Skip to main content
Log in

Optimization of Fermentation Medium for Indole Acetic Acid Production by Pseudarthrobacter sp. NIBRBAC000502770

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Indole acetic acid (IAA) has been an important compound for plant growth and is widely known to be produced by plant growth-promoting rhizobacteria (PGPR). The isolate producing the maximum amount of IAA from the Korea shooting range soil was identified as Pseudarthrobacter sp. NIBRBAC000502770, using 16S rRNA gene sequencing. IAA production was determined in Luria-Bertani (LB) broth and optimized using different temperatures, agitation rates, L-tryptophan concentrations, carbon and nitrogen sources, and inorganic salts. The strain NIBRBAC000502770 showed better production of IAA at temperature 30 °C (29.47 mg·L−1) and at an agitation rate of 200 rpm (32.65 mg·L−1). Maltose (0.5%) was found to be the best carbon source for the strain (yielding 36.48 mg·L−1 IAA). IAA yield was 19.17 mg·L−1 and 24.73 mg·L−1 at 1% yeast extract and 1% tryptone as nitrogen sources, respectively. qRT-PCR showed the transcript levels of amiE and aldH genes, which had been predicted to encode indole-3-acetamide hydrolase and indole-3-acetaldehyde dehydrogenase, to be significantly upregulated in response to tryptophan. This study has examined that NIBRBAC000502770 has significant effects as a biological agent such as plant growth promotion, and development of optimal medium could significantly reduce the cost of mass production of microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Liu, W. H., Chen, F. F., Wang, C. E., Fu, H. H., Fang, X. Q., Ye, J. R., & Shi, J. Y. (2019). Indole-3-acetic acid in Burkholderia pyrrocinia JK-SH007: Enzymatic identification of the indole-3-acetamide synthesis pathway. Frontiers in Microbiology, 10, 2559.

    Article  Google Scholar 

  2. Jung, H. K., Kim, J. R., Woo, S. M., & Kim, S. D. (2006). An auxin producing plant growth promoting rhizobacterium Bacillus subtilis AH18 which has siderophore-producing biocontol activity. Korean Journal of Microbiology and Biotechnology, 34, 94–100.

    CAS  Google Scholar 

  3. Duca, D., Lorv, J., Patten, C. L., Rose, D., & Glick, B. R. (2014). Indole-3-acetic acid in plant–microbe interactions. Antonie van Leeuwenhoek, 106(1), 85–125.

    Article  CAS  Google Scholar 

  4. Barea, J. M., Navarro, E., & Montoya, E. (1976). Production of plant growth regulators by rhizosphere phosphate-solubilizing bacteria. Journal of Applied Bacteriology, 40(2), 129–134.

    Article  CAS  Google Scholar 

  5. Moon, S. J., & Yoon, M. H. (2019). Plant growth promotion effect of Arthrobacter enclensis Yangsong-1 isolated from a button mushroom bed. Journal of Mushrooms, 17, 12–18.

    Google Scholar 

  6. Gardan, L., David, C., Morel, M., Glickmann, E., Abu-Ghorrah, M., Petit, A., & Dessaux, Y. (1992). Evidence for a correlation between auxin production and host plant species among strains of Pseudomonas syringae subsp. savastanoi. Applied and Environmental Microbiology, 58(5), 1780–1783.

    Article  CAS  Google Scholar 

  7. Ku, S. Y., Hong, S. H., & Jo, G. S. (2006). Isolation and characterization of plant growth-promoting rhizobacteria (PGPR) in soil contaminated with heavy metals. Korea Society of Environmental Engineers., 12, 1354–1361.

    Google Scholar 

  8. Lee, A., & Bae, B. (2011). Improved germination and seedling growth of Echinochloa crus-galli var. frumentacea in heavy metal contaminated medium by inoculation of a multiple-plant growth promoting rhizobacterium (m-PGPR). Journal of Soil and Groundwater Environment, 16(5), 9–17.

    Article  Google Scholar 

  9. Lee, E. Y., & Hong, S. H. (2013). Plant growth-promoting ability by the newly isolated bacterium Bacillus aerius MH1RS1 from indigenous plant in sand dune. Journal of Korean Society of Environmental Engineers, 35(10), 687–693.

    Article  Google Scholar 

  10. Li, M., Guo, R., Yu, F., Chen, X., Zhao, H., Li, H., & Wu, J. (2018). Indole-3-acetic acid biosynthesis pathways in the plant-beneficial bacterium Arthrobacter pascens ZZ21. International Journal of Molecular Sciences, 19(2), 443.

    Article  Google Scholar 

  11. Kim, W., & Song, H. (2012). Interactions between biosynthetic pathway and productivity of IAA in some rhizobacteria. Korean Journal of Microbiology, 48(1), 1–7.

    Article  CAS  Google Scholar 

  12. Myo, E. M., Ge, B., Ma, J., Cui, H., Liu, B., Shi, L., Jiang, M., & Zhang, K. (2019). Indole-3-acetic acid production by Streptomyces fradiae NKZ-259 and its formulation to enhance plant growth. BMC Microbiology, 19(1), 155.

    Article  Google Scholar 

  13. Park, M. K., Park, Y. J., Kim, M. J., Kim, M. C., Ibal, J. C., Kang, G. U., Lee, G. D., Tagele, S. B., Kwon, H. J., Kang, M. S., Kim, M. H., Kim, S. Y., & Shin, J. H. (2020). Complete genome sequence of a plant growth-promoting bacterium Pseudarthrobacter sp. NIBRBAC000502772, isolated from shooting range soil in the Republic of Korea. Korean Journal of Microbiology, 56, 390–393.

    Google Scholar 

  14. Ehmann, A. (1977). The van URK-Salkowski reagent — a sensitive and specific chromogenic reagent for silica gel thin-layer chromatographic detection and identification of indole derivatives. Journal of Chromatography A, 132(2), 267–276.

    Article  CAS  Google Scholar 

  15. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method. Methods, 25(4), 402–408.

    Article  CAS  Google Scholar 

  16. Mohite, B. (2013). Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. Journal of Soil Science and Plant Nutrition, 13, 638–649.

    Google Scholar 

  17. Abusham, R. A., Rahman, R. N. Z. A., Salleh, A. B., & Basri, M. (2009). Optimization of physical factors affecting the production of thermo-stable organic solvent-tolerant protease from a newly isolated halo tolerant Bacillus subtilis strain Rand. Microbial Cell Factories, 8(1), 20. https://doi.org/10.1186/1475-2859-8-20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bilkay, I. S., Karakoc, S., & Aksoz, N. (2010). Indole-3-acetic acid and gibberellic acid production in Aspergillus niger. Turkish Journal of Biology, 34, 313–318.

    CAS  Google Scholar 

  19. Jasim, B., John, C. J., Shimil, V., Jyothis, M., Radhakrishnan, E., & K. (2014). Studies on the factors modulating indole-3-acetic acid production in endophytic bacterial isolates from Piper nigrum and molecular analysis of ipdc gene. Journal of Applied Microbiology, 117(3), 786–799.

    Article  CAS  Google Scholar 

  20. Khamna, S., Yokota, A., Peberdy, J. F., & Lumyong, S. (2010). Indole-3-acetic acid production by Streptomyces sp. isolated from some Thai medicinal plant rhizosphere soils. EurAsian Journal of BioSciences, 4, 23–32.

    Article  CAS  Google Scholar 

  21. Fretes, C. E., Sembiring, L., & Purwestri, Y. A. (2013). Characterization of Streptomyces spp. producing indole-3-acetic acid as biostimulant agent. Indonesian Journal of Biotechnology, 18, 83–91.

    Article  Google Scholar 

  22. Chandra, S., Askari, K., & Kumari, M. (2018). Optimization of indole acetic acid production by isolated bacteria from Stevia rebaudiana rhizosphere and its effects on plant growth. Journal of Genetic Engineering and Biotechnology, 16(2), 581–586.

    Article  Google Scholar 

  23. Mandal, S. M., Mondal, K. C., Dey, S., & Pati, B. R. (2007). Optimization of cultural and nutritional conditions for indole 3-acetic acid (IAA) production by a Rhizobium sp. isolated from root nodules of Vigna mungo (L.) Hepper. Research Journal of Microbiology, 2, 239–246.

    Article  CAS  Google Scholar 

  24. Sridevi, M., Yadav, N. C. S., & Mallaiah, K. V. (2008). Production of indole-acetic-acid by Rhizobium isolates from Crotalaria species. Research Journal of Microbiology, 3, 276–281.

    Article  CAS  Google Scholar 

  25. Yoon, S. Y., Hong, E. S., Kim, S. H., Lee, P. C., Kim, M. S., Yang, H. J., & Ryu, Y. W. (2012). Optimization of culture medium for enhanced production of exopolysaccharide from Aureobasidium pullulans. Journal of Bioprocess and Biosystems Engineering, 35, 167–172.

    Article  CAS  Google Scholar 

  26. Widawati, S. (2020). Isolation of indole acetic acid (IAA) producing Bacillus siamensis from peat and optimization of the culture conditions for maximum IAA production. Earth and Environmental Science, 572, 12–25.

    Google Scholar 

  27. Sa-uth, C., Rattanasena, P., Chandrapatya, A., & Bussaman, P. (2018). Modification of medium composition for enhancing the production of antifungal activity from Xenorhabdus stockiae PB09 by using response surface methodology. International Journal of Microbiology, 2018, 3965851–3965810. https://doi.org/10.1155/2018/3965851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Emmami, S., Alikhani, H. A., Pourbabaei, A. A., Etesami, H., Sarmadian, F., & Motessharezadeh, B. (2019). Assessment of the potential of indole-3-acetic acid producing bacteria to manage chemical fertilizers application. International Journal of Environmental Research, 13(4), 603–611.

    Article  Google Scholar 

  29. Chen, D., Han, Y., & Gu, Z. (2006). Application of statistical methodology to the optimization of fermentative medium for carotenoids production by Rhodobacter sphaeroides. Process Biochemistry, 41(8), 1773–1778.

    Article  CAS  Google Scholar 

  30. Hamza, T. A., & Woldesenbet, F. (2017). Optimization of culture growth parameters for production of protease from bacteria, isolated from soil. Bioscience and Bioengineering, 3, 1–10.

    Google Scholar 

  31. Nutaratat, P., Monprasit, A., & Srisuk, N. (2017). High-yield production of indole-3-acetic acid by Enterobacter sp. DMKU-RP206, a rice phyllosphere bacterium that possesses plant growth-promoting traits. 3. Biotech., 7, 305.

    Google Scholar 

  32. Ozdal, M., Ozdal, O. G., Sezen, A., Algur, O. F., & Kurbanoglu, E. B. (2017). Continuous production of indole-3-acetic acid by immobilized cells of Arthrobacter agilis. 3 Biotech, 7, 23. https://doi.org/10.1007/s13205-017-0605-0.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bose, A., Shah, D., & Keharia, H. (2013). Production of indole-3-acetic-acid (IAA) by the white rot fungus Pleurotus ostreatus under submerged condition of Jatropha seedcake. Mycology., 4(2), 103–111.

    Article  CAS  Google Scholar 

  34. Garg, V., Kukreja, K., Gera, R., & Singla, A. (2015). Production of indole-3-acetic acid by berseem (Trifolium Alexandrinum L.) rhizobia isolated from Haryana, India. Agricultural Science Digest - A Research Journal, 35(3), 229–232.

    Article  Google Scholar 

Download references

Funding

This work was supported by a grant from the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment (MOE), of the Republic of Korea (NIBR202013103).

Author information

Authors and Affiliations

Authors

Contributions

S.H.H and H.J.Y. contributed to designing this study. Material preparation, data collection, and analysis were performed by S.H.H. The first draft of the manuscript was written by S.H.H. and H.J.Y. Y.G.P. and J.M.P. commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yoo Gyeong Park.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ham, S., Yoon, H., Park, JM. et al. Optimization of Fermentation Medium for Indole Acetic Acid Production by Pseudarthrobacter sp. NIBRBAC000502770. Appl Biochem Biotechnol 193, 2567–2579 (2021). https://doi.org/10.1007/s12010-021-03558-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03558-0

Keywords

Navigation