Skip to main content

Advertisement

Log in

MicroRNA Tough Decoy Knockdowns miR-195 and Represses Hypertrophy in Chondrocytes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cartilage hypertrophy is a condition in which the cells are completely differentiated, and new morphological changes and mineralization prevent proper cellular functions. The occurrence of hypertrophy during differentiation fails current regenerative strategies for treatment. Strategies to minimize hypertrophy in chondrocytes are categorized into two levels of protein and gene. Among these strategies, one way to affect multiple pathways involved in the development of hypertrophy is to manage microRNA activity in cells. Recent miRNA profiling studies have shown that miR-195-5p upregulates through the transition from chondrogenic to hypertrophic state. Bioinformatics assessment of microRNA targets also indicates that several genes repressed by miR-195-5p play important roles in processes related to hypertrophy. The aim of this study was to develop a microRNA Tough Decoy to suppress miR-195-5p and investigate whether it can prevent a hypertrophic state in chondrocytes. The Tough Decoy (TUD) was designed and evaluated bioinformatically and then cloned into the pLVX-Puro plasmid. The TUD function was validated by Dual-Luciferase assay and qRT-PCR. After delivering TUD to C28/I2 chondrocytes cultured in a hypertrophic medium, hypertrophic differentiation was assessed by histochemical staining, quantitative RT-PCR of hypertrophy marker genes, and alkaline phosphatase activity. Results showed that the TUD could inhibit miRNA efficiently and downregulate hypertrophic markers such as RUNX2, alkaline phosphatase, and collagen 10 significantly compared with the control group. Alcian blue and alizarin red staining also demonstrated the optimal effect of gene constructs on tissue properties and mineralization of the TUD group. Delivering the miR-195-5p Tough Decoy to the cartilage cells can prevent the occurrence of hypertrophy in chondrocytes and could be considered as a candidate for the treatment of other diseases such as osteoarthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gauci, S. J., Golub, S. B., Tutolo, L., Little, C. B., Sims, N. A., Lee, E. R., Mackie, E. J., & Fosang, A. J. (2008). Modulating chondrocyte hypertrophy in growth plate and osteoarthritic cartilage. Journal of Musculoskeletal & Neuronal Interactions, 8(4), 308–310.

    CAS  Google Scholar 

  2. Sekiya, I., Vuoristo, J. T., Larson, B. L., & Prockop, D. J. (2002). In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis. Proceedings of the National Academy of Sciences of the United States of America,99, 4397–4402.

    Article  CAS  Google Scholar 

  3. Van der Kraan, P. M., & Van den Berg, W. B. (2012). Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration? Osteoarthritis and Cartilage, 20(3), 223–232.

    Article  Google Scholar 

  4. Cancedda, R., Dozin, B., Giannoni, P., & Quarto, R. (2003). Tissue engineering and cell therapy of cartilage and bone. Matrix Biology, 22(1), 81–91.

    Article  CAS  Google Scholar 

  5. Koelling, S., & Miosge, N. (2009). Stem cell therapy for cartilage regeneration in osteoarthritis. Expert Opinion on Biological Therapy, 9(11), 1399–1405.

    Article  Google Scholar 

  6. Şafak, A. S., Abdik, E. A., Abdik, H., Taşlı, P. N. and Şahin, F. (2019) A novel approach to septal perforation repair: septal cartilage cells induce chondrogenesis of hASCs in vitro. Applied biochemistry and biotechnology, 188, 942–951.

  7. Nehrer, S., Domayer, S., Dorotka, R., Schatz, K., Bindreiter, U., & Kotz, R. (2006). Three-year clinical outcome after chondrocyte transplantation using a hyaluronan matrix for cartilage repair. European Journal of Radiology, 57, 3–8.

    Article  CAS  Google Scholar 

  8. Yang, L., Tsang, K. Y., Tang, H. C., Chan, D., & Cheah, K. S. (2014). Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation. Proceedings of the National Academy of Sciences,111, 12097–12102.

    Article  CAS  Google Scholar 

  9. Chen, S., Fu, P., Cong, R., Wu, H., & Pei, M. (2015). Strategies to minimize hypertrophy in cartilage engineering and regeneration. Genes & diseases, 2, 76–95.

    Article  Google Scholar 

  10. Kouhkan, F., Hafizi, M., Mobarra, N., Mossahebi-Mohammadi, M., Mohammadi, S., Behmanesh, M., Zomorrod, M. S., Alizadeh, S., Lahmy, R., & Daliri, M. (2014). miRNAs: a new method for erythroid differentiation of hematopoietic stem cells without the presence of growth factors. Applied Biochemistry and Biotechnology, 172(4), 2055–2069.

    Article  CAS  Google Scholar 

  11. Neshati, V., Mollazadeh, S., Bazzaz, B. S. F., De Vries, A. A., Mojarrad, M., Naderi-Meshkin, H., Neshati, Z., Mirahmadi, M., & Kerachian, M. A. (2018). MicroRNA-499a-5p promotes differentiation of human bone marrow-derived mesenchymal stem cells to cardiomyocytes. Applied Biochemistry and Biotechnology, 186(1), 245–255.

    Article  CAS  Google Scholar 

  12. Barter, M. J., Tselepi, M., Gómez, R., Woods, S., Hui, W., Smith, G. R., Shanley, D. P., Clark, I. M., & Young, D. A. (2015). Genome-wide microRNA and gene analysis of mesenchymal stem cell chondrogenesis identifies an essential role and multiple targets for miR-140-5p. Stem Cells, 33, 3266–3280.

    Article  CAS  Google Scholar 

  13. Gabler, J., Ruetze, M., Kynast, K. L., Grossner, T., Diederichs, S., & Richter, W. (2015). Stage-specific miRs in chondrocyte maturation: differentiation-dependent and hypertrophy-related miR clusters and the miR-181 family. Tissue Engineering Part A, 21, 2840–2851.

    Article  CAS  Google Scholar 

  14. Mullokandov, G., Baccarini, A., Ruzo, A., Jayaprakash, A. D., Tung, N., Israelow, B., Evans, M. J., Sachidanandam, R., & Brown, B. D. (2012). High-throughput assessment of microRNA activity and function using microRNA sensor and decoy libraries. Nature Methods, 9, 840.

    Article  CAS  Google Scholar 

  15. Rennie, W., Liu, C., Carmack, C. S., Wolenc, A., Kanoria, S., Lu, J., Long, D., & Ding, Y. (2014). STarMir: a web server for prediction of microRNA binding sites. Nucleic Acids Research, 42, W114–W118.

    Article  CAS  Google Scholar 

  16. Vejnar, C. E., & Zdobnov, E. M. (2012). MiRmap: comprehensive prediction of microRNA target repression strength. Nucleic Acids Research, 40, 11673–11683.

    Article  CAS  Google Scholar 

  17. Barta, T., Peskova, L., & Hampl, A. (2016). miRNAsong: a web-based tool for generation and testing of miRNA sponge constructs in silico. Scientific reports,6, 36625.

    Article  CAS  Google Scholar 

  18. Denman, R. B. (1993). Using RNAFOLD to predict the activity of small catalytic RNAs. Biotechniques, 15, 1090–1095.

    CAS  PubMed  Google Scholar 

  19. Gibcus, J. H., Tan, L. P., Harms, G., Schakel, R. N., de Jong, D., Blokzijl, T., Möller, P., Poppema, S., Kroesen, B.-J., & van den Berg, A. (2009). Hodgkin lymphoma cell lines are characterized by a specific miRNA expression profile. Neoplasia (New York, NY),11, 167.

    Article  CAS  Google Scholar 

  20. Johnstone, B., Hering, T. M., Caplan, A. I., Goldberg, V. M., & Yoo, J. U. (1998). In vitrochondrogenesis of bone marrow-derived mesenchymal progenitor cells. Experimental Cell Research, 238(1), 265–272.

    Article  CAS  Google Scholar 

  21. Ham, O., Song, B.-W., Lee, S.-Y., Choi, E., Cha, M.-J., Lee, C. Y., Park, J.-H., Kim, I.-K., Chang, W., & Lim, S. (2012). The role of microRNA-23b in the differentiation of MSC into chondrocyte by targeting protein kinase A signaling. Biomaterials, 33(18), 4500–4507.

    Article  CAS  Google Scholar 

  22. Karlsen, T. A., Jakobsen, R. B., Mikkelsen, T. S., & Brinchmann, J. E. (2013). microRNA-140 targets RALA and regulates chondrogenic differentiation of human mesenchymal stem cells by translational enhancement of SOX9 and ACAN. Stem Cells and Development, 23, 290–304.

    Article  Google Scholar 

  23. Mackay, A. M., Beck, S. C., Murphy, J. M., Barry, F. P., Chichester, C. O., & Pittenger, M. F. (1998). Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Engineering, 4, 415–428.

    Article  CAS  Google Scholar 

  24. Peng, B., Chen, Y., & Leong, K. W. (2015). MicroRNA delivery for regenerative medicine. Advanced Drug Delivery Reviews, 88, 108–122.

    Article  CAS  Google Scholar 

  25. Ebert, M. S., Neilson, J. R., & Sharp, P. A. (2007). MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nature Methods, 4, 721.

    Article  CAS  Google Scholar 

  26. Sun, L.-L., Li, W.-D., Lei, F.-R., & Li, X.-Q. (2018). The regulatory role of microRNAs in angiogenesis-related diseases. Journal of Cellular and Molecular Medicine, 22, 4568–4587.

    Article  CAS  Google Scholar 

  27. Haraguchi, T., Ozaki, Y., & Iba, H. (2009). Vectors expressing efficient RNA decoys achieve the long-term suppression of specific microRNA activity in mammalian cells. Nucleic Acids Research, 37, e43–e43.

    Article  Google Scholar 

  28. Liu, L., Chen, L., Xu, Y., Li, R., & Du, X. (2010). microRNA-195 promotes apoptosis and suppresses tumorigenicity of human colorectal cancer cells. Biochemical and Biophysical Research Communications, 400, 236–240.

    Article  CAS  Google Scholar 

  29. Xu, T., Zhu, Y., Xiong, Y., Ge, Y. Y., Yun, J. P., & Zhuang, S. M. (2009). MicroRNA-195 suppresses tumorigenicity and regulates G1/S transition of human hepatocellular carcinoma cells. Hepatology, 50(1), 113–121.

    Article  CAS  Google Scholar 

  30. Ebrahimi, A., Nikokar, I., Zokaei, M., & Bozorgzadeh, E. (2018). Design, development and evaluation of microRNA-199a-5p detecting electrochemical nanobiosensor with diagnostic application in triple negative breast cancer. Talanta, 189, 592–598.

    Article  CAS  Google Scholar 

  31. Honardoost, M., & Rad, S. M. A. H. (2018). Triangle of AKT2, miRNA, and tumorigenesis in different cancers. Applied Biochemistry and Biotechnology, 185, 524–540.

    Article  CAS  Google Scholar 

  32. Singh, R., Yadav, V., & Saini, N. (2015). MicroRNA-195 inhibits proliferation, invasion and metastasis in breast cancer cells by targeting FASN, HMGCR, ACACA and CYP27B1. Scientific Reports, 5, 17454.

    Article  CAS  Google Scholar 

  33. Gu, Y. L., Rong, X. X., Wen, L. T., Zhu, G. X., & Qian, M. Q. (2017). miR-195 inhibits the proliferation and migration of chondrocytes by targeting GIT1. Molecular Medicine Reports, 15(1), 194–200.

    Article  CAS  Google Scholar 

  34. Ito, K., Maruyama, Z., Sakai, A., Izumi, S., Moriishi, T., Yoshida, C., Miyazaki, T., Komori, H., Takada, K., & Kawaguchi, H. (2014). Overexpression of Cdk6 and Ccnd1 in chondrocytes inhibited chondrocyte maturation and caused p53-dependent apoptosis without enhancing proliferation. Oncogene, 33, 1862.

    Article  CAS  Google Scholar 

  35. Zhang, M., Xie, R., Hou, W., Wang, B., Shen, R., Wang, X., Wang, Q., Zhu, T., Jonason, J. H., & Chen, D. (2009). PTHrP prevents chondrocyte premature hypertrophy by inducing cyclin-D1-dependent Runx2 and Runx3 phosphorylation, ubiquitylation and proteasomal degradation. Journal of Cell Science, 122(Pt 9), 1382–1389.

    Article  CAS  Google Scholar 

  36. Cao, X., Duan, Z., Yan, Z., Li, Y., Li, L., Sun, J., Han, P., Li, P., Wei, L., & Wei, X. (2019). miR-195 contributes to human osteoarthritis via targeting PTHrP. Journal of Bone and Mineral Metabolism, 37(4), 711–721.

    Article  CAS  Google Scholar 

  37. Almeida, M. I., Silva, A. M., Vasconcelos, D. M., Almeida, C. R., Caires, H., Pinto, M. T., Calin, G. A., Santos, S. G., & Barbosa, M. A. (2016). miR-195 in human primary mesenchymal stromal/stem cells regulates proliferation, osteogenesis and paracrine effect on angiogenesis. Oncotarget,7, 7.

    Article  Google Scholar 

Download references

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Funding

This research was financially supported by the deputy of research, Guilan University of Medical Sciences, Iran (grant number: IR-96123).

Author information

Authors and Affiliations

Authors

Contributions

P.A.P.: performed experiments and co-wrote the paper. F.R.: performed experiments. M.H.R.: designed and performed experiments. SMT R.T.: co-wrote the paper. A.E.: designed and performed experiments, performed bioinformatics analyses, analyzed data, and co-wrote the paper.

Corresponding author

Correspondence to Ammar Ebrahimi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi Pashaki, P., Rahim, F., Habibi Roudkenar, M. et al. MicroRNA Tough Decoy Knockdowns miR-195 and Represses Hypertrophy in Chondrocytes. Appl Biochem Biotechnol 191, 1056–1071 (2020). https://doi.org/10.1007/s12010-020-03229-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03229-6

Keywords

Navigation