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Abstract
Bacillus species genomes are rich in plant growth-promoting genetic elements. Bacillus 
subtilis and Bacillus velezensis are important plant growth promoters; hence, to further 
improve their abilities, the genetic elements responsible for these traits were characterized 
and reported. Genetic elements reported include those of auxin, nitrogen fixation, sidero-
phore production, iron acquisition, volatile organic compounds, and antibiotics. Further-
more, the presence of phages and antibiotic-resistant genes in the genomes are reported. 
Pan-genome analysis was conducted using ten Bacillus species. From the analysis, pan-
genome of Bacillus subtilis and Bacillus velezensis are still open. Ultimately, this study 
brings an insight into the genetic components of the plant growth-promoting abilities of 
these strains and shows their potential biotechnological applications in agriculture and 
other relevant sectors.

Keywords  Bacillus · Biosynthetic gene clusters · Comparative genomics · Functional 
genomics · Pan-genome analysis · Plant growth-promoting bacteria

Introduction

The challenges of climate change and urbanization impact on food production has neces-
sitated the need to bring up solutions that will mitigate these effects. The health hazard 
posed by chemical fertilizers is a cause for concern; hence, the need for an environmental 
and health-friendly approach. This led to the use of microorganisms for food production. 
These microorganisms, termed plant growth-promoting bacteria (PGPB), increase food 
production through direct and indirect means such as phytohormone production, nitrogen 
fixation, cyanide production, siderophore production, antibiotic production, and phospho-
rous solubilization. These mechanisms have been reviewed in various studies [25, 31, 39, 
43, 47]. They produce antifungal and antibacterial compounds to help plants against patho-
gens. Furthermore, they act in the bioremediation of contaminated soil. Contaminations in 
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the form of salinity and heavy metal pollution are taken care of by PGPB. Several genus 
of bacteria support plant growth promotions; however, this study will focus on the Bacillus 
genus.

Bacillus genus is abundant in the rhizobiome. They are present in the rhizosphere of 
several crop plants where they support plant growth. They are good root colonizers and 
produce several metabolites, which makes them good biocontrol agents against plant 
pathogens. Reports on their biocontrol activities have been studied by various groups of 
researchers [3, 15, 21, 46, 50]. The most important feature of Bacillus spp. is their ability 
to form spores. Spores help to protect them against various stress conditions, thus, enabling 
their application for plant growth promotion, bioremediation, and industrial applications.

Furthermore, comparative microbial genomics based on sequence similarity will help 
in identifying the important genetic contents shared among all plant growth promoting 
isolates as well as subset of genes encoding biocontrol and novel functions. Pan-genome 
represents species genomic diversity and it includes both the core and variable genome 
content [11]. Pan-genome aids in taxonomic classifications (phylogenomic analysis), pre-
cise determination of genomic contents of a group (calculation of core, pan, and variable 
genome), and organism’s lifestyle (allopatric or sympatric) [13].

This study focuses on three strains of this genus, viz. Bacillus subtilis A1 (BSA1), 
Bacillus velezensis A3 (BVA3), and Bacillus subtilis A29 (BSA29). In a previous study 
[38], these strains promote the growth of maize plants on the field. In vitro assay showed 
their efficiency in inhibiting Fusarium graminearum. Furthermore, they were able to 
solubilize phosphate, produce IAA, siderophore, protease, oxidase, and ACC deaminase 
enzyme, among others. In another study [36], they produce several volatile organic com-
pounds (VOCs) that are related to their biocontrol ability. In the present study, therefore, 
we report the genomic characterization and the genetic basis of the plant growth-promoting 
traits exhibited by these strains. The presence of phages in these strains was also reported 
in the study. We have used comparative genomics approach to unravel the plant growth 
promoting and biocontrol potential of the strains in this study. The result obtained can be 
applied for the genetic modification of these strains for various plant growth-promoting 
abilities.

Materials and Methods

Isolation, Identification, Antimicrobial Activity, and Plant Growth Promotion Assay

Isolation of bacterial strains and identification, as well as plant growth promotion assay, are 
reported in a previous study [38]. The isolates are Bacillus subtilis A1, Bacillus velezensis 
A3, and Bacillus subtilis A29. In brief, 31 isolates were screened for their plant growth-
promoting traits, and 3 were selected for field trials [38]. They showed improvement in 
maize growth compared to the control when inoculated in single and consortia.

Genome Sequencing and Annotation

The genomic DNA was extracted from overnight cultures in LB medium [12] using a ZR 
soil microbe DNA MiniPrep extraction kit (Zymo Research, USA), following the manu-
facturer’s instructions. The DNA quality and quantity were determined using a NanoDrop 
Lite spectrophotometer (Thermo Fisher Scientific, CA, USA). The genomes of the strains 
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were sequenced on an Illumina HiSeq sequencer at Molecular Research (MR DNA), Shal-
lowater, TX. The libraries were prepared using Kapa HyperPlus kits (Roche), following 
the manufacturer’s user guide. The initial concentration of DNA was evaluated using the 
Qubit double-stranded DNA (dsDNA) high-sensitivity (HS) assay kit (Life Technologies). 
A total of 25 ng of DNA were used to prepare the libraries. The protocol starts with enzy-
matic fragmentation to produce dsDNA fragments, followed by end repair and A-tailing 
to produce end-repaired 5′-phosphorylated 3′-deoxyribosyladenine (dA)-tailed dsDNA 
fragments. In the adapter ligation step, dsDNA adapters are ligated to 3′-dA-tailed mol-
ecules. The final step is library amplification, which employs high-fidelity, low-bias PCR 
to amplify library fragments carrying appropriate adapter sequences on both ends. Fol-
lowing the library preparation, the final concentrations of the libraries were measured 
using the Qubit dsDNA HS assay kit (Life Technologies), and the average library size was 
determined using the Agilent 2100 Bioanalyzer (Agilent Technologies). Bacillus subtilis 
A1, Bacillus velezensis strain A3, and Bacillus subtilis strain A29 DNA concentrations are 
114.0, 84.8, and 187.0 ng/μl, respectively, while the final library DNA concentrations are 
62.0, 62.0, and 58.8 ng/μl, respectively. The average library sizes of Bacillus subtilis A1, 
Bacillus velezensis strain A3, and Bacillus subtilis strain A29 are 680, 694, and 695 bp, 
respectively. The libraries were pooled, diluted (to 9.0 pM), and paired-end sequenced for 
500 cycles using the HiSeq system (Illumina), with an average read length of 2 × 250 bp.

The raw sequences were processed to obtain high-quality reads using the Kbase [20] 
platform. The quality of the reads was checked using FastQC (v.1.0.4) [6]. The reads were 
trimmed to remove adapters and low-quality sequences using Trimmomatic (v.0.36) [16], 
with the default parameters. The reads were assembled by de novo assembly using SPAdes 
v.3.12.0 [35], with the default parameters. Gene function prediction was performed using 
the Rapid Annotations using Subsystems Technology (RAST v.2.0) server (http://​rast.​
nmpdr.​org) [8].

The Genbank accession numbers are SHOB00000000, SHOC00000000, and 
SHOD00000000, while the BioProject accession numbers are PRJNA516328, 
PRJNA516332, and PRJNA516331, respectively. The Sequence Read Archive (SRA) has 
accession numbers SRR8540661, SRR8550002, and SRR8541016, respectively.

Genome Mining for BGCs, Antibiotic‑Resistant Genes, Virulent Factors, and Phages

The genome sequences of the selected strains were determined and mining for biosyn-
thetic gene clusters of antimicrobial compounds, including NRPs, PKs, NRPs-PKs hybrids, 
bacteriocins, and terpenes, was conducted with RAST system [8, 17, 40], antiSMASH 
5.0 [14], and BAGEL4 [48] using the default settings. Each draft genome was assembled 
into a pseudomolecule using a closely related strain as a reference before applying to the 
pipelines. Antimicrobial resistance genes were mined using the Resistance Gene Identifier 
(RGI) tool of the Comprehensive Antibiotic Resistance Database (CARD)4 [4] using con-
tigs file with the parameters “Perfect and strict hits only” and “High quality/coverage.” The 
presence of phages was checked using phaster [7] with default settings.

Pan‑genome and Core‑genome Analyses

Bacterial pan-genome analysis (BPGA) is a high-speed and highly efficient computa-
tional pipeline used for comparative genomic analysis and pan-genome construction [19]. 
Pan-genome and core-genome of 10 Bacillus species (Table 3) were obtained by BPGA 
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pipeline. Power-law regression based on Heaps’ law was used to calculate curve fitting of 
the pan-genome as follows:

y ¼ A pan x^ðB panÞ þ C pan.
where y is the pan-genome size, x is the genome number, and A_pan, B_pan, and C_

pan are fit parameters. B_pan is equivalent to the parameter c and a = 1 − c. According to 
Heaps’ law, a pan-genome is open when 0\c\1 and a B 1 and close when c\1 and a[1. The 
exponential regression model y ¼ A core e^ðB core _ xÞ þ C core was used to calculate 
curve fitting of the core-genome, where y is the core-genome size, x is the genome number, 
e is the Euler number, and A_core, B_core, and C_core are fit parameters [45].

USEARCH clustering algorithm with a 50% cut-off was utilized for clustering genes. 
Pan- and core-genome plot was generated using the default settings while MUSCLE was 
used for aligning genes and phylogeny was analyzed with the neighbor-joining method.

COG and KEGG Functional Classification of Genes

Downstream analysis of data subsets under KEGG/COG categories deciphers the BPGA 
platform for further “omics” approaches. BPGA employs the ublast function of USEARCH 
to identify best hits with respective reference databases and classify them according to 
KEGG and COG categories [19].

Phylogenetic Analysis

Phylogenetic tree was constructed based on the average nucleotide identity (ANI). The 
overall similarity between the whole-genome sequences was calculated using the Ortholo-
gous Average Nucleotide Identity Tool (OAT) v0.93.1 [54].

Results and Discussion

General Characterization of the Strains

The genome map of the three isolates presented in Fig. 1 shows the various genetic compo-
nents of the isolates. Figure 2 shows the distribution of the gene categories in the isolates. 
In all three, gene for amino acids is more abundant followed by carbohydrate and protein 
metabolism.

Genetic Elements Involved in Stress Resistance, Soil, and Plant Colonization 
Abilities

Stress Resistance and Tolerance

Genome analysis of BSA1, BVA3, and BSA29 showed the presence of stress tolerance 
proteins in the genomes of these isolates. Osmotic stress resistance genes of the “Opu” 
family are present in the three genomes (Table S1). Enzymes such as betaine aldehyde 
dehydrogenase and alcohol dehydrogenase that help against osmotic stress are found 
in the genomes. One nitrosative stress resistance gene nsrR is also present in all the 
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genomes. Superoxide dismutase enzyme, which is important in militating against oxida-
tive stress, is present in the three genomes along with perR and fuR genes. Apart from 
the specific stress response proteins that have been mentioned, several general stress 
response proteins are also present in the genomes of these microbes. These include rsbS, 
rsbT, rsbW, rsbU, rsbR, rsbV, and hfq genes. The presence of stress response genes con-
firms the ability of BSA1, BSA29, and BVA3 to help plants in stress tolerance [1, 50]. 
Proteins involved in heat and cold stress are important in DNA and RNA stabilization, 
thereby increasing transcription and translation efficiency during the stress period [30].

Fig. 1   Schematic representation and general characteristics of the three Bacillus spp. (a) BSA1. (b) BSA29. 
(c) BVA3
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Fig. 2   Frequency distribution of gene categories in each genome
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Spore Formation

Several genes and enzymes regulating spore formation and dormancy are largely rep-
resented in the genomes of the three microbes (Table S1). Among these are the ypeB, 
ydhD, kapB, mazG, tasA, yqxM genes etc. while enzymes present include sporulation 
kinase B and sporulation kinase C. Several spore formation gene clusters are repre-
sented in these genomes. Bacillus species are known for spore formation. Spore pro-
duction enhances their ability to cope with environmental stress such as drought and 
salinity [56].

Heavy Metal Resistance

The genomes show the presence of copper resistance genes, viz. copD and copC genes. 
Proteins regulating the transportation of metals, such as the copper-translocating P-type 
ATPase (EC 3.6.3.4) and the cobalt-zinc-cadmium resistance protein, are present in the 
genomes (Table S1). The presence of heavy metal-resistant genes shows that these strains 
can adapt favorably when exposed to heavy metals. Heavy metals deplete bacterial popula-
tions in the soil [27], hence reducing microbial-plant growth promotion efficacy. Therefore, 
microbial resistance to heavy metals is critical for their survival in the soil. These strains, 
having several heavy metal resistance genes, stand a chance to survive in heavy metal pol-
luted environment.

Motility, Chemotaxis, and Attachment to Plant Surfaces

All forms of movement in Bacillus spp. are with the use of flagella. The flagellum is their 
medium of transport for food and attachment to host plants. Therefore, it is an important 
feature in these bacteria genera. Based on this, the genomes of these isolates revealed the 
presence of several flagella biosynthesis proteins and regulators such as flgB, flgD, and 
flgK. Cell division protein Fst1, which codes for the enzyme peptidoglycan synthetase 
(EC 2.4.1.129), is also present in the genomes (Table S1). The ability to move and attach 
to plant surfaces is important for efficient root colonization. Teichoic acid is fundamen-
tal in root colonization [53]. The genomes of these strains revealed the presence of genes 
involved in the production of teichoic acid.

Genetic Elements Involved in Plant Growth Promotion Activities

Biocontrol Activities and Antibiotic Resistance

Genomic analysis revealed the presence of several gene clusters involved in the production 
of antimicrobial compounds, including genes involved in bacteriocins, terpenes, PKS, and 
NRPs gene clusters (Tables 1 and S2, Figs. 3 and 4). Gene clusters involved in bacillibac-
tin, fengycin, macrolactin H, subtilosin A, sporulation killing factor, and surfactin were 
reported (Tables 1 and S2, Figs. 3, 4, S1–S9). In addition, antibiotic resistance genes were 
detected in the genomes (Table 2, Figs. S10-S13). Genes coding for daptomycin resistance 
and tunicamycin resistance proteins, including the ykkC, ykkd, aadK, vmlR, and tmrB genes 
(Table  2, Figs.  S10-S13); genes encoding for streptothricin resistance and Fosfomycin 
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resistance protein (fosB); and genes coding for resistance to fluoroquinolones are present 
(Table S1). Bacillus strains, especially Bacillus subtilis, are good biocontrol agents [15, 21, 
22].

The ability to produce toxic compounds against pathogens is important for the biologi-
cal control of plant pathogens. Bacillus produce compounds such as fengycin, surfactin, 
bacilysin, bacillomycin, and subtilosin [2, 24]. Fengycin acts by inhibiting the growth of 
filamentous fungi [33]. The surfactin lipopeptides have antiviral activity and show some 
antifungal activity. Fengycin, bacillomycin, and surfactin act stronger in cooperation as 
biocontrol agents and in biofilm formation. This was concluded in the study of Zeriouh 
et al. [55] where they reported reduced production of biofilm due to the absence of sur-
factin. So much importance is attached to the antimicrobial production by Bacillus species 
in biocontrol. Bacillus mutants that were unable to produce surfactin, bacillomycin, and 
fengycin lost their ability to control various plant diseases [9].

Antimicrobial resistance is becoming a challenge to clinical, industrial, and agricul-
tural sectors [26]. The presence of biofilm in Bacillus subtilis, especially, makes it a classic 
example in this challenge. Biofilms protect the microbes from being destroyed by antibiot-
ics. To the plants, this helps in protecting the plant’s “fighters” from being destroyed by 
toxin-producing pathogens. The results in this study support and confirm that Bacillus sub-
tilis [18] and Bacillus velezensis [32, 46] produce antifungal and antibacterial compounds 
for improved plant health.

Iron Acquisition

The three genomes contain genes involved in iron metabolism as well as siderophore biosyn-
thesis, especially bacillibactin and anthrachelin class siderophores. Iron acquisition gene yycJ/
Wa1J and heme transporter protein htsABC (Table S1) are present in the genomes of the species. 
Iron transport peroxidase efeB and permease efeU are present in the three genomes. Additionally, 
gene clusters involved in iron cluster assembly were found, and it contains paaD-like protein 

Fig. 3   Bacteriocins detection from BAGEL 4
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(DUF59), iscR, sufE2, sufD, sufC, sufB, and apbC genes (Table S1). Iron is important in the syn-
thesis of chlorophyll, and it is important in the maintenance of chloroplast structure. Therefore, 
the availability of iron is crucial for plant’s survival. Siderophores are molecules produced by 
bacteria, which makes iron available for plant use [25]. Siderophore-producing bacteria improve 
iron availability for plant development [37]. The presence of siderophore-producing genes in the 
genomes of these strains shows that they will be able to sequester available iron in the rhizos-
phere for plant use.

Nitrogen, Sulfur, and Phosphorus Acquisition

Genes regulating the metabolism of nitrogen, sulfur, and phosphorous are present in the 
genomes of the three bacteria. Nitrite reductase, glutamine synthetase, and glutamate syn-
thase genes are all present (Table S1). Nitrogen regulatory protein P-II class and ammo-
nia transport proteins are present. Nitric oxide reductase genes norD and norQ are pre-
sent. This shows the ability of these bacteria to counter nitrosative stress. Additionally, 
genes involved in sulfate metabolism were detected. Genes for disulfide reductase (Tpx and 
Bcp types) in all three genomes and genes for galactosylceramide and sulfatide metabo-
lism (arylsulfatase gene) were found in the genomes of BSA1 and BSA29. Furthermore, 
phosphate metabolism was supported by the presence of manganese-dependent inorganic 
pyrophosphatase, alkaline phosphatase genes (phoP, phoH, and phoR), and pyrophos-
phatse gene ppax (Table S1). The major sources of nitrogen for plant are chemical fertiliz-
ers and biological nitrogen fixation [5] and nitrogen is the most limiting element in plant 
growth, hence the importance of the nitrogen-fixing ability in these strains. Coupled with 

Fig. 4   Presence of antimicrobial resistance genes in the genomes of the three isolates
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the presence of sulfur and phosphate synthesis genes, these strains are capable of nitrogen-
fixation and phosphate solubilization [23, 38]. The availability of these nutrients is essen-
tial and critical in plant growth promotion.

IAA Biosynthesis and Ɣ‑Aminobutyric Acid (GABA) Metabolism

The three genomes reveal the presence of genes regulating auxin biosynthesis. These are tryp-
tophan synthase, anthranilate phosphoribosyltransferase, and phosphoribosylanthranilate 
isomerase (Table S1). The genomes also possess gabR gene encoding GABA aminotransferase 
(Table S1). Phytohormones regulate plant growth and tolerance. Auxin, a major phytohormone, 
is essential for growth regulation and stress adaptation responses. GABA, on the other hand, is 
involved in signaling between rhizosphere microorganisms and plants [37]. The presence of IAA 
and GABA genes in the genomes of these isolates infers that they will be effective in mitigating 
plant stress while promoting plant growth and development.

Polyamine Production and Modulation of Ethylene Levels

Several polyamine biosynthesis and transport genes are found in the genomes of the Bacil-
lus spp, including arcD gene encoding for arginine/ornithine antiporter, and genes encod-
ing for enzymes involved in spermidine biosynthesis, which include spermidine synthase. 
Agmatinase involved in putrescine biosynthesis is also present in the genomes (Table S1). 
Polyamines are important in the plat growth promoting abilities of Bacillus strains. Xie 
et  al. [51] reported in their study that spermidine production by Bacillus subtilis was 
found to inhibit the production of ethylene, which affects interactions between plants and 
microorganisms.

Plant Growth Promotion Activities by Modulation of VOCs

Biosynthesis of VOCs originates from sulfur, nitrogen, ketones, alcohols, and alde-
hyde compounds. The genome analysis of these species shows a high level of genes and 
enzymes involved in the biosynthesis of these compounds. Therefore, these isolates can 
produce a high number of VOCs. Besides, genes involved in the biosynthesis of acetoin 
and butanediol are present (Table S1). VOCs impact plant growth by acting as signal mol-
ecules [37] and as biocontrol agents. Bacillus spp. are known to produce diverse kinds of 
VOCs, which result from the compounds stated above. Genes and enzymes involved in the 
pathways of these compounds are present in the genomes of BSA1, BVA3, and BSA29 
(Table S1). Genes and pathways involved in the metabolism of acetoin and butanediol are 
revealed by the genomic analysis. Bacillus subtilis and Bacillus velezensis are reported to 
be good producers of acetoin and butanediol, which are used in biocontrol activities [34, 
41, 52].

Phage Synthesis

The genomes of the Bacillus spp. were investigated for the presence of prophages, plas-
mids, and insertion elements. The results showed at least one intact phage region for all 
strains (Fig. 5). Blast hits against the virus, and bacterial databases are shown in Table S3. 
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Fig. 5   Remnants of bacteriophage regions. The boxes are color-coded with the legend pasted below the fig-
ure to show their potential functions
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No plasmid was found in any of the strains. Different regions and the number of coding 
sequences are shown in Table S3. These strains can be effectively engineered in develop-
ing phage therapies for pathogen biocontrol. Phages have been reported as good biocontrol 
agents against human, animal, plant, and foodborne pathogens [28, 42, 49].

Pan‑genome Analysis

Bacterial genomes harbor core and accessory genes, which may be specific to an individ-
ual species. Core-genomes are present in all strains studied while the accessory genomes 
differentiate one specie from another [45]. The accessory genomes usually confer genes 
regulating species-specific advantageous traits such as metabolite production, antibiotic 
resistance, virulence mechanisms, plant growth and disease suppression, siderophore pro-
duction, and/or growth hormone production.

In this study, we selected 10 Bacillus species (5 B. subtilis and 5 B. velezensis) based 
on their host (soil or plant) to estimate the pan- and core-genome sizes (Table S4). From 
our analysis, we conclude that the B. subtilis and B. velezensis have an open genome since 
the core/pan-genome ratio did not reach a distinct plateau (Fig. 6). However, the addition 
of more genomes might add to the number of accessory and unique genes, which is in line 
with the previous hypothesis by [10]. The pan-genome consisted of 777 core genes while 
BSA29 has the lowest number of accessory genes and unique genes, and Bacillus subtilis 
R31 has the highest number of accessory genes and unique genes (Table 3).

Fig. 6   Pan- and core-genomes based on the number of sequenced genomes
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Phylogenomics

Our phylogenetic trees were based on analyses of the core-genome, and ANI of the 10 
genomes used (Figs. 7 and 8). The findings further refine the relationships within the 
genus. The phylogenetic tree based on the core-genomes (Fig. 7a) revealed that BVA3 is 
closer to B. subtilis R31 than the other B. velezensis species while BSA1 and BSA29 are 
very much close to each other same as the pan phylogeny (Fig. 7b). However, the BVA3 
position in the pan phylogeny is closer to BSA1 than the other B. velezensis species. 
Therefore, we can infer that BVA3 have the same ancestor with BSA1 and BSA29.

Despite the drawback that the resolution is normally not sufficient to fully sepa-
rate sub-species and the fact that that it is also liable to biases due to primer sequence 
matching [44], 16S rRNA sequencing is the most used parameter to explore bacteria 
phylogenetic relationships. Phenotypical and biochemical traits have also been used; 
however, these traits can be affected by choice of culture medium and other conditions. 
Therefore, there is need for objective methods that show high resolution. One promising 
method is the use of average nucleotide identity which was described by Han et al. [29]. 
In this study, the OrthoANI analysis showed 100% average nucleotide identity between 
our isolates BSA1 and BSA29 while BVA3 shows 98.76% similarity with B. velezen-
sis YB-130. When comparing all isolates from this study, values were between 98.34 
and 100% (for B. subtilis species) and between 97.66 and 98.97% for the B. velezensis 
strains. The comparison between the B. subtilis strains and B. velezensis strains showed 
always identity values below 80%.

Fig. 7   Phylogenetics of the genomes based on the (a) core- and (b) pan-genomes
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Functional Genome Analyses

To assign biological functions to the orthologs, the corresponding amino acids were annotated 
using COG. According to the COG analysis major category distribution, majority of the core 
proteins are for metabolism (40.3%), followed by information storage and processing (25.6%), 
23.03% were poorly characterized while the remaining 11.01% are for cellular signaling and 
processing (Fig. S14a). In detail, the gene functions are as follows: cell cycle control, cell divi-
sion, chromosome partitioning (2.43%), cell wall/membrane/envelope biogenesis (13.21%), 
cell motility(5.66%), post-translational modification, protein turnover, and chaperones 
(9.31%), signal transduction mechanisms (15.15%), intracellular trafficking, secretion, and 
vesicular transport (3.75%), defense mechanisms (10.9%), translation, ribosomal structure and 
biogenesis (10%), and transcription (30.64%). Others include those involved in replication, 
recombination and repair (21%), energy production and conversion (11.97%), carbohydrate 
transport and metabolism (19.02%), amino acid transport and metabolism (25.02%), nucleo-
tide transport and metabolism (4.48%), coenzyme transport and metabolism (10.73%), lipid 
transport and metabolism (10.94%), secondary metabolites biosynthesis, catabolism (12.48%), 
inorganic ion transport and metabolism (13.74%), general function prediction only (39.04%), 
and genes with unknown functions (30.46%) (Fig. 10b). We also use KEGG to map cellular 

Fig. 8   Average Nucleotide Identity (ANI) demonstrating nucleotide-level genomic similarity between the 
coding regions of indicated Bacillus subtilis and Bacillus velezensis genomes. Pairwise comparisons for all 
10 genomes were computed using the OAT Program
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functions and the genes were divided according to the biological pathways they are likely to 
participate in (Fig. S15).

Conclusion

Bacillus species have great potentials in agriculture and biotechnology. They are good 
producers of biocontrol agents and plant growth-promoting molecules hence their vari-
ous applications for plant growth promotion and biocontrol abilities on various crops. The 
genomic analysis of B. subtilis A1, B. velezensis A3, and B. subtilis A29 showed the pres-
ence of genes, enzymes, and pathways involved in many plant growth-promoting activities 
such as growth hormone production, VOCs production, siderophore production, nitrogen, 
phosphorous, and sulfur metabolism. Their capability to be used in developing biocontrol 
phages was also established in the presence of many phage regions in their genomes. The 
pan-genome of Bacillus subtilis and Bacillus velezensis are still open. Hence, these isolates 
are promising plant growth promoters and can improve food security.
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