoplasmic environment allows molecules to interact easily, promoting antibody oli-
gomerization and aggregation; also, the cytoplasmic redox environment prevents disulfide 
bonds from forming in the domain. Disulfide bonds play a crucial role in the stability of 
antibody structures [93, 94]. The catalytic antibodies cannot be folded appropriately dur-
ing cytoplasmic expression because of the superposition of different circumstances, and 
they congregate to form inclusion bodies. Fortunately, there are several options for revers-
ing this outcome. First, it might be expressed in terms of weekly quality. Periplasm is an 
oxidative environment that promotes the formation of disulfide bonds, and the type and 
quantities of proteins are modest, making it simple to create suitably folded catalytic anti-
bodies. At the same time, due to the relatively small periplasmic space, catalytic antibody 
production is low. Second, catalytic antibodies are expressed on fusion lysozyme tags (Sol-
ubility-Enhancing Tags, SET). Using the properly folding of the lysolytic tag–enhanced 
protein and its fusion expression with the catalytic antibody, the active antibody can also 
be generated. A number of lysolytic tags have been discovered thus far, and researchers 
have successfully used tags like maltose-binding protein (MBP) [95, 96] and (FK506 bind-
ing protein) (KFBP) to obtain properly folded antibodies [97, 98]. There is also thioredoxin 
A (TrxA) [99], glutathione sulfhydryl transferase (GST) [100], NusA protein [101], small 
ubiquitin-like modified protein (SUMO) (102, GB1 [92], and other proteins [103]. Select 
the proper solubilization label for the label, then work with the appropriate carrier and host 
to achieve the soluble expression of the catalytic antibody. Third, by enhancing the cyto-
plasmic environment, soluble expression of antibody-enzyme can be obtained. The physi-
cal and chemical parameters of the cytoplasmic environment are directly related to the sta-
bility of the antibody, and the endogenous net charge of pH 7.4 in the cytoplasm impacts 
its aggregation tendency in the cytoplasm [104]. Furthermore, by increasing net negative 
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charge, fusing highly negatively charged peptide tags with scFvs can improve their solubil-
ity [92, 105]. As a result, the researchers fused peptide tags with a high negative charge 
and low isoelectric point to produce hyper-stable production of catalytic antibody in the 
prokaryotic host cytoplasm [104].

Expression of Catalytic Antibodies in a Yeast Expression System

Although the prokaryotic expression system has many advantages, it is difficult for the 
prokaryotic expression system to apply to all catalytic antibodies. Because the prokaryotic 
host lacks the function of protein post-translational modification in eukaryotic cells, which 
is critical for maintaining the stability of some catalytic antibodies. Furthermore, catalytic 
antibodies may be harmful to bacterial hosts, an issue that can be efficiently avoided by 
isolating heterologous proteins from eukaryotic cells [62, 110]. In this case, using a yeast 
expression system to express catalytic antibodies is a good idea [121]. Pichia pastoris is 
considered to be the most commonly used [108]. Yeast can produce soluble and correctly 
folded heterologous proteins, and correct post-translational modification is essential to 
their function. The safety of the system is also ensured by the absence of endotoxins and 
oncogenes in yeast. And it is usually stable and allows a high level of expression [62, 122].

Expression of Catalytic Antibodies in Mammalian Cell Expression System

The mammalian cell expression system is a complex glycosylated protein expression system. 
Protein folding and post-translational modification are functions performed by mammalian 
cells. In terms of molecular structure, physical and chemical properties, and biological 
function, the produced recombinant protein is the most similar to the natural higher biological 
protein molecule and is more likely to have the same biological activity as natural protein. It is 
particularly popular in the development and manufacture of therapeutic recombinant catalytic 
antibody drugs [62, 90]. The mammalian cells commonly used for antibody production 
are Chinese hamster ovary (CHO) and human embryonic kidney (HEK) cells, as well as 
transgenic mice [62, 113]. In the preparation platform of catalytic antibodies for age-related 
amyloid diseases developed by Paul’s team, catalytic antibodies were produced through B 
cell library [90]. To summarize, each expression system has advantages and limitations, we 
should choose the appropriate expression system for the catalytic antibody to be expressed 
based on its properties and application situations.

Application of Catalytic Antibodies

Potential Application of Catalytic Antibodies in Clinical Oncology

Catalytic antibodies show remarkable potential as a new class of therapeutic molecules. 
They are widely used in biology and medicine (summarized in Table 3). Chemotherapy 
is a crucial treatment option for cancer patients. However, its success is limited due 
to the shortcomings such as insufficient drug concentration in the tumor site, systemic 
toxicity, and tumor cell drug resistance. Pre-enzymatic drug therapy is a promising ave-
nue for improving tumor selectivity. Gene-directed enzyme prodrug therapy (GDEPT) 
and antibody-directed proenzyme therapy (ADEPT) are the two types of enzyme prod-
rug therapy that can deliver drugs to malignancies [123, 124]. Catalytic antibodies can 
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be used as the window of the prodrug activation system in the latter, which has clear 
advantages: first, they can be chosen to catalyze reactions that endogenous enzymes 
cannot catalyze. Second, it has the potential to reduce the immunogenic response. Lern-
er’s team devised a novel ADEPT method based on the catalytic antibody 38C2, which 
targets anticancer drugs like camptothecin, doxorubicin, and etoposide. The tandem 
reverse aldehyde alcohol inverse Michael reaction catalyzed by 38C2 activates the low 
hazardous prodrugs of these drugs [125–129]. The systemic toxicity of the etoposide 
prodrug was not found in the mouse neuroblastoma cell line NXS2 xenotransplantation 
model, where 38C2 was administered directly to the tumor site, and etoposide prodrug 
was delivered through systemic administration [130]. Simultaneously, researchers have 
developed several treatments based on various catalytic antibodies, including new ester-
ase catalyzed antibody activated 5 fluorodeoxyuridine (5-FdU) prodrug therapy [131, 
132] and catalytic antibody activated carbamate prodrug therapy with hydrolytic activ-
ity [133, 134]. Aldolase catalytic antibody treatment and cap catalytic antibody therapy 
based on an anti-idiotypic antibody approach are two examples of polymer-directed 
prodrug therapy [135–139].

The Use of Inactivation of Addictive Drugs

Illegal psychoactive substances like cannabis, methamphetamine, cocaine, and smok-
ing, can cause disease and even death, posing a public health risk [125, 142, 161, 162]. 
Despite scientific attempts, no effective drugs to prevent drug abuse have been discov-
ered so far. One of the strategies is immunotherapy, which combines and neutralizes 
target drugs. The catalytic antibody is present in the cycle, and after delivery, the drug 
is converted into inactive metabolites, but the catalytic antibody remains in the cycle for 
the next catalytic turnover [77, 125, 163]. Cocaine can be hydrolyzed into non-psycho-
active benzoic acid and methyl n-propylamine as benzoyl ester. Proteins that stimulate 
this response could be injected into cocaine addicts to aid in their recovery [125]. Sev-
eral catalytic antibodies have been developed and thoroughly researched [77, 140, 164]. 
McKenzie identified catalytic antibodies 3F5 and 3H9 capable of binding and hydrolyz-
ing cocaine by phage display from a biased single-chain antibodies library, which was 
produced in spleens of mice previously immunized with cocaine phosphonate transi-
tion analogue hapten, and increased the hydrolytic activity by three times [77]. Landry’s 
team produced antibodies 3B9 and 6A12 that catalyze the hydrolysis of cocaine benzoyl 
esters by cocaine’s phosphonate monoester transition state analogs. Egonine methyl 
ester and benzoic acid produced by benzoyl esterolysis lack the stimulating activity of 
cocaine. Passive immunization with this catalytic antibody could treat dependence by 
blunting reinforcement [140]. Zhu analyzed the crystal structures of catalytic antibody 
7A1 Fab′ and six complexes with substrate cocaine. Transition state analogue, products 
ecgonine methyl ester, and benzoic acid have been analyzed. The mechanism of cata-
lytic hydrolysis of cocaine by the catalytic antibody 7A1 was elucidated [163].

Furthermore, tobacco addiction has been linked to a variety of cancers and cardio-
vascular diseases. As a result, it has gotten a lot of attention as immunological drug 
therapy for nicotine addiction. The researchers created antibodies that can oxidize nico-
tine in the presence of riboflavin and visible light by synthesizing hapten TD1 from 
normal nicotine and glutaric anhydride [142]. Catalytic antibodies provide an effective 
strategy for treating substance use disorders and overdose for drugs [142].
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Application of Anti‑Alzheimer Catalytic Antibody in the Treatment 
of Alzheimer’s Disease

Alzheimer’s disease (AD) pathogenesis. Aggregates cause microglia to become inflamma-
tory, create neurotoxic effects, and destroy the anatomical structure of the brain [116, 164]. 
A (1–42) (A42) deposits harm brain structures, whereas A A (1–40) (A40) accumulates in 
vessel walls, causing microvascular-related neuroinflammation and impaired blood–brain 
barrier (BBB) integrity, which leads to cerebral amyloid angiopathy (CAA) in almost all AD 
patients [116, 165]. Catalytic antibodies have the ability to break down antigens into soluble 
fragments without the assistance of inflammatory cells. According to Rangan et al. [166], AβP 
was hydrolyzed into neuropeptide vasoactive intestinal peptide by a cross-reactive light chain 
fragment of the antibody. According to another study, IgM human autoantibodies hydrolyze 
AβP [167]. According to studies, IgM activity in AD patients is considerably higher than in 
controls, and IgM with catalytic activity can inhibit the accumulation and toxicity of AβPin 
neuron culture in vitro [167]. The catalytic material for hydrolyzing AβP between His14 and 
Gln15 was isolated after the “covalent” single strand Fv was randomly selected from the phage 
display library [79, 116]. Researchers have also developed catalytic antibody 2E6 using a cata-
lytic immunoglobulin V domain (IgV) derived from a human IgV library, which they utilize to 
break down and eliminate A without causing microglial activation or microhemorrhage [79].

In 2020, Planque et al. [90] developed an electrophilic target analogue based therapeu-
tic grade catalytic antibody production platform. Researchers have developed catalytic 
antibodies for the treatment of Alzheimer’s disease and anti-aging based on this technol-
ogy [90]. According to the studies, catalytic antibodies may permanently remove target 
cells, and their efficacy is far superior to that of ordinary antibodies. Without developing 
or maintaining systemic amyloid pathology, human IgM antibodies selectively eliminate 
misfolded but usually non-aggregative fragments of TTR. Similarly, catalytic antibodies 
in the body break down Aβ into non-toxic, non-aggregative fragments without develop-
ing or perpetuating Alzheimer’s disease [79, 116]. The catalytic antibody matrix complex 
is too short to activate inflammatory cells, whereas common antibodies create persistent 
immune complexes, which invariably cause inflammation. In mouse models, catalytic 
antibodies targeting brain Aβ were found to be effective [90, 116, 150].

It is believed that the utility of this catalytic antibody platform can be extended to a wide 
range of proteins involved in disease and aging damage to various organ systems, including 
protein targets involved in human susceptibility to microbial infections and autoimmune, 
nervous, cardiovascular, and oncological diseases [90]. Antibodies are made as needed 
from constitutive or immunogen-induced antibody libraries. In theory, the platform may 
manufacture catalytic antibodies to particularly every target protein using innate Darwinian 
immunity and acquired immunity triggered by immunogen [90].

Application of Catalytic Antibodies in the Field of Infection 
and Immunity

Septicemia

Septicemia is the most common cause of death in intensive care units, and it is caused 
by the toxic host’s systemic response to infection [36, 168]. With the widespread use of 
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antibiotics, the incidence of septicemia caused by opportunistic pathogens has gradually 
increased in recent years, with the increase in drug-resistant strains, showing a trend of 
multidrug resistance [169, 170]. Selecting appropriate antibiotics based on the results of 
blood culture and drug sensitivity test is an effective method for the treatment of sep-
ticemia. but the results of bacterial culture cannot be obtained quickly. Antibiotics are 
usually selected based on clinical experience. The lack of pertinence is inevitable. Cata-
lytic antibodies have been proposed to be involved in the removal of metabolic waste 
and the prevention of infection. It has been shown that high levels of catalytic antibodies 
are associated with a good prognosis of septicemia [36, 168]. IgG with serine protease-
like hydrolysis activity is present in the plasma of the patients. The difference in IgG 
catalytic rate in patients with severe septicemia was higher than that in healthy blood 
donors, indicating that septicemia was related to the change of plasma hydrolyzed IgG 
level. The IgG catalytic rate of surviving patients was significantly higher than that of 
dead patients’ IgG. Compared with patients with low hydrolysis rates, patients with high 
IgG-mediated hydrolysis rates had higher cumulative survival rates [168]. In addition, 
the IgG of three surviving patients hydrolyzed factor VIII, and one of them also hydro-
lyzed factor IX, suggesting that catalytic IgG may be involved in the control of diffuse 
microvascular thrombosis in some patients. Evidence that IgG-hydrolyzing antibod-
ies may play a role in sepsis recovery [168]. Scientists predict that catalytic antibodies 
can reduce infection and inflammation in septicemia patients but that a lack of catalytic 
antibody response may accelerate the occurrence of the disease [36, 168]. It is a better 
potential way to treat septicemia.

Systemic Lupus Erythematosus

Antibodies against foreign antigens and autoantigens are usually produced in patients 
with autoimmune diseases [36, 37]. Systemic lupus erythematosus (SLE) is a chronic and 
potentially fatal autoimmune disease characterize[ed by deterioration and remission. The 
common symptom of SLE is conjunctival tissue disorder [36]. SLE patients often have 
large amounts of DNA and anti-DNA antibodies in their blood [171, 172]. Both cellular 
and soluble inflammatory mediators are involved in the pathogenesis of lupus [173–175]. 
SLE is marked by the presence of a series of IgG and IgM autoantibodies against one or 
more nuclear components, particularly double-stranded DNA. antibodies with catalytic 
properties against DNA or RNA are present in SLE [12, 176]. In the early 1990s, Gabipov’s 
team reported that autoantibodies purified from the sera of patients with systemic lupus 
erythematosus and other autoimmune diseases could cleave phosphodiester bonds [12, 
176, 177]. Polyclonal IgG antibodies purified from the sera of several SLE patients and 
hepatitis B patients showed RNA hydrolysis activity that differed from the weak RNAase 
type A activity of healthy donor IgG [22, 36]. However, these reports did not provide an 
indication of whether catalytic antibodies correlated with disease severity. Subsequently, 
Pradhan analyzed the hydrolytic activity of IgG from SLE patients in India and showed 
that the hydrolysis rate of PFRMCA by SLE IgG was also significantly higher than that 
of healthy donors. Catalytic antibody response may be part of the active disease process 
[36]. Therefore, the mechanism of origin of catalytic antibodies and the exact role of these 
antibodies in the pathogenesis of lupus should continue to be studied in a large number 
of SLE patients, to develop new biomarkers and treatment strategies for systemic lupus 
erythematosus [178, 179].
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Acquired Immune Deficiency Syndrome

Some antibodies with different catalytic activities can be activated spontaneously by pri-
mary antigens and have primary antigen-like properties, such as the catalytic activity of 
idiotypic antibodies and/or anti-idiotypic antibodies [180]. They have the ability to degrade 
different peptides and proteins. For example, CD4 cells infected with HIV requires to bind 
the HIV surface glycoprotein gp120/gp41 to the CD4 receptor. Both Ig G and Ig M cata-
lytic antibodies [78, 81, 180, 181] showed anti-gp120 polypeptidase activity. The catalytic 
antibody 41S-2-L developed by Hifumi was able to hydrolyze the glycoprotein gp41 and 
destroy non-autoantigen proteins by targeting them with immuno synthetic peptide anti-
gens [81]. Long-term HIV infection was associated with a mild risk of catalytic secretory 
IgA (SIgA) of gp120 in patients who did not develop AIDS [181]. This activity was also 
found in the SIgA from non-HIV-positive patients, while RNA antibodies and anti-RNA 
antibodies have been found in the sera of numerous AIDS patients [182–185]. These anti-
bodies have phosphodiester bond cleavage activity, implying that they are catalytic anti-
bodies that contribute to resistance to infection.

Catalytic Antibodies that Inhibit New Coronavirus Infection

At the end of 2019, a new coronavirus spread over the globe, causing a new type of 
pneumonia disease (COVID-19) with high transmission and fatality [186–190]. A safe and 
effective vaccination is desperately needed, but development takes time. At the same time, 
very precise and effective antiviral therapies are required in the post-vaccine era. According 
to studies, SARS-CoV-2 enters host cells via contact between prickle glycoprotein and the 
angiotensin-converting enzyme 2 (ACE2) receptor. SARS-CoV-2 infection and transmission 
could be averted if this interaction could be blocked directly [190–193]. Single-stranded 
variable fragment (scFv) is a catalytic antibody with broad-spectrum antiviral activity 
against DNA and RNA viruses due to its nucleic acid hydrolysis properties. Lee evaluated 
the antiviral activity of the scFv 3D8 against SARS-CoV-2 and other coronaviruses in 
VeroE6 cell culture [160]. It was found that 3D8 inhibited the replication of SARS-CoV-2, 
human coronavirus OC43 (HCoV-OC43) and porcine epidemic diarrhea virus (PEDV). The 
preventive and therapeutic effects of catalytic antibody 3D8 against SARS-CoV-2 in VeroE6 
cells were demonstrated. Immunoblotting and plaque analysis showed that the nucleoprotein 
and infected particles of coronavirus decreased in the cells treated with 3D8 [160]. These 
data indicate that 3D8 has broad-spectrum antiviral activity against SARS-CoV-2 and other 
coronaviruses [160]. Therefore, it can be considered a potential antiviral strategy against 
SARS-CoV-2 and zoonotic coronavirus.

Summary and Prospect

A large number of naturally occurring catalytic antibodies have been identified and 
intensively studied. The emergence of catalytic antibodies has been described in a variety 
of pathological conditions, including the autoimmune and alloimmune response. The 
emergence and increased titers of catalytic antibodies may represent a general phenomenon 
of inflammatory responses. With advances in engineering technology and the aid of 
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bioinformatics tools, scientists have developed antibodies with unique characteristics and 
catalytic properties. Catalytic antibodies can be used to destroy specific pathogens or tumor 
cells, remove autoimmune metabolites, protect normal cells from toxicity, and design 
catalysts suitable for passive immunotherapy of major diseases or stimulate catalytic 
immunity within the framework of preventive immunization. Although the reaction rates 
of catalytic antibodies are typically several orders of magnitude lower than that of typical 
enzymes, the concentration of catalytic antibodies in serum is much higher and can last for 
a long half-life. The combination of increased antibody concentration and longer action 
time can compensate for a low catalytic rate, especially in the case of chronic diseases or 
latent infections. where catalytic antibodies can play an important beneficial role in disease 
and immunity. Therefore, this paper summarizes the development, design, and evolution 
methodology of catalytic antibodies, as well as the expression system and application of 
catalytic antibodies.

However, catalytic antibody behaves as a double-edged sword. Naturally occurring 
catalytic antibodies are considered to play a pathogenic and beneficial role in a variety 
of autoimmune diseases. It is unclear whether the catalytic antibodies produced under 
pathological conditions play a pathogenic role or reflect the body’s attempt to re-estab-
lish homeostasis in the body. The mechanism of origin of catalytic antibodies and the 
exact role of these antibodies in the pathogenesis of related diseases need to be studied 
in a large number of clinical trials. The fact that the stability of recombinant antibodies 
(including catalytic antibodies) is highly unpredictable in the physiological environment 
complicates the use of catalytic antibodies in research and clinical applications. Some 
problems still need to be further examined. However, catalytic antibodies are still consid-
ered promising tools for the treatment of human diseases due to the combination of high 
substrate/antigen specificity, enzyme-like turnover, relatively low catalytic efficiency, 
and high half-life.
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