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Abstract
Hydroperoxide lyases (HPLs) catalyze the splitting of 13S-hydroperoxyoctadecadienoic 
acid (13S-HPODE) into the green note flavor hexanal and 12-oxo-9(Z)-dodecenoic acid, 
which is not yet used industrially. Here, HPL from Carica papaya  (HPLCP) was cloned and 
functionally expressed in Escherichia coli to investigate synthesis of 12-oxo-9(Z)-dodece-
noic acid in detail. To improve the low catalytic activity of full-length  HPLCP, the hydro-
phobic, non-conserved N-terminal sequence was deleted. This enhanced enzyme activity 
from initial 10 to 40 U/l. With optimization of solubilization buffer, expression media 
enzyme activity was increased to 2700 U/l. The tetrameric enzyme was produced in a 1.5 l 
fermenter and enriched by affinity chromatography. The enzyme preparation possesses 
a slightly acidic pH optimum and a catalytic efficiency  (kcat/KM) of 2.73 ×  106   s−1·M−1 
towards 13S-HPODE. Interestingly,  HPLCP-N could be applied for the synthesis of 12-oxo-
9(Z)-dodecenoic acid, and 1 mM of 13S-HPODE was transformed in just 10 s with a yield 
of 90%. At protein concentrations of 10 mg/ml, the slow formation of the 10(E)-isomer 
traumatin was observed, pointing to a non-enzymatic isomerization process. Bearing this 
in mind, a one-pot enzyme cascade starting from safflower oil was developed with con-
secutive addition of Pseudomonas fluorescens lipase, Glycine max lipoxygenase (LOX-1), 
and  HPLCP-N. A yield of 43% was obtained upon fast extraction of the reaction mixtures 
after 1 min of  HPLCP-N reaction. This work provides first insights into an enzyme cascade 
synthesis of 12-oxo-9(Z)-dodecenoic acid, which may serve as a bifunctional precursor for 
bio-based polymer synthesis.
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Introduction

Polymer production is largely dependent on petrochemical raw materials, and the share 
of bio-based polymers is still below 2% [1]. Climate change and depletion of fossil fuels 
urge a major shift in the chemical industry towards renewable carbon-based products. In 
this respect, vegetable oils are well suited for the synthesis of biogenic specialty polymers. 
Bifunctional intermediates including dicarboxylic acids or ω-hydroxy acids were syn-
thesized successfully in reaction cascades utilizing the Baeyer–Villiger monooxygenase 
(BVMO) catalyzed oxidative rearrangement reactions [2–4] or the ω-terminal oxidation of 
fatty acids [5, 6]. The consecutive transformation of 12-hydroxystearic acid with alcohol 
dehydrogenase (ADH), BVMO, and lipase leads to 11-hydroxyundecanoic acid. This inter-
mediate was then turned into 11-aminoundecanoic acid with a genetically engineered E. 
coli expressing ADH and transaminase [7]. The reaction cascade proceeded to 11-oxound-
ecanoic acid via oxidation followed by transaminase catalyzed amination. The synthesis 
of bio-based 12-aminododecanoic acid (12-aminolauric acid) was enabled with an engi-
neered whole-cell biocatalyst by combining ω-oxidation of lauric acid to 12-oxododeca-
noic acid with subsequent transaminase catalysis [8–10]. 12-Aminolauric acid is a suitable 
intermediate for synthesis of polyamide Nylon 12. However, lauric acid has only limited 
availability from tropical coconut and palm kernel fruits. Therefore, alternative biogenic 
raw materials, which do not threat pristine rainforest areas, are needed for the synthesis of 
bifunctional C12-intermediates for, e.g., Nylon synthesis.

Recently, the combination of lipase and lipoxygenase (LOX) with green surfactant 
and in  situ oxygen generation was developed by our group for high-yield synthesis of 
13S-HPODE from safflower oil [11]. The subsequent HPL cleavage of 13S-HPODE leads 
to 12-oxododecenoic acid and hexanal. While green note aromas such as hexanal and hex-
enal are already utilized in flavor and food industry, only little attention is paid to the syn-
thesis of 12-oxododecenoic acid [12–14]. Thus, only a third of the linoleic acid starting 
material is exploited so far. We suggest that the second reaction product 12-oxododecenoic 
acid is applied for polymer synthesis. Well-known reduction, oxidation, or transamination 
processes lead to useful intermediates like 12-hydroxydodecanoic acid, dodecanedioic 
acid, or ω-aminododecanoic acid for Nylon-12 production. Similarly, 9-oxononanoic acid 
was synthesized in a coupled enzymatic reaction with 9-LOX and 9/13-HPL and was pro-
posed as precursor for biopolymers [15].

HPLs are heme- and iron-binding proteins of the cytochrome P450 family and belong to 
the subclass CYP74 [16, 17]. They catalyze the formation of short-lived fatty acid hemi-
acetals from their hydroperoxide substrates, which are further cleaved into aldehydes and 
ω-oxoacids [18]. Depending on their sequence homologies, HPLs are divided into the sub-
classes CYP74B (13-HPLs) and CYP74C (9-HPLs and mixed 9/13-HPLS), which cata-
lyze the cleavage of 9- or 13-hydroperoxides either to C9-aldehydes and C9-oxoacids or 
C6-aldehydes and C12-oxoacids [19–22]. HPLs were identified in various plants such 
as guava, tomato, alfalfa, or cucumber. They have been extracted from plant tissue or 
expressed recombinantly and purified for further characterization [23–26]. The aldehyde 
reaction products and their derivatives are called green leaf volatiles (GLVs) and play an 
important role in plant defense against pathogen and herbivore attacks [27–29]. In recent 
years, interest in HPLs was driven by the synthesis of GLVs as valuable products for the 
food and flavor industry exhibiting fresh green to cucumber-like scents. Especially HPL 
from guava is utilized industrially for green note production. This enzyme has either been 
extracted from fruit tissue or recombinantly expressed in E.  coli [23, 30]. A genetically 

6195Applied Biochemistry and Biotechnology  (2022) 194:6194–6212

1 3



optimized HPL from guava was expressed with improved stability [31]. Little attention was 
paid so far to the co-product 12-oxododecenoic acid, which is naturally isomerized to trau-
matin, an important phytohormone for wound healing [32].

Here we present the cloning, expression, and characterization of papaya HPL as well as 
evaluation of its 12-oxododecenoic acid synthesis starting from 13S-hydroperoxyoctadec-
adienoic acid (13S-HPODE). The objective of the work was the synthesis of a bifunctional 
C12-intermediate suitable for polymer application without using tropical lauric acid–rich 
oils. For this, we developed an enzyme cascade with N-terminally truncated papaya HPL, 
soybean LOX-1, and P. fluorescens lipase for multi-step transformation starting from saf-
flower oil (Fig. 1).

Materials and Methods

Reagents

Safflower oil was purchased from Gefro (Germany) and had a fatty acid composition of 
77.2% linoleic acid, 13.3% oleic acid, 2.4% stearic acid, 6.7% palmitic acid, and 0.4% of 
other fatty acids [11]. 13S-HPODE, 12-oxo-9(Z)-dodecenoic acid, and 12-oxo-10(E)-dode-
cenoic acid standards were from Larodan (Sweden). Hexanal, hexanol, and 12-hydroxy-
dodecanoic acid standards, Glycine max LOX-1, and P.  fluorescens Amano lipase were 
obtained from Sigma-Aldrich (USA). Linoleic acid was purchased from Thermo Fisher 
Scientific (USA), and δ-aminolevulinic acid (ALA), Triton X-100, isopropyl β-d-1-
thiogalactopyranoside (IPTG), as well as kanamycin sulfate and ampicillin sodium salt 
were obtained from Carl Roth (Germany). All other solvents and chemicals were supplied 
by Carl Roth (Germany), Sigma-Aldrich (USA), or Thermo Fisher Scientific (USA). For 
PCR, Phusion Hot Start DNA polymerase with 5 × Phusion High-fidelity buffer and dNTPs 

Fig. 1  Enzyme cascade for the 
production of 12-oxo-9(Z)-
dodecenoic acid starting from 
safflower oil (exemplified as 
trilinolein) utilizing lipase from 
P. fluorescens, lipoxygenase 1 
from soybean, and N-terminally 
truncated hydroperoxide lyase 
from papaya
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were obtained from Thermo Fisher Scientific (USA). PageRuler™ Prestained Protein lad-
der, restriction enzymes, and the monoclonal AP-conjugated Anti-His (C-term) antibody 
(AB_2556555) were purchased from Thermo Fisher Scientific (USA) as well. Alkaline 
phosphatase was obtained from New England Biolabs GmbH (Germany).

Bioinformatic Analyses

Carica papaya HPL sequence (accession number: XP_021890218.1) was identi-
fied through BLAST analysis with the “National Center for Biotechnology Informa-
tion” (NCBI) website by searching for putative HPL sequences of the already analyzed 
guava HPL (accession number: AAK15070.1). A multiple sequence alignment of protein 
sequences was performed with ClustalW [33] using the BLOSUM62 matrix. A phyloge-
netic tree was created with ClustalX [34] and NJPlot [35] with the neighbor-joining algo-
rithm. The bootstrap value was set to 1000.

Cloning and Expression of HPL

All strains, vectors, and oligonucleotides are listed in Table  1. Oligonucleotides were 
synthesized by Eurofins genomics (Germany). The hplCP gene was codon-optimized for 
expression in E. coli and synthesized with a C-terminal hexahistidine tag through gene 
synthesis by BioCat GmbH (Germany). The gene was cloned into the expression vector 
pET-28a( +) (Fig.  S1). The non-conserved, hydrophobic N-terminus was identified with 

Table 1  Strains, vectors, and oligonucleotides used in the experiments. Restriction sites are highlighted in 
gray. KanR kanamycin resistance, AmpR ampicillin resistance

Description Reference

Bacterial strain
E. coli XL1-BLUE recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 

lac F[ proAB lacIqZ∆M15 Tn10 (Tetr)]

Agilent 

Technologies 

(USA)

E. coli BL21(DE3) E. coli str. B F
– ompT gal dcm lon hsdSB(rB

–mB
–
) 

λ(DE3 [lacI lacUV5-T7p07 ind1 sam7 nin5]) 

[malB+
]K-12(λ

S
)

[36]

Vectors
pET-28a(+) Expression vector, Kan

R
Merck (Germany)

pET-28a::HishplCP Expression vector for HishplCP, Kan
R

This work

pET-28a::HishplCP-N Expression vector for HishplCP-N, Kan
R

This work

pJET1.2/blunt Cloning vector, Amp
R

Thermo Fisher 

Scientific (USA)

Oligonucleotides
hplCP-Nter_fw AAACATATGCTGCCGCTGCGTACC This work

hplCP_His6_rv AAAGGATCCTTAATGGTGATGATGATGATG

TTTGG

This work

6197Applied Biochemistry and Biotechnology  (2022) 194:6194–6212

1 3



a multiple sequence alignment and deleted (Fig. S1, Fig. S2) by PCR with oligonucleo-
tides binding at the end of the N-terminus. The Phusion Hot Start DNA polymerase with 
5 × Phusion High-fidelity buffer and dNTPs (Thermo Fisher Scientific, USA) was used 
in the PCR. The truncated fragment was ligated into the cloning vector pJET1.2/blunt 
(Thermo Fisher Scientific, USA), and E. coli XL1-Blue was transformed with the respec-
tive vector and cultivated overnight at 37 °C in LB + 100 µg/ml ampicillin. The vector was 
extracted and restricted with BamHI and NdeI. The hplCP-N gene was then ligated into the 
expression vector pET-28a( +). E.  coli BL21(DE3) [36] was transformed with the full-
length as well as the truncated hpl vectors.

Cells expressing HPL were cultivated in 500-ml shaking flasks in 50-ml lysogeny broth 
(LB), terrific broth (TB), or ZYM5052 (compositions of cultivation media are listed in 
Table  S1) with 50  µg/ml kanamycin. Optionally, 2.5  mM δ-aminolevulinic acid and 
0.1  mM ammonium ferric citrate were added. The shaking flasks were inoculated with 
2% (v/v) bacteria from an overnight culture. Cells were cultivated at 37 °C and 200 rpm 
until  OD600 of 0.6 (for cultivation in LB) or 1 (for cultivation in TB and ZYM5052) was 
reached. Protein expression in LB and TB broth was induced by addition of 1 mM iso-
propyl β-d-1-thiogalactopyranoside (IPTG), and temperature was decreased to 25  °C. 
Cells were cultivated for 24  h. Then, cells were harvested by centrifugation at 4500 × g 
for 15 min and frozen at − 20 °C until further use. Cell pellets were suspended in 10 ml 
buffer (50 mM potassium phosphate buffer pH 6 with 1 M NaCl and 0.2% Triton X-100 if 
not noted otherwise) and disrupted by ultrasound sonication for 105 s in seven intervals of 
15 s. The soluble fraction (SF) was obtained from the crude extract (CE) by centrifugation 
for 45 min with 21,000 × g at 4 °C.

Fermentation and Purification of Papaya  HPLCP‑N

HPLCP-N was expressed in a 3-l BioFlo Fermenter 115 (Eppendorf, Germany) for 24  h 
at 25  °C with 1.5  l auto-inductive ZYM5052 broth containing 50 µg/ml kanamycin and 
2.5 mM δ-aminolevulinic acid. Cultivation was inoculated with 2% (v/v) bacteria from an 
overnight culture. The stirrer was set to 400–800 rpm, and air was injected with 2.25 l/m 
(1.5 vvm) with minimum dissolved oxygen (DO) level of 30%. Cell harvesting was done 
as described in the “Analysis of 12-Oxododeceneoic Acid Formation” section, and the cell 
pellet was dissolved in binding buffer (50 mM potassium phosphate buffer pH 6 with 1 M 
NaCl, 40 mM imidazole, and 0.2% Triton X-100). The soluble fraction was prepared by 
cell disruption and centrifugation as described in the “Analysis of 12-Oxododeceneoic 
Acid Formation” section, and the His6-tagged  HPLCP-N was purified with nickel affinity 
chromatography using a HisTrap™ HP 5 ml column (Cytiva, USA). The soluble fraction 
was loaded onto the column, and then non-specific bound proteins were removed by wash-
ing with 50 mM potassium phosphate buffer pH 6 with 1 M NaCl containing 0.1% Triton 
X-100 and 40–100 mM imidazole. Finally,  HPLCP-N was eluted with 500 mM imidazole 
and stored at 4 °C until further use.

HPLCP-N purification was monitored by SDS-PAGE (sodium dodecyl sulfate polyacryla-
mide gel electrophoresis) with Coomassie Brilliant Blue R250 staining, and the  HPLCP-N 
band was verified by Western blotting. Proteins were transferred onto a PVDF (polyvi-
nylidene difluoride) membrane and incubated with the monoclonal AP-conjugated Anti-
His (C-term) antibody (Invitrogen, Thermo Fisher Scientific, USA, AB_2556555) in a 
1:2000 dilution. Histidine-tagged proteins were visualized with alkaline phosphatase (New 
England Biolabs GmbH, Germany).
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Preparation of Fatty Acid Hydroperoxides

Linoleic acid was prepared from safflower oil by alkaline hydrolysis and enrichment 
by urea crystallization as described before [11]. Linoleic acid was then diluted in 2.5 l 
of cold 50  mM sodium borate buffer (pH 9.5) to a final concentration of 1  mM. The 
peroxidation reaction was started by addition of 15 mg LOX-1 and performed for 1 h 
under stirring and a constant flow of 400 ml/min pure oxygen at 4 °C. The solution was 
acidified to pH 3.5 with HCl before adding an equivalent volume of ethyl acetate. The 
organic phase was separated and washed with water before evaporating residual solvent 
under vacuum. Final HPODE content and regioisomeric ratio were determined photo-
metrically at 234 nm and by HPLC analysis as described before [11].

Characterization of Papaya  HPLCP‑N

Enzymatic activity was determined photometrically with a UV-3100PC spectropho-
tometer from VWR (Germany). If not noted otherwise, 10 µl  HPLCP-N in an appropri-
ate dilution was mixed with 990 µl 50 mM potassium phosphate buffer pH 6 with 1 M 
NaCl and 40 µM 13S-HPODE. The decrease of absorption was measured for 300 s at 
22  °C at 234  nm, correlating to the decline of the conjugated double bond system of 
13S-HPODE. The activity was measured in units. One unit is defined by the amount 
of enzyme that catalyzes 1 µmol substrate per minute. Volumetric activity was calcu-
lated using an extinction coefficient of 23,000   M−1·cm−1. Specific activity was calcu-
lated after determination of protein concentration according to the method of Bradford 
with Coomassie Brilliant Blue G250 staining against a bovine serum albumin calibra-
tion curve. All measurements were performed in triplicate, and the average value and 
the standard deviation were calculated with Microsoft Excel.

For determination of the pH profile of purified  HPLCP-N, pH values from 6 to 9 were 
tested. The kinetic parameters  Km and  vmax of  HPLCP-N were analyzed with substrate 
concentrations ranging from 5 to 100 µM 13S-HPODE and 13S-HPOTE. The volumet-
ric activity was measured in triplicate with Microsoft Excel, and the kinetic parameters 
with standard errors were calculated through nonlinear regression with the program 
GraphPad Prism 6.05.

The molecular weight of purified  HPLCP-N was determined with size exclusion chro-
matography using a Superdex™ 200 Increase 10/300 column (Cytiva, USA). The col-
umn was equilibrated with 50 mM potassium phosphate buffer pH 7 with 0.5 M NaCl 
pH 7 and 0.1% Triton X-100. The column was calibrated with the gel filtration markers 
kit ranging from 29,000 to 700,000 Da (Sigma-Aldrich, USA), and the distribution coef-
ficient  KAV was calculated as

where Ve is elution volume, V0 void volume, and Vc volume of the column.
HPLCP-N was loaded onto the column, and the molecular weight was calculated 

from the calibration curve of  KAV versus the logarithm of the protein molecular weight 
(y =  − 0.3582x + 1.04). The oligomerization state of  HPLCP-N was analyzed by compar-
ing the calculated mass to the predicted monomer mass.
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Synthesis of 12‑Oxododecenoic with  HPLCP‑N

Reaction mixtures of 500 µl were prepared with 5 U  HPLCP-N and 1 mM 13S-HPODE in 
50 mM potassium phosphate buffer pH 6 with 1 M NaCl and 0.2% Triton X-100. Reac-
tion mixtures were incubated for different time intervals up to 120 min. Reactions were 
terminated by adding 500 µl of 4 mg/ml sodium borohydride in 20 mM NaOH directly 
into the reaction vessels. Addition of alkaline sodium borohydride catalyzes the hydro-
genation of 13S-HPODE, 12-oxododecenoic acid, and hexanal to the corresponding 
hydroxides. After 1 h of borohydride hydrogenation, the reaction mixtures were acidi-
fied to pH 2 with HCl and extracted with methyl tert-butyl ether (MTBE). All reactions 
were performed in triplicate. The solvent extracts were used for further GC analysis.

One‑Pot Reactions with LOX‑HPL and Lipase‑LOX‑HPL

One-pot reactions with LOX-1 from G. max and purified  HPLCP-N were done with vary-
ing concentrations of linoleic acid dissolved in 50 mM potassium phosphate buffer pH 
7.5 containing 0.5 M NaCl and 0.05% Triton X-100. 40 Units of LOX-1 were added to 
the linoleic acid containing buffer to a final volume of 400 µl to start the hydroperoxida-
tion reaction. Four hundred microliters of buffer containing purified  HPLCP-N (20 U/ml) 
was either added simultaneously or after a pre-incubation of LOX-1 and then reacted 
for additional 15 min in the presence of both enzymes (consecutive reaction mode). All 
reactions were done at 22  °C in open cups with vortexing in intervals. The reactions 
were terminated by addition of an equal volume of alkaline sodium borohydride, and 
products were extracted as described in the previous section.

One-pot reactions with lipase from P.  fluorescens, LOX-1 from G.  max, and puri-
fied  HPLCP-N were done essentially as described above for the two-enzyme system with 
simultaneous and consecutive enzyme addition. Safflower oil corresponding to an initial 
concentration of 2  mM linoleic acid equivalent in a volume of 300  µl was dissolved 
in buffer and hydrolyzed with lipase (17.6 U/ml). Three hundred microliters of LOX-1 
(100 U/ml) was added over 3 h in 12 portions of 25 µl, and after 3 h of reaction, 300 µl 
of  HPLCP-N (20 U/ml) was added. Upon addition of LOX and HPL, the reaction mix-
ture was diluted to a final linoleic acid equivalent concentration of 0.67 mM in a vol-
ume of 900 µl. The reactions were terminated by addition of an equal volume of alka-
line sodium borohydride, and products were extracted as described in the “Synthesis of 
12-Oxododecenoic with  HPLCP-N” section.

Product Analysis by GC–MS and Quantification by GC‑FID

Samples in MTBE were silylated with 20% (v/v) BSTFA-TMCS (99:1) for 1 h at 80 °C. 
A GC–MS-QP2020 from Shimadzu (Japan) equipped with an ERAcc-5MS column 
from Isera GmbH (Germany) (length: 15  m, film thickness: 0.1  µm, inner diameter 
0.32  mm) was used. Product identification was performed by comparing to the refer-
ence substances 13S-HPODE, 12-oxo-9(Z)-dodecenoic acid, 12-oxo-10(E)-dodecenoic 
acid, hexanal, and hexanol. Samples of 1 µl were injected with a split ratio of 10, and 
helium was used as carrier gas. A temperature gradient starting from 40 °C was applied: 
40 to 200 °C within 15 °C  min−1, 200 to 280 °C within 5 °C  min−1, and hold at 280 °C 
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for 2  min. Mass spectra were obtained by electron ionization (EI), and spectra were 
recorded in the range of 40–500 m/z.

Product quantification was done with a GC-2100 equipped with flame ionization detec-
tor (FID) (Shimadzu, Japan) using a MTX-Biodiesel TG column (length: 14 m, film thick-
ness: 0.16 µm, inner diameter: 0.53 mm) from Restek GmbH (Germany) and helium as 
carrier gas. Samples of 1 µl were injected with a split ratio of 10, and a temperature gra-
dient starting from 40 °C was used: 40 to 175 °C with 12 °C  min−1, 175 to 210 °C with 
5 °C  min−1, 210 to 330 °C with 25 °C  min−1, and hold at 330 °C for 2 min. For product 
quantification, calibration curves were generated with the hydrogenated and silylated refer-
ence substances linoleic acid, 13S-HPODE, 12-hydroxydodecanoic acid, and hexanal.

Results and Discussion

Cloning of Papaya HPL and Optimization of Expression

For the development of a one-pot enzyme cascade with lipase, LOX, and HPL, high 
amounts of enzymes are needed. While lipases and lipoxygenases can be obtained easily 
in large quantities, HPLs are not commercially available due to their low stability and poor 
solubility in aqueous solutions. Purification of HPLs from plant materials is complicated 
and cost-intensive. Therefore, cloning and expression of HPL in microbial hosts are a suit-
able method for HPL synthesis [14, 37].

On basis of the known sequence of industrially used guava HPL [23] (accession num-
ber AAK15070.1), we identified a related protein sequence from C. papaya  (HPLCP) by 
BLAST analysis. The putative HPL (accession number XP_021890218.1, Fig.  S1) has 
an identity of 66.88% compared to the guava sequence. A phylogenetic tree was drawn 
with known HPLs from the CYP74B and CYP74C subfamily using ClustalX and NJplot 
(Fig.  S3). Based on the phylogenetic relations,  HPLCP can be assigned to the CYP74B 
subfamily that comprises 13 specific HPLs. The respective gene was synthesized by Bio-
Cat GmbH (Germany) and cloned into the pET-28a( +) expression vector (Fig. S1). The 
enzyme was expressed in E. coli BL21(DE3) in LB medium. After harvest, the cell pel-
let was dissolved in 50 mM Tris buffer pH 7 with 0.05 M NaCl and 0.2% Triton X-100 
and disrupted through sonication. Only a slight protein band was visible on SDS-PAGE 
(Fig.  2a), and activity of the full-length protein was low with 10 units per liter cultiva-
tion medium (Fig.  2b). Therefore, we tried to enhance activity of  HPLCP by N-terminal 
truncation. The non-conserved N-terminal sequence of  HPLCP was identified in a multi-
ple sequence alignment with several known HPL sequences with ClustalW (Fig. S2) and 
removed through PCR-based subcloning (Fig. S1). After expression of  HPLCP-N in E. coli 
BL21(DE3), a fourfold increase of activity was obtained in comparison to the full-length 
enzyme (Fig. 2b). A protein band was visible on SDS-PAGE at 53 kDa in the crude extract 
(CE) indicating an improved expression of the truncated enzyme (Fig. 2a). However, no 
protein band was visible in the soluble fraction (SF). Thus, it seems that most of the HPL 
protein was not present in a solubilized form. Therefore, the solubilization buffer was opti-
mized starting from the initially used 50 mM Tris buffer pH 7 with 0.05 M NaCl (set to 
100% relative activity). The effects of different buffer components, pH values, salts, and 
detergents on the final enzyme activity in the CE and SF were analyzed by one factor at a 
time variation (OFAT, Fig. S4a–d). Highest activity in the CE was obtained at a pH of 6 
(Fig. S4a), in the presence of potassium phosphate as buffering substance (Fig. S4b) and 
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by addition of 1 M NaCl (Fig. S4c). In all experiments, the activity of the SE was signifi-
cantly lower than that of the CE. An increase in activity of the SE was obtained by adding 
the detergent Triton X-100 (Fig. S4d). Combination of the best conditions (50 mM potas-
sium phosphate buffer pH 6 with 1 M NaCl and 0.2% Triton X-100) increased the activity 
in the CE and SF more than eight-fold in comparison to the initial 50 mM Tris buffer pH 
7 with 50 mM NaCl (Fig. S4e). Next, different cultivation media (Table S1) were analyzed 
for higher  HPLCP-N expression. A significant increase in HPL expression was obtained by 
using the auto-inductive ZYM5052 medium with δ-aminolevulinic acid (Fig. 2c).

Summarizing, His6-tagged papaya HPL was successfully cloned into pET-28a( +) 
expression vector and expressed in E.  coli BL21(DE3) as full-length and N-terminally 
truncated form. Though comparatively high HPL activity was reported for papaya fruit 
extracts [23], the enzyme has not been expressed recombinantly before. The expression 
level of full-length  HPLCP was low on SDS-PAGE, while it increased in the expression of 
the truncated  HPLCP-N. The reason for this in unclear, and we suggest that the deletion of 
the hydrophobic N-terminus must play a role due to the fact that the expression increased 
upon truncation. The activity of papaya HPL in the soluble fraction could be increased 
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from initial 10 U/l with the full-length enzyme to 2700 U/l in shake flask cultures with the 
truncated HPL under optimized expression and solubilization conditions. As described for 
alfalfa or guava HPL [25, 31], solubility of full-length HPL proteins seems to be a common 
problem resulting in low or no HPL activity. For papaya full-length HPL, we could only 
measure low activity as well, and since no corresponding protein band was visible on SDS-
PAGE, it can be concluded that HPL expression of the full-length  HPLCP was rather low. 
Expression of the truncated HPL resulted in higher activity and a visible protein band on 
SDS-PAGE. Therefore, we suggest that the hydrophobic N-terminus negatively influences 
the expression level of  HPLCP. Addition of δ-aminolevulinic acid as heme precursor leads 
to an increase of soluble HPL expression in accordance to results obtained for beet, bell 
pepper, and olive HPL [38–40]. Additionally, buffer optimization had a significant effect 
on increasing the activity of  HPLCP-N in the crude extract (CE) as well as in the soluble 
fraction (SF). A major factor was the addition of detergent Triton X-100, which solubilized 
 HPLCP-N and increased activity in the SF. In accordance to our results, solubility and activ-
ity increase in the presence of detergents was reported for barley and barrel medic HPLs 
[41, 42]. Although a more than 100-fold activity increase was obtained by optimization of 
cultivation and solubilization buffer, Bradford staining did not exhibit a  HPLCP-N protein 
band in the SF (Fig. 2d). Thus, further optimization of expression and solubilization may 
improve volumetric HPL activity.

Purification and Biochemical Characterization of  HPLCP‑N

HPLCP-N was expressed under optimized conditions in 1.5  l scale to obtain sufficient 
amount of enzyme for downstream processing and characterization. In a typical process 
more than 7000 units,  HPLCP-N was obtained after cell harvest, cell disruption, and sol-
ubilization in buffer. After centrifugation, a specific activity of 1.27 U/mg was obtained 
in the soluble fraction (Table 2). Purification of the His6-tagged  HPLCP-N was done with 
nickel affinity chromatography, and the purification process was analyzed by SDS-PAGE 
(Fig. 2d). A protein band was detected after affinity chromatography indicating significant 
HPL enrichment. Western blot was performed with an Anti-His antibody, confirming the 
identity of the His-tagged  HPLCP-N protein (Fig. S5). The specific activity of  HPLCP-N was 
increased more than 15-fold in the eluate fraction of the affinity chromatography (Table 2).

According to gel filtration analysis,  HPLCP-N has a calculated molecular weight of 
225.9 kDa (Fig. S6). Based on the monomer molecular weight of 53 kDa from the truncated 
and His-tagged sequence, it can be presumed that  HPLCP-N appears as a tetramer, which corre-
lates with previous analyses of guava and sunflower HPL [23, 43]. A pH analysis in the range 

Table 2  Fermentation and purification of  HPLCP-N. BL21(DE3)/ pET-28a::HishplCP-N was cultivated in a 
3 l bioreactor with a volume of 1.5 l ZYM5052 + δ-aminolevulinic acid, and cells were harvested after 24 h 
of cultivation

Total activ-
ity [U]

Volume [ml] Volumetric 
activity [U/ml]

Protein concen-
tration [mg/ml]

Specific 
activity [U/
mg]

Crude extract 7174 600 11.96 10.41 1.15
Soluble fraction 5722 600 9.54 7.53 1.27
Eluate 2447 120 20.39 1.12 18.21
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of 6–9 revealed that the enzyme shows highest activity under slightly acidic conditions but 
retains approximately 40% of its maximum activity at pH 9 (Fig. S7). The kinetic parameters 
of the affinity chromatography enriched  HPLCP-N were measured at pH 6 and calculated with 
GraphPad Prism 6.05 (Table 3, Fig. S8).  HPLCP-N has a  Km value of 140 µM for linoleic acid 
hydroperoxide (13S-HPODE) and 150  µM for linolenic acid hydroperoxide (13S-HPOTE) 
suggesting a relative similar substrate affinity. However,  HPLCP-N exhibits a 1.55 fold higher 
catalytic efficiency  (kcat/Km) with 13S-HPOTE as substrate in comparison to 13S-HPODE, 
which indicates a weak preference of  HPLCP-N towards 13S-HPOTE. In contrast, the truncated 
form of olive HPL showed a 22.5 fold increase of turnover with 13S-HPOTE compared to 
13S-HPODE and a 5.5 fold higher catalytic efficiency (2.36 ×  106 versus 0.43 ×  106  s−1·M−1) 
[40]. Similarly, HPLs from Medicago truncatula and Solanum tuberosum showed a clear pref-
erence for 13S-HPOTE [42, 44]. The comparably high catalytic activity of  HPLCP-N with the 
substrate 13S-HPODE is beneficial for the cascade with lipase and LOX starting from saf-
flower oil rich in linoleic acid.

Analysis of 12‑Oxododeceneoic Acid Formation

HPL-catalyzed synthesis of green note aldehydes often neglected the by-product 12-oxo-9(Z)-
dodecenoic acid, though the compound may serve as polymer precursor. Reaction mixtures 
containing 1 mM 13S-HPODE were incubated up to 120 min with the soluble fraction of 
E. coli expressing  HPLCP-N. Product formation was analyzed after sodium borohydride reduc-
tion and extraction. GC–MS peak assignment and GC quantification revealed rapid disappear-
ance of 13S-HPODE and formation of a new peak at 11.9 min (Fig. 3). After 120 min, the 
peak at 11.9 min decreased significantly, and a new peak appeared at 12.2 min. The major sig-
nals were m/z 73 and 103 for the peak at 11.9 min and m/z 73 and 129 for the peak at 12.2 min 
(Fig. 3). This characteristic pattern of the silylated compounds points to the release of 12-oxo-
9(Z)-dodecenoic acid and the consecutive isomerization to 12-oxo-10(E)-dodecenoic acid 
(traumatin). Comparative analysis with reference substances verified the fragmentation pat-
terns (Fig. S10), which were also found by Noordermeer et al. [45].

In time-course experiments, it became apparent that the concentration of 12-oxo-9(Z)-
dodecenoic acid reached its maximum after 10 s and started to decrease rapidly (Fig. 4a and 
b). Up to 0.1 mM of the isomerization product 12-oxo-10(E)-dodecenoic acid (traumatin) was 
detected after 120 min (Fig. 4b). Incubation on ice slowed down the decrease of 12-oxo-9(Z)-
dodecenoic acid, but could not prevent consecutive reactions. The second reaction product 
hexanal proved to be significantly more stable, though a slight concentration decrease was 
monitored (Fig. 4c).

The isomerization product traumatin was described before for guava HPL [18]. Grechkin 
and Hamberg proposed the enol to be formed upon cleavage of the hemiacetal intermediate 
leading to either 9(Z)- or 10(E)-oxododecenoic acid tautomers [18]. Surprisingly, formation 
of traumatin was only detected in traces with purified  HPLCP-N, and stability of 12-oxo-9(Z)-
dodecenoic acid was significantly higher (Fig. 4b). In our opinion, the differences in traumatin 
formation indicate secondary isomerization processes not specifically related to HPL (Fig. 5). 

Table 3  Kinetic parameters 
of  HPLCP-N calculated with 
GraphPad Prism 6.05 with data 
from Fig. S8

Substrates Km [µM] Vmax [µM·s−1] kcat  [s−1] kcat/Km  [s−1·M−1]

13S-HPODE 140 ± 30 1452 ± 224 382 2.73 ×  106

13S-HPOTE 150 ± 40 2408 ± 487 634 4.23 ×  106
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Keto-enol tautomerism followed by double-bond shifting leads to traumatin formation. The 
formation of Schiff bases and isomerization of the double bond system via an imine-enamine 
tautomerism may be responsible for additional release of traumatin. In the presence of protein-
rich crude extracts, an overall loss of reaction products was monitored suggesting Schiff base 
formation with, e.g., proteinogenic lysine residues. Thus, utilization of purified enzyme and 
rapid extraction seem to be necessary to quantitatively isolate 12-oxo-9(Z)-dodecenoic acid. 
Similarly in alfalfa HPL preparations, purified from its seeds, 12-oxo-10(E)-dodecenoic acid 
was found in the crude fraction, while 12-oxo-9(Z)-dodecenoic acid was the main product 
upon HPL purification [45]. Noordermeer et al. proposed a 3Z:2E-enal isomerase as isomer-
ization factor, whereas our experiments with recombinant HPL strongly point to non-enzy-
matic isomerization. Nevertheless, a 3Z:2E-enal isomerase acting on hexenal was recently 
found in plants and cloned from cucumber [46, 47].

One‑Pot Enzyme Cascade of  HPLCP‑N Coupled with LOX‑1 and Lipase

The development of enzyme cascades possesses significant advantages over successive 
reactions including a shift of equilibria without the need for isolation of intermediates [48, 
49]. In our previous work, we developed a cascade reaction for 13S-HPODE synthesis 
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from safflower oil utilizing lipase from P. fluorescens, LOX-1 from soybeans, and catalase 
for in situ oxygen generation [11]. Now we wanted to couple lipase and LOX-1 reaction 
with  HPLCP-N to prove the concept of a one-pot synthesis of 12-oxo-9(Z)-dodecenoic acid 
and hexanal from safflower oil. In contrast, the industrial process for volatile aldehyde pro-
duction uses plant extracts in separate reactors for each reaction step [13].

First, LOX-1 reaction was combined with the  HPLCP-N reaction in a one-pot experimen-
tal set-up. The pH optimum of LOX-1 is pH 9, whereas  HPLCP-N is most active at pH 6, 
yet both enzymes exhibited sufficient activity at pH 7.5 (Fig. S7), and 13-regioselectivity 
of LOX-1 is still around 90% at pH 7.5 [11]. Linoleic acid with starting concentrations 
between 1 and 5 mM was pre-incubated with LOX-1 for 1 to 5 h, and then  HPLCP-N was 
added for 15 min. Reaction mixtures were extracted and analyzed on GC. Small-scale reac-
tions were conducted without active oxygen supply, which caused  O2 depletion at higher 
linoleic acid concentrations leading to a decrease of 13S-HPODE yield (Fig. 6a). Trans-
formation of the 13S-HPODE to 12-oxo-9(Z)-dodecenoic acid with  HPLCP-N yielded up to 
80% transformation for the lowest linoleic acid concentration applied (Fig. 6b). At higher 
initial linoleic acid concentrations,  HPLCP-N transformation was lower pointing to an incip-
ient substrate inhibition, which was also described for other HPLs [14]. The comparison of 
simultaneous LOX-1 and  HPLCP-N reaction for 3 h with consecutive addition of  HPLCP-N 
after 3  h revealed that product recovery rates were low in simultaneous reaction mode 
(Fig.  7a). This observation was expected from our product incubation studies described 
in the previous section. In contrast, a good overall yield of 62% 12-oxo-9(Z)-dodecenoic 
acid was achieved by consecutive enzyme addition starting from 1 mM linoleic acid and 
 HPLCP-N for 15 min.

Additionally, the combination of P.  fluorescens lipase with LOX-1 and  HPLCP-N was 
tested with simultaneous and consecutive addition of the enzymes (Fig.  7b). As control 
reactions, the transformation of safflower oil with lipase alone and with lipase and LOX 
was analyzed to monitor oil hydrolysis and hydroperoxidation. Again, simultaneous addi-
tion of all enzymes resulted in extremely low product recovery of less than 5%. Lipase-cat-
alyzed hydrolysis of safflower oil equivalent to 2 mM linoleic acid yielded 66% hydrolysis, 
and around 2/3 of the liberated fatty acids were peroxidized by LOX-1. In contrast to the 
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LOX-HPL two-enzyme system, significantly lower yields of 12-oxo-9(Z)-dodecenoic acid 
were obtained upon 15 min of  HPLCP-N reaction. This observation indicates a rapid prod-
uct transformation caused by addition of the lipase preparation.  HPLCP-N reactions below 
1 min proved to be sufficient for quantitative 13S-HPODE transformation (Fig. 4). Thus, 
the reaction of the three-enzyme system was terminated by rapid extraction 1  min after 
addition of  HPLCP-N. With this methodology, a final yield of 43% 12-oxo-9(Z)-dodecenoic 
acid was obtained from safflower oil in the one-pot enzyme cascade (Fig. 7b).

Conclusions

Hydroperoxide lyase from papaya was cloned, functionally expressed as N-terminally trun-
cated enzyme, purified and characterized biochemically.  HPLCP-N was successfully applied 
for the synthesis of 12-oxo-9(Z)-dodecenoic acid from 13S-HPODE, and a one-pot enzyme 
cascade in combination with lipase and LOX-1 starting from safflower oil was established. 
Instability of the reactive product needs proper control of reaction conditions, and further 
research is needed to optimize process conditions for larger scale synthesis of 12-oxo-9(Z)-
dodecenoic acid.
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