Skip to main content
Log in

Antidiabetic Potential of Sinigrin Against Streptozotocin-Induced Diabetes via Modulating Inflammation and Oxidative Stress

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Diabetes mellitus (DM) is a common metabolic disorder which arises due to the improper carbohydrate metabolism, decreased secretion/activity of insulin, and genetic abnormalities, which result in the increased blood glucose level generally known as hyperglycemia. Diabetes holds an increased global prevalence in each year and is responsible for increased morbidity and mortality rates. Hence, the current investigation focusses to assess the antidiabetic potential of sinigrin on diabetic animal model through the suppression of inflammation. Diabetes was initiated to the animals via administering streptozotocin (STZ) and supplemented with the sinigrin at 25- and 50-mg/kg dose via oral route. The diabetic rats demonstrated the elevated glucose, food and water intake, kidney and liver weights, and reduced bodyweight and depleted insulin status. The sinigrin treatment remarkably improved and modulated these changes in diabetic animals. Additionally, the sinigrin supplementation also modulated the changes in glucose-6-phosphatase; fructose 1,6-bisphosphatase; AST; ALT; creatinine; and inflammatory mediators in the STZ-provoked diabetic animals. The levels of hexokinase, protein, and antioxidants also improved by the sinigrin treatment. The histological investigations of pancreas also witnessed the therapeutic actions of sinigrin, which is supported by the findings of biochemical examinations. Therefore, it was clear that the sinigrin supplementation displayed remarkable antidiabetic effect on STZ-initiated diabetic animals via modulating inflammation and other biochemical changes, which recommends that sinigrin could be a talented candidate for diabetes management in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Tran, N., Pham, B., & Le, L. (2020). Bioactive compounds in anti-diabetic plants: From herbal medicine to modern drug discovery. Biology (Basel)., 9(9), 252.

    CAS  PubMed Central  Google Scholar 

  2. Luc, K., Schramm-Luc, A., Guzik, T. J., & Mikolajczyk, T. P. (2019). Oxidative stress and inflammatory markers in prediabetes and diabetes. Journal of Physiology and Pharmacology, 70(6), 809–824.

    CAS  Google Scholar 

  3. Charlton, A., Garzarella, J., Jandeleit-Dahm, K. A. M., & Jha, J. C. (2021). Oxidative stress and inflammation in renal and cardiovascular complications of diabetes. Biology (Basel)., 10(1), 18.

    CAS  Google Scholar 

  4. Jamali-Raeufy, N., Baluchnejadmojarad, T., Roghani, M., Keimasi, S., & Goudarzi, M. (2019). Isorhamnetic exerts neuroprotective effects in STZ-induced diabetic rats via attenuation of oxidative stress, inflammation and apoptosis. Journal of Chemical Neuroanatomy, 102, 101709.

    Article  PubMed  Google Scholar 

  5. Tsalamandris, S., Antonopoulos, A. S., Oikonomou, E., Papamikroulis, G. A., Vogiatzi, G., Papaioannou, S., Deftereos, S., & Tousoulis, D. (2019). The role of inflammation in diabetes: Current concepts and future perspectives. European Cardiology, 14(1), 50–59.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Furman, B. L., Candasamy, M., Bhattamisra, S. K., & Veettil, S. K. (2020). Reduction of blood glucose by plant extracts and their use in the treatment of diabetes mellitus: Discrepancies in effectiveness between animal and human studies. Journal of Ethnopharmacology, 247, 112264.

    Article  CAS  PubMed  Google Scholar 

  7. Nomura, T., Shinoda, S., Yamori, T., Sawaki, S., Nagata, I., Ryoyama, K., & Fuke, Y. (2005). Selective sensitivity to wasabi-derived 6-(methylsulfinyl)hexyl isothiocyanate of human breast cancer and melanoma cell lines studied in vitro. Cancer Detection and Prevention, 29, 155–160.

    Article  CAS  PubMed  Google Scholar 

  8. Mazumder, A., Dwivedi, A., & du Plessis, J. (2016). Sinigrin and its therapeutic benefits. Molecules, 21, 416.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Trinder, P. (1969). Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen. Journal of Clinical Pathology, 22, 158–161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bürgi, W., Briner, M., Franken, N., & Kessler, A. C. (1988). One-step sandwich enzyme immunoassay for insulin using monoclonal antibodies. Clinical Biochemistry, 21, 311–314.

    Article  PubMed  Google Scholar 

  11. Nayak, S. S., & Pattabiraman, T. N. (1981). A new colorimetric method for the estimation of glycosylated hemoglobin. Clinica Chimica Acta, 109, 267–274.

    Article  CAS  Google Scholar 

  12. Reitman, S., & Frankel, S. (1957). A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. American Journal of Clinical Pathology, 28, 56–63.

    Article  CAS  PubMed  Google Scholar 

  13. Gancedo, J. M., & Gancedo, C. (1971). Fructose-1,6-diphosphatase, phosphofructokinase and glucose-6-phosphate dehydrogenase from fermenting and non fermenting yeasts. Archiv für Mikrobiologie, 76, 132–138.

    Article  CAS  PubMed  Google Scholar 

  14. Kind, P. R., & King, E. J. (1954). Estimation of plasma phosphatase by determination of hydrolysed phenol with amino-antipyrine. Journal of Clinical Pathology, 7, 322–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Koide, H., & Oda, T. (1959). Pathological occurrence of glucose-6-phosphatase in serum in liver diseases. Clinica Chimica Acta, 4, 554–561.

    Article  CAS  Google Scholar 

  16. Brandstrup, N., Kirk, J. E., & Bruni, C. (1957). The hexokinase and phosphoglucoisomerase activities of aortic and pulmonary artery tissue in individuals of various ages. Journal of Gerontology, 12, 166–171.

    Article  CAS  PubMed  Google Scholar 

  17. Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95, 351–358.

    Article  CAS  PubMed  Google Scholar 

  18. Jiang, Z. Y., Hunt, J. V., & Wolff, S. P. (1992). Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low density lipoprotein. Analytical Biochemistry, 202, 384–389.

    Article  CAS  PubMed  Google Scholar 

  19. Sinha, A. K. (1972). Colorimetric assay of catalase. Analytical Biochemistry, 47, 389–394.

    Article  CAS  PubMed  Google Scholar 

  20. Kakkar, P., Das, B., & Viswanathan, P. N. (1984). A modified spectrophotometric assay of superoxide dismutase. Indian Journal of Biochemistry & Biophysics, 21, 130–132.

    CAS  Google Scholar 

  21. Rotruck, J. T., Pope, A. L., Ganther, H. E., Swanson, A. B., Hafeman, D. G., & Hoekstra, W. G. (1973). Selenium: Biochemical role as a component of glutathione peroxidase. Science, 179, 588–590.

    Article  CAS  PubMed  Google Scholar 

  22. Beutler, E., & Kelly, B. M. (1963). The effect of sodium nitrite on red cell GSH. Experientia, 19, 96–97.

    Article  CAS  PubMed  Google Scholar 

  23. Prabhakar, U., Eirikis, E., & Davis, H. M. (2002). Simultaneous quantification of proinflammatory cytokines in human plasma using the LabMAP assay. Journal of Immunological Methods, 260(1–2), 207–218.

    Article  CAS  PubMed  Google Scholar 

  24. Florence, N. T., Benoit, M. Z., Jonas, K., Alexandra, T., Désiré, D. D., Pierre, K., & Théophile, D. (2014). Antidiabetic and antioxidant effects of Annona muricata (Annonaceae), aqueous extract on streptozotocin-induced diabetic rats. Journal of Ethnopharmacology, 151, 784–790.

    Article  PubMed  Google Scholar 

  25. Abbas, Q., Hassan, M., Raza, H., Kim, S. J., Chung, K. W., Kim, G. H., & Seo, S. Y. (2017). In vitro, in vivo and in silico anti-hyperglycemic inhibition by sinigrin. Asian Pacific Journal of Tropical Medicine, 10, 372–9.

    Article  CAS  PubMed  Google Scholar 

  26. Bamagous, G. A., Al Ghamdi, S. S., Ibrahim, I. A., Mahfoz, A. M., Afify, M. A., Alsugoor, M. H., Shammah, A. A., Arulselvan, P., & Rengarajan, T. (2018). Antidiabetic and antioxidant activity of ethyl acetate extract fraction of Moringa oleifera leaves in streptozotocin-induced diabetes rats via inhibition of inflammatory mediators. Asian Pacific Journal of Tropical Biomedicine, 8, 320–327.

    Article  Google Scholar 

  27. Wasana, K. G. P., Attanayake, A. P., Jayatilaka, K. A. P. W., & Weerarathna, T. P. (2021). Antidiabetic activity of widely used medicinal plants in the Sri Lankan traditional healthcare system: New insight to medicinal flora in Sri Lanka. Evidence-based Complementary and Alternative Medicine, 2021, 6644004.

    Article  PubMed  PubMed Central  Google Scholar 

  28. El-Marasy, S. A., Zaki, E. R., Abdallah, H. M., & Arbid, M. S. (2017). Therapeutic effects of aqueous, methanol and ethanol extracts of Egyptian Artemisia herba-alba in STZ-induced diabetic neuropathy in rats. Journal of Applied Pharmaceutical Science, 7, 180–187.

    CAS  Google Scholar 

  29. Wei, Q., Zhan, Y., Chen, B., Xie, B., Fang, T., Ravishankar, S., & Jiang, Y. (2020). Assessment of antioxidant and antidiabetic properties of Agaricus blazi Murill extracts. Food Science & Nutrition, 8(1), 332–339.

    Article  Google Scholar 

  30. Chis, I. C., Ungureanu, M. I., Marton, A., Simedrea, R., Muresan, A., Postescu, I. D., & Decea, N. (2009). Antioxidant effects of a grape seed extract in a rat model of diabetes mellitus. Diabetes & Vascular Disease Research, 6, 200–204.

    Article  Google Scholar 

  31. Ippoushi, K., Takeuchi, A., & Azuma, K. (2010). Sinigrin suppresses nitric oxide production in rats administered intraperitoneally with lipopolysaccharide. Food Chemistry, 120, 1119–1121.

    Article  CAS  Google Scholar 

  32. Ghanbari, E., Nejati, V., & Khazaei, M. (2016). Improvement in serum biochemical alterations and oxidative stress of liver and pancreas following use of royal jelly in streptozotocin-induced diabetic rats. Cell Journal, 18, 362–370.

    PubMed  PubMed Central  Google Scholar 

  33. Karan, S. K., Mondal, A., Mishra, S. K., Pal, D., & Rout, K. K. (2013). Antidiabetic effect of Streblus asper in streptozotocin-induced diabetic rats. Pharmaceutical Biology, 51, 369–375.

    Article  CAS  PubMed  Google Scholar 

  34. Scheller, J., Chalaris, A., Schmidt-Arras, D., & Rose-John, S. (2011). The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochimica et Biophysica Acta, 1813, 878–888.

    Article  CAS  PubMed  Google Scholar 

  35. Abo-Salem, O. M. (2014). Kaempferol attenuates the development of diabetic neuropathic pain in mice: Possible anti-inflammatory and anti-oxidant mechanisms. Macedonian Journal of Medical Sciences, 7, 424–430.

    CAS  Google Scholar 

  36. Rossi, S., D’Amico, M., Capuano, A., Romano, M., Petronella, P., & Di Filippo, C. (2006). Hyperglycemia in streptozotocin-induced diabetes leads to persistent inflammation and tissue damage following uveitis due to reduced levels of ciliary body heme oxygenase-1. Mediators of Inflammation, 2006, 60285.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lee, H. W., Lee, C. G., Rhee, D. K., Um, S. H., & Pyo, S. (2017). Sinigrin inhibits production of inflammatory mediators by suppressing NF-κB/MAPK pathways or NLRP3 inflammasome activation in macrophages. International Immunopharmacology, 45, 163–173.

    Article  CAS  PubMed  Google Scholar 

  38. Lee, H., Lee, C., Kim, J., & Pyo, S. (2014). The inhibitory effect of sinigrin on the production of inflammatory mediators induced by lipopolysaccharide in RAW 264.7 macrophages (1056.5). The FASEB J., 28, 1056–5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally.

Corresponding author

Correspondence to Shuling Wang.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

All authors consented to participate.

Consent for Publication

All authors consented for the publication of their work.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Wang, S. Antidiabetic Potential of Sinigrin Against Streptozotocin-Induced Diabetes via Modulating Inflammation and Oxidative Stress. Appl Biochem Biotechnol 194, 4279–4291 (2022). https://doi.org/10.1007/s12010-021-03739-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03739-x

Keywords

Navigation