Skip to main content
Log in

In Silico and in Vitro Physicochemical Screening of Rigidoporus sp. Crude Laccase-assisted Decolorization of Synthetic Dyes—Approaches for a Cost-effective Enzyme-based Remediation Methodology

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The objective of this paper is to compare in silico data with wet lab physicochemical properties of crude laccase enzyme isolated from Rigidoporus sp. using wheat bran as solid substrate support towards dye decolorization. Molecular docking analysis of selected nine textile and non-textile dyes were performed using laccase from Rigidoporus lignosus as reference protein. Enzyme-based remediation methodology using crude enzyme enriched from solid state fermentation was applied to screen the effect of four influencing variables such as pH, temperature, dye concentration, and incubation time toward dye decolorization. The extracellular crude enzyme decolorized 69.8 % Acid Blue 113, 45.07 % Reactive Blue 19, 36.61 % Reactive Orange 122, 30.55 % Acid Red 88, 24.59 % Direct Blue 14, 18.48 % Reactive Black B, 16.49 % Reactive Blue RGB, and 11.66 % Acid Blue 9 at 100 mg/l dye concentration at their optimal pH at room temperature under static and dark conditions after 1 h of incubation without addition of any externally added mediators. Our wet lab studies approach, barring other factors, validate in silico for screening and ranking textile dyes based on their proximity to the T1 site. We are reporting for the first time a combinatorial approach involving in silico methods and wet lab-based crude laccase-mediated dye decolorization without any external mediators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Saratale, R. G., Saratale, G. D., Chang, J. S., & Govindwar, S. P. (2009). Journal of Hazardous Materials, 166, 1421–1428.

    Article  CAS  Google Scholar 

  2. Diego, M., Fernández, M. F., & Sanromán, M. Á. (2012). The Scientific World Journal. doi:10.1100/2012/398725.

  3. Rieger, P. G., Meier, H. M., Gerle, M., Vogt, U., Groth, T., & Knackmuss, H. G. (2002). Journal of Biotechnology, 94, 101–123.

    Article  CAS  Google Scholar 

  4. Pinheiro, H. M., Touraud, E., & Thomas, O. (2004). Dyes & Pigments, 61, 121–139.

    Article  CAS  Google Scholar 

  5. Stolz, A. (2001). Applied Microbiology and Biotechnology, 56, 69–80.

    Google Scholar 

  6. Borchert, M., & Libra, J. A. (2001). Biotechnology and Bioengineering, 75, 313–321.

    Article  CAS  Google Scholar 

  7. Forgacs, E., Cserháti.T., & Oros., G. (2004). Environment International, 30, 953–971.

  8. Ahlström, L. H., Eskilsson, C. S., & Björklund, E. (2005). Trends in Analytical Chemistry, 24(1), 49–56.

    Article  Google Scholar 

  9. Rajendran, R., Sundaram, S. K., & Uma Maheswari, K. (2011). Journal of Environmental Science and Technology, 4(6), 568–578.

    Article  CAS  Google Scholar 

  10. Daneshvar, N., Ayazloo, M., Khataee, A.R., & Pourhassan, M. (2007). Bioresource Technology, 98, 1176–1182.

  11. Azmi, W., Sani, R.K., & Banerjee, U.C. (1998). Enzyme and Microbial Technology, 22,185–191.

    Google Scholar 

  12. Murugesan, K., Nam, I., Kim, Y., & Chang, Y. (2006). Journal of Enzyme Microbial Technology. doi:10.1016/j.enzmictec.2006.08.028.

  13. Jing, W., Byung-Gil, J., Kyoung-Sook, K., Young-Choon, L., & Nak-Chang, S. (2009). Journal of Environmental Sciences, 21, 960–964.

    Article  Google Scholar 

  14. Sarnthima, R., Khammuang, S., & Svasti, J. (2009). Biotechnology and Bioprocess Engineering, 14, 513–522.

    Article  CAS  Google Scholar 

  15. Neifar, M., Jaouani, A., Ellouze-Ghorbel, R., Ellouze-Chaabouni, S., & Penninckx, M. J. (2009). Letters in. Applied Microbiology, 49(1), 73–78.

    Article  CAS  Google Scholar 

  16. Kandelbauer, A., Erlacher, A., Cavaco-Paulo, A., & Guebitz, G. M. (2004). Biocatalysis and Biotransformation, 22, 331–339.

    Article  CAS  Google Scholar 

  17. Stoilova, I., Krastanov, A., & Stanchev, V. (2010). Advances in Bioscience and Biotechnology, 1, 208–215.

    Article  CAS  Google Scholar 

  18. Zeng, X., Cai, Y., Liao, X., Zeng, X., Li, W., & Zhang, D. (2011). Journal of Hazardous Materials, 187, 517–525.

    Article  CAS  Google Scholar 

  19. Navaneetha, S., Vivanco, J. M., Decker, S. R., & Reardon, K. F. (2012). Trends in Biotechnology, 30(7), 362–363.

    Article  Google Scholar 

  20. Navaneetha, S., Vivanco, J. M., Decker, S. R., & Reardon, K. F. (2011). Trends in Biotechnology, 29(10), 480–489.

    Article  Google Scholar 

  21. Suresh, P. K., Sridhar, S., & Chinnathambi, V. (2012). Trends Biotechnology, 30(7), 362–363.

    Article  Google Scholar 

  22. Moilanen, U., Osma, J. F., Winquist, E., Leisola, M., & Couto, S. R. (2010). Engineering in Life Sciences, 10(3), 242–247.

    Article  CAS  Google Scholar 

  23. O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchinson, G. R. (2011). Journal of Cheminformatics, 3(33).

  24. Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Journal of Computational Chemistry, 19(14), 1639–1662.

    Article  CAS  Google Scholar 

  25. Geldenhuys, W.J., Gaasch, K.E., Watson, M., Allen, D.D., & Van der Schyf, C.J. (2006). Drug Discovery Today, 11, 127–132.

  26. Wolf, L. K. (2009). Chemical & Engineering News, 87, 31.

    Google Scholar 

  27. Szklarz, G. D., Antibus, R. K., Sinsabaugh, R. L., & Linkins, A. (1989). Mycology, 81, 234–238.

    Article  CAS  Google Scholar 

  28. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  29. Roriz, M. S., Osma, J. F., Teixeira, J. A., & Couto, S. R. (2009). Journal of Hazardous Materials., 169, 691–696.

    Article  CAS  Google Scholar 

  30. Hétnyi, C., & Spoel, D. V. D. (2002). Protein Science, 11, 1729–1737.

    Article  Google Scholar 

  31. Kroemer, R. T. (2007). Current Protein and Peptide Science, 8, 312–328.

    Article  CAS  Google Scholar 

  32. Khan, M. S., Khan, M. K., Siddiqui, M. H., & Arif, J. M. (2011). European Review for Medical and Pharmacological Sciences, 15(8), 916–930.

    CAS  Google Scholar 

  33. Reyes, C. M., & Kollman, P. A. (2000). Journal of Molecular Biology, 297, 1145–1158.

    Article  CAS  Google Scholar 

  34. Joy, S., Nair, P. S., Hariharan, R., & Pillai, M. R. (2006). In silico Biology, 6, 601–605.

    CAS  Google Scholar 

  35. Solomon, E. I., Sundaram, U. M., & Machonkin, T. E. (1996). Chemical Reviews, 96, 2563–2606.

    Article  CAS  Google Scholar 

  36. Morozova, O. V., Shumakovich, G. P., Gorbacheva, M. A., Shleev, S. V., & Yaropolov, A. I. (2007). Biochemistry (Moscow), 72(10), 1136–1150.

    Article  CAS  Google Scholar 

  37. Zille, A., Górnacka, B., Rehorek, A., & Cavaco-Paulo, A. (2005). Applied and Environmental Microbiology, 71(11), 6711–6718.

    Article  CAS  Google Scholar 

  38. Cheng, W., & Harper, W. F., Jr. (2012). Enzyme and Microbial Technology; 50(3), 204–208.

    Article  CAS  Google Scholar 

  39. Vyas, B. R. M., & Molitoris, H. P. (1995). Applied and. Environmental Microbiology, 61(11), 3919–3927.

    CAS  Google Scholar 

  40. Michniewicz, A., Ledakowicz, S., Ullrich, R., & Hofrichter, M. (2008). Dyes and Pigments, 77(2), 295–302.

    Article  CAS  Google Scholar 

  41. Theerachat, M., Morel, S., Guieysse, D., Remaud-Simeon, M., & Chulalaksananukul, W. (2012). African Journal of Biotechnology, 11(8), 1964–1969.

    CAS  Google Scholar 

  42. Wang, T., Lu, L., Li, G., Li, J., Xu, T., & Zhao, M. (2011). African Journal of Biotechnology, 10(75), 17186–17191.

    CAS  Google Scholar 

  43. Huang, S. Y., Grinter, S. Z., & Zou, X. (2010). Physical Chemistry Chemical Physics, 12, 12899–12908.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P K Suresh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sridhar, S., Chinnathambi, V., Arumugam, P. et al. In Silico and in Vitro Physicochemical Screening of Rigidoporus sp. Crude Laccase-assisted Decolorization of Synthetic Dyes—Approaches for a Cost-effective Enzyme-based Remediation Methodology. Appl Biochem Biotechnol 169, 911–922 (2013). https://doi.org/10.1007/s12010-012-0041-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-0041-x

Keywords

Navigation