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standalone pieces, they often need to be put together in 
order to function in their intended real-world contexts [1–4]. 
Welding is the method of choice in several sectors (includ-
ing the automotive, aviation, hydrocarbon, pharmaceutical, 
power, and agricultural industries) for joining thick and 
thin, and often incompatible materials to easily produce effi-
cient, durable, and cost-effective products [5–8]. Welding 
saves time and money when compared to other methods like 
adhesive bonding and mechanical fastening of joining mate-
rials. It creates a weld so strong and durable that it’s nearly 
impossible to detach the joined pieces. The American Weld-
ing Society (AWS) recognizes 94 distinct welding methods, 
one of which is gas metal arc welding (GMAW) [9–11].

GMAW has been employed in a broad range of indus-
tries since its commercialization in the late 1950s, including 
shipyards, gasoline and oil pipelines, pressure vessels, boiler 
pipes, heat exchangers, coal conversion, and chemical parts. 
There are three ways in which metal can be transferred: 
globular arc transfer, spray arc transfer, and shortcircuit-
ing arc transfer. Out of these three modes of metal transfer, 
the shortcircuiting mode of metal transfer is quite popular 

1 Introduction

Technology advancement in today’s fast-paced world 
compels nearly all factories and engineering companies 
to produce long-lasting, high-quality goods at competitive 
prices. While many products are created independently as 
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Motivated by the crescente demand for eco-friendly and worker-safe welding techniques, this study optimizes current (A), 
voltage (V), and gas flow rate (GFR) for regulated metal deposition (RMD) welding of ASME SA387 Gr.11 Cl.2 steel. 
Employing MEGAFIL 237 M metal cored filler wire and a Taguchi L9 orthogonal array, bead-on-plate trials were con-
ducted to evaluate heat-affected zone (HAZ), depth of penetration (DOP), and bead width (BW). A unique dual-pronged 
optimization approach was implemented. The utility function method, combined with Taguchi’s signal-to-noise (S/N) 
ratio, maximized desirable and minimized undesirable responses. Additionally, TOPSIS with Taguchi S/N ratio identified 
the optimal process parameters. Both optimization strategies converged on identical. A = 135 A, V = 14 V, and GFR = 13 L/
min. Notably, voltage emerged as the most influential factor in the mean S/N response table, highlighting its critical role 
in controlling weld quality. The proposed procedures offer a robust framework for determining optimal RMD welding 
conditions in pipeline applications. This not only enhances weld integrity and worker safety but also paves the way for 
sustainable manufacturing and continuous quality improvement in the field.
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due to its attributes like versatility in welding metals of dif-
ferent thicknesses and out-of-position welding capability. 
Although the short-circuiting method of metal transfer has 
its benefits, it also has certain downsides. In turn, it pro-
duces localized arc heat, which slows down the pace of the 
deposition process. When welding thick plates (6.35 mm or 
higher), cold lapping or a lack of fusion might develop if 
the best procedure is not used. When the machinery isn’t 
optimized properly, excessive spatter results from incorrect 
short-circuiting, which causes the unit to overheat [12–14].

To address the aforementioned issues, Miller Electric 
Mfg. LLC developed a revolutionary welding approach that 
improves on the conventional shortcircuiting mode of the 
GMAW technique. The manufacturer named this novel tech-
nique “regulated metal deposition” (RMD) due to its nature 
of controlling and adjusting the welding arc precisely with 
respect to the base material [15–17]. The company claims 
that this advanced method employs a sophisticated welding 
current waveform to control the short circuit. The thickness 
and constitution of the metal being joined are two factors 
that frequently affect waveform. As may be seen in Fig. 1, 
it can be broken down into seven separate stages. Each of 
these seven stages contributes to a larger cycle known as the 
RMD cycle [18]. Detailed explanations of the RMD cycle’s 
individual stages can be found in Fig. 2.

The “ball” stage of an RMD cycle is characterized by a 
spike in current that melts the electrode head and results in 
a short circuit. The current drops off during the subsequent 

“background” stage, permitting the short circuit to take 
place. The “pre-short” stage then follows, during which the 
current is lowered to a safe level to shield the steady weld 
puddle from the arc force. When the molten head is in con-
tact with the base metal at a lower current, this is known 
as the “wet” stage. The “pinch” stage involves a quick 
rise in current at the electrode head, producing the “pinch 
effect,” and resulting in a short circuit. The pinch effect is 
observed during the transitional period between the “pinch” 
and “clear” stages. As the “clear” stage concludes, the mol-
ten head separates from the electrode. The “blink” stage, in 
which short circuits are broken and the current significantly 
declines, closes the circuit and ends the cycle [19–21].

Numerous scholars have suggested using GMAW and/or 
GTAW methods for welding low-alloy steel. Nevertheless, 
there are constraints inherent to these methods. On one side, 
GMAW is fast but unable to produce spatter-free and slag-
free welds; on the other hand, GTAW produces spatter-free 
and slag-free welds but has the limitation of slow welding 
speed. Therefore, these conventional welding approaches 
are not financially sustainable in the current production 
context. This means that improvements in welding technol-
ogy are essential. Take a look at the characteristics of RMD 
welding (in Table 1), which is as quick as GMAW and cre-
ates spatter- and slag-free welds like GTAW [22–24].

Quality is a top priority in today’s production perspec-
tive. Quality is the extent to which a product satisfies its 
intended consumer. The product’s quality is determined by 

Fig. 1 Different stages of metal transfer in the RMD process [18]
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how well it meets the needs of its intended purpose in a 
variety of contexts [25–27]. Weld quality in the welding 
industry is primarily determined by the mechanical behav-
ior of the weldments, which are in turn controlled by their 
chemical and metallurgical compositions. Weld bead geom-
etry (WBG), which is closely connected to welding vari-
ables, also affects the mechanical-metallurgical aspects of 
the weldment. To summarize, welding variables determine 
weld quality. In the metalworking industry, arc welding tech-
niques are widely recognized as among the most versatile 
and effective. A complicated interaction between a number 
of process variables affects the weld chemistry, mechanical 
characteristics, and metallurgical aspects of the weld joint, 
as well as the WBG. As a result, it is important to iden-
tify the best welding process conditions for achieving the 
specified weld quality. On the other hand, the optimization 

should be carried out in such a manner that all objectives 
are met concurrently. This type of optimization approach is 
known as multi-response optimization [28–33].

According to the available publications, several research-
ers have spent time perfecting techniques for modeling, 
simulating, and optimizing traditional arc welding proce-
dures. To determine welding variables resulting in an ideal 
approach, a comprehensive study has been performed to 
identify correlations between welding variables, WBG, 
weld quality, and productivity [34–37]. WBG during electric 
arc welding was studied by Mistry [38], who looked at how 
different welding factors impacted the process. The effects 
of the input factors V, A, WS, and base metal-electrode tip 
distance on the resulting BW, DOP, and BH were analyzed. 
The research recommends using full penetration for the most 
robust and cost-effective welds. Furthermore, the research 
suggests that currently has a significant impact on penetra-
tion whereas voltage affects BW. RMD welding on low-car-
bon steel pipes was carried out by Costa and Vilarinho [39]. 
Tests have been conducted while the input variables of wire 
feed speed (WFS), WS, trim (TM), arc control, and weaving 
are all considered. No intrinsic defects like porosity, absence 
of fusion, or cracking were found during analysis. After 
conducting a macroscopic analysis of the specimens, it was 
discovered that raising the WFS led to an improvement in 

Table 1 Comparative advantages of the RMD technique over conven-
tional arc welding processes
Attributes RMD GMAW GTAW
Travel speeds (in./min) 6–12 6–10 3–5
Training time required Less Moderate More
Spatter and slag generation No Yes No
Post-weld re-work required No Yes Seldom
Repositioning of pipes (starts and 
stops)

Seldom Often Often

Fig. 2 The RMD cycle 
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a higher current resulted in more reinforcement and pen-
etration. To optimize the voltage, current, welding speed, 
and arc length in arc welding for rail car bracket assembly, 
Daniyan et al. [44] used the Taguchi approach and response 
surface methods (RSM). Taguchi analysis was used to 
assess how well the process performed in terms of hardness 
and distortion, and RSM was employed to analyze how the 
various input components interacted with one another. The 
researchers also published the results of an analysis of vari-
ance (ANOVA) and a regression analysis of the empirical 
study in order to assess the efficacy of the suggested model. 
Additional notable applications of optimization approaches 
in welding have been described by Vora et al. [45]. Datta et 
al. [46]. Dhas and Dhas [47], Karpagaraj et al. [48]. Beny-
ounis and Olabi [49], and Chen et al. [50]. , .

Based on the research published so far, it is evident that a 
lot of effort has been put into assessing the HAZ, DOP, and 
BW properties of conventional arc welding methods. Weld-
ing factors such as V, A, GFR, etc. have been optimized using 
a variety of methods throughout the process. Researchers 
haven’t even tried much with more sophisticated GMAW 
methods like RMD welding. Machine specifications and 
the RMD process’s applicability are the sole topics covered 
in the manufacturer’s literature. However, no experimental 
evidence is discussed. As a result, there is a dearth of cut-
ting-edge information about RMD welding. Therefore, the 
purpose of this research is to evaluate the WBG of low alloy 
steel and provide a novel optimization approach by employ-
ing utility function and TOPSIS approaches, both of which 
are important additions to the existing academic database 
covering this cutting-edge welding technique.

2 Materials and methods

RMD bead-on-plate (BOP) welding was carried out on a 
Cr-Mo Gr. 11 Cl. 2 (500 mm x 150 mm x 06 mm) steel 
plate with the assistance of semi-automatic welding equip-
ment (Miller’s continuous 500). In everyday conversation, 
chromium-molybdenum steel is referred to as 1 ¼ chrome, 
although its official designation in the industry is either 
ASME SA387 or ASTM A387. Cr-Mo Gr. 11 Cl. 2 is appli-
cable in many industries and general purposes such as the 
oil & gas industry, petrochemical industry, boilers & heat 
exchangers, shipping, automobile ancillaries, steel plants; 
cement industry, sugar industry, nuclear & aerospace pants, 
centrifugal industry, steel plants, port building, wastewa-
ter management, paper & pulp industry, and infrastruc-
ture building. It is useful in raising temperatures because 
it can handle high temperatures. It has higher flexibility, 
durability, longevity, good dimensional accuracy, weld-
ability, excellent surface finishing, higher tensile strength, 

penetration and root reinforcement (RR) and a drop in face 
reinforcement (RF). The TM has also been the subject of 
research. WBG grows in tandem with the TM. This results 
in a reduction of RF. This study by Nouri et al. [40] ana-
lyzed the effect of pulsed-GMAW factors on the WBG. WS, 
WFS, vertical angle, and nozzle-to-workpiece distance were 
selected as the main factors. The degree to which they had 
an effect was determined by analyzing the WBG produced. 
Improvements in WFS are associated with improvements in 
BH, BW, and DOP, whereas decreases in these responses 
are seen with increments in WS. GMAW and RMD welding 
were used by Das et al. [41] to join 10 mm thick 2.25 Cr-1.0 
Mo grade steel. Electrodes made of metal-cored wire were 
utilized as the filler. Samples were heat-treated after weld-
ing so that any resulting microstructural changes could be 
studied. The welded joints were also put through mechani-
cal testing, with favorable findings. Joints with a root mis-
alignment (High/Low) of 1.5 mm can be produced using 
either traditional or enhanced short-circuit GMAW proce-
dures, as determined by a comparison of both techniques by 
Vilarinho and Nascimento [16]. Although updated GMAW 
welding procedures produced more durable components, 
traditional welding techniques produced weaker welds. To 
predict the WBG while accumulating 316 L stainless steel 
onto structural steel IS2062, Murugan et al. [42] created 
mathematical equations employing a five-level factorial 
method. OCV, WFS, WS, and nozzle-to-plate distance have 
all been studied for their effects on the responses of dilu-
tion, reinforcement, penetration, and width. The accuracy 
and practicality of the proposed modeling techniques have 
been verified. In order to aid in the choosing of process 
variables to obtain the required level of the overlay, graphi-
cal representations of the primary and interaction impacts 
of the control variables on dilution and WBG have been 
shown. Submerged arc welding (SAW) was performed on 
high-strength low-alloy steel by Sharma et al. [43] to exam-
ine the impact of various input variables on the final WBG. 
The WBG during cooling was observed as a function of 
the input factors of heat input and preheat temperatures. To 
demonstrate the relationship between preheating tempera-
ture and cooling time, a mathematical model was developed 
using the response surface method. Artificial neural net-
works (ANN) and genetic algorithms (GA) were utilized by 
Nagesh and Dutta [43] to investigate the WBG and provide 
the optimal result for GTAW. The “multiple layer regres-
sion” technique was utilized to create mathematical mod-
els, which took into account both the impacts of the input 
variables and the two-factor interactions. The effect of SAW 
elements on WBG was studied by Choudhary et al. [44]. 
Welding current, OCV and nozzle-to-plate distance were 
the input factors. BW, reinforcement, and penetration were 
the process’s results. In the investigation, it was shown that 
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greater duty factor, decreased mill scale difficulties, slag-
free and spatter-free weld formation, lessened weld flaws 
like porosity, lack of fusion, and undercut, and eliminates 
cleaning and post-weld activities like grinding [50, 51]. Due 
to these features, a 1.2 mm thick metal-cored ‘MEGAFIL 
237 M’ wire was used as the wire electrode. The elements 
of the ASME SA387—Gr. 11—Cl. 2 steel as well as the 
wire electrode are presented in Table 2. As a shielding gas, 
90% argon and 10% carbon dioxide have been combined. 
The specs of the welding machine are presented in Table 3, 
and Fig. 3 illustrates how the machine should be configured 
for the study.

Adjustments made to the welding variables have a sub-
stantial impact on the dynamic properties of GMAW. In 
terms of voltage, current, shielding gas, the diameter of 
filler metal, feeder speed, and gas flow rate, these kinds of 
adjustments can take place. Current (A), voltage (V), and 
gas flow rate (L/min) were taken into account as the govern-
ing variables for the study based on the accessibility and 
configuration of the welding equipment. Table 4 displays 
the variations that were made to these variables at three dis-
tinct levels.

When preparing and analyzing experimental studies, the 
design of experiments (DOE) is an essential tool. Since the 
experimental studies are so time- and resource-intensive, 
establishments are unable to conduct the trials at all avail-
able variable settings and evaluate the optimal potential 

sturdiness, and can withstand heavy loads. These plates can 
entirely stress cracking corrosion resistance, crevice corro-
sion resistance, and pitting resistance [45–47].

The choice of consumables like filler material has a sig-
nificant impact on both efficient and cost-effective manu-
facturing and the emission of harmful gases throughout the 
process. As filler materials, fabricators typically employ 
solid filler wire (SFW), flux-cored filler wire (FCFW), 
and metal-cored filler wire (MCFW) during arc welding 
operations. The MCFWs are the most recent addition to the 
welding world and offer the most advantages in terms of 
performance, profitability, and sustainability [48, 49]. Incor-
porating features from both the SFW and FCFW, MCFWs 
provide a unique set of advantages. They combine the rapid 
deposition rates of an FCFW with the streamlined opera-
tion of an SFW. When comparing deposition rates, a 1.2 mm 
MCFW and a 1.6 mm MCFW are superior to both an SFW 
and an FCFW [48]. MCFW has quicker travel speeds, 

Table 2 Chemical composition of ASME SA387–Gr.11–Cl.2 steel and MEGAFIL 237 M
Element Chromium (Cr) Molybdenum (Mo) Carbon (C) Manganese (Mn) Phosphorus (P) Sulfur (S) Silicon (Si)
Base metal (Content %) 1.00–1.50 0.45–0.65 0.05–0.17 0.40–0.65 0.035 0.035 0.50
Wire electrode (Content 
%)

2.3 1.1 0.07 1.0 0.015 0.015 0.3

Table 3 Continuum 500 welding machine’s specifications
Type of input power supply 3Φ
Voltage range 10–44 V
Current range 20–600 A
Maximum OCV
(Open Circuit Voltage)

75 V

Rated welding output 500 amps 
@ 40 load 
volts; 100% 
Duty cycle

Fig. 3 Miller’s Continuum 500 
welding machine
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namely Utility and TOPSIS have been explored with Tagu-
chi Method.

3.1 Utility function approach

Utility functions are a commonly accepted concept in multi-
criteria decision-making (MCDM) problems due to their 
simplicity and ease of understanding for decision-makers. 
They do not require any additional constraints beyond 

findings [52–57]. Because of this, the importance of DOE 
cannot be overstated. Some of the DOE methods with their 
benefits and drawbacks are shown in Fig. 4 [58–62].

Taguchi’s orthogonal array (OA) idea is used here 
because of its many practical advantages. It’s a simple con-
cept that performs well in a wide range of industrial contexts, 
thereby making it an adaptable yet uncomplicated method. 
It improves process or product quality by concentrating on 
the mean value of an output attribute that is close to the goal 
value rather than on the value within defined limitations. 
And despite the fractional nature of the approach, it guar-
antees parity across all levels of all variables [57, 63–66]. 
In light of this, the experimental sets (Table 5) have been 
arranged according to Taguchi’s L9 OA.

Nine bead-on-plate (BOP) experiments were carried 
out as per the aforementioned experimental sets utilizing a 
Continuum 500 welding machine at a steady speed of 8.85 
inches per minute (ipm). Figure 5 contains a presentation of 
the BOP experiments that were conducted.

Once the plates had cooled, they were sliced to 30 mm x 
10 mm (as shown in Fig. 6) using a MAXMEN band saw 
machine. The output characteristics, including DOP, HAZ, 
and BW, were measured by inspecting the cut specimens 
underneath a microscope after they had been polished, 
etched, and hydrated with water. Figure 7 depicts the mea-
surement terminology for all nine specimens, and Table 6 
lists the measured responses.

3 Result and discussion

This section discusses the applied approaches and their 
outcomes for obtaining the best welding input variables for 
WBG during RMD welding of ASME SA387 Gr.11 Cl.2 
steel. In this context, two statistical optimization techniques 

Table 4 Parameters and their levels
Governing variables Level (L)

1 2 3
A 125 135 145
V 14 16 18
GFR 13 16 19

Table 5 Experimental sets based on Taguchi’s L9 OA
Trial No. A V GFR
1. 125 14 13
2. 125 16 16
3. 125 18 19
4. 135 14 16
5. 135 16 19
6. 135 18 13
7. 145 14 19
8. 145 16 13
9. 145 18 16

Fig. 6 Sample preparation for Macroscopy

 

Fig. 5 BOP trials on ASME SA387 Gr.11 Cl.2 steel plates

 

Fig. 4 General DOE techniques 
used in engineering applications 
[58–62]
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this case, the overall utility function can be understood as 
follows:

U (A1, A2, . . . . . . . . .Ak) =
∑k

x=1
WxUx(Ax) (3)

In Eq. (3), Wx  represents the importance or influence 
assigned to the output response x . The total of all the 
weights assigned to all the output responses should be 1. 
The output values are evaluated based on lower and higher 
values using two random arithmetic values 0 and 9 (prefer-
ence numbers) as benchmarks. Equation (4) can be used to 
evaluate the preference number Np  on a logarithmic scale.

Np = O ∗ log
Ax

A′
x

 (4)

In Eq. (4), Ax  represents the value of output character-
istic x . A′

x  is the lower value of output characteristic x . 
O  is a constant and can be calculated using Eq. (5), only 
if Ax = A∗ (where A∗  is the optimal value), then Np = 9
. Hence

The value of output response x  is represented by Ax  in 
Eq. (4). The lower value of output response x  is represented 
by A′

x . O  is a constant that can be found using Eq. (5) if Ax  
is equal to the optimal value, denoted as A∗ . If this is the 
case, then Np  is equal to 9. Therefore,

O =
9

logAx
A′

x

 (5)

The utility in its whole is expressed as:

U =
∑k

x=1
Wx(Np) (6)

Under the condition:

∑k

x=1
Wx = 1 (7)

The S/N ratio concept developed by Taguchi involves three 
different output characteristics: nominal-is-best (NB), lower-
is-better (LB), and higher-is-better (HB). Among these, HB 
is relevant for evaluating utility functions. Therefore, when 
maximizing the utility function, the output attributes con-
sidered in the assessment process will be automatically opti-
mized, either by being minimized or maximized, depending 
on the specific situation. The optimization method used is 
illustrated in Fig. 8.

A series of experiments were conducted using the L9 
orthogonal array and the resulting responses, including 

the aggregation formula. In the utility-based Taguchi pro-
cess, an MCDM problem can be transformed into a single 
response optimization problem using a response function, 
also known as an arbitrary function, which acts as an over-
all utility index. The goal is to optimize this function to 
obtain the solution [67–69]. According to the utility func-
tion approach [70], if Ax  is the performance indicator of 
an output response x  and there are k  output characteris-
tics evaluating the data set, the joint utility function can be 
expressed as follows:

U (A1, A2, . . . . . . . . .Ak) = f {U1(A1) , U2(A2), . . . . . . . . . Uk(Ak)}  (1)

In Eq. (1), the utility of the xth
 output response is repre-

sented by (U1(A1 )) . Equation (2) shows the overall utility 
function, which is equal to the sum of the utilities of indi-
vidual output characteristics.

U (A1, A2, . . . . . . . . .Ak) =
∑k

x=1
Ux(Ax) (2)

The weightage given to the output responses is based on 
their relative importance and impact on the process. In 

Table 6 Measured output responses
Trial No. HAZ DOP BW

All dimensions are in ‘mm’
1. 1.100 1.300 5.920
2. 1.910 1.538 7.450
3. 1.980 1.404 7.340
4. 1.260 1.278 5.720
5. 1.860 1.396 7.470
6. 1.740 2.117 7.750
7. 1.510 1.476 7.200
8. 1.770 1.293 6.820
9. 2.510 1.625 8.850

Fig. 7 Measurement terminology of output responses
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determined using Eqs. 4 and 5. For HAZ and BW, lower 
values were preferable, while a higher value was desired for 
DOP. As shown in Table 7, all of these responses were con-
verted to a scale ranging from 0 to 9, with 0 representing the 
lowest utility value and 9 representing the highest. By using 
Eq. 6, it was then possible to combine all of these responses 
into a single overall utility index, which is also presented 
in Table 7. The Taguchi S/N ratio was then applied to the 
overall utility to find the optimal welding condition. From 
Fig. 9, it was determined that the optimal welding condition 
is a current of 135 A, a voltage of 14 V, and a gas flow rate 
of 13 L/min. Additionally, Table 8 shows that voltage is the 
variable that has the greatest impact on the results.

3.2 TOPSIS method

The TOPSIS method, short for Technique for Order Pref-
erence by Similarity to Ideal Solution, is a multi-attribute 

HAZ, DOP, and BW, were recorded and presented in Table 6. 
Since these responses conflicted with each other, it was nec-
essary to convert them to a common scale. In this context, 
the utility function approach was used to combine all the 
conflicting criteria into a single index called the overall util-
ity. First, the individual utility for each of the responses was 

Table 7 S/N ratio and predicted S/N ratio for overall utility
U1 U2 U3 Uoverall SNRA2 PSNRA2
9.000 0.277 8.291 5.856 15.35195 18.36375
2.980 3.299 3.551 3.277 10.30846
2.588 1.598 3.858 2.681 8.566765
7.518 0.000 9.000 5.506 14.81698
3.270 1.598 3.496 2.788 8.905653
3.997 9.000 2.737 5.245 14.39442
5.544 2.590 4.255 4.129 12.3179
3.811 0.139 5.373 3.107 9.848206
0.000 4.312 0.000 1.437 3.150487

Fig. 8 The flow path of the Utility Taguchi 
approach
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Step 1 Creating a decision matrix:

D =

A1

A2

.

Ai

.

Am





x11 x12 . x1j x1n

x21 x22 . x2j x2n

. . . . .

xi1 xi2 . xij .

. . . . .

xm1 xm2 . xmj xmn





 (8)

Ai  (where i  ranges from 1  to m ) represents the poten-
tial replacements, and xj  (where j  ranges from 1  to n ) 
represents the characteristics that relate to the substitute’s 
performance. The performance of Ai  for attribute Xj.is rep-
resented by xij .

Step 2 Decision matrix normalization;

rij =
xij√∑m
i=1x

2
ij

 (9)

rij represents the performance of Ai  normalized for attri-
bute Xj.

decision-making technique used to identify the best options 
for solving a problem within a solution space. It was intro-
duced in 1981 by Ching-Lai Hwang and Kwangsun Yoon 
and is known for its simplicity and ease of understanding 
and implementation [71–73]. The method involves evalu-
ating the degree of proximity to the ideal solution, which 
should be as close as possible to the positive ideal solution 
(made up of the best performance values among all options) 
and as far as possible from the negative ideal solution (made 
up of the worst performance values) [73–75]. TOPSIS has 
a wide range of applications, including engineering and 
design, logistics, marketing, manufacturing, and supply 
chain management, and it is straightforward to program 
and use, with a consistent number of steps regardless of 
the problem size [76, 77]. The method involves converting 
multiple attributes into a single response through a series of 
following steps [74]:

Table 8 S/N ratios mean response table
Level A V GFR
1 11.409 14.162 13.198
2 12.706 9.687 9.425
3 8.439 8.704 9.93
Delta 4.267 5.458 3.773
Rank 2 1 3

Fig. 9 Main effect plot for Uoverall 
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J ′ = {j = 1,2, 3, . . . . . . . . . , n |j} : nonbeneficial 
features

Step 5 Measuring the distance between substitutes and the 
ideal solution. The distance between each substitute and the 
ideal solution is determined using n-dimensional Euclidean 
distance calculations using these equations.

S+
i =

√∑n

j=1

(
yij − y+

j

)2
i = 1,2, . . . . . . . . . , m

 (13)
S−

i =
√∑n

j=1

(
yij − y−

j

)2
i = 1,2, . . . . . . . . . , m

 (14)

Step 6 Evaluation of the overall performance coefficient 
nearest to the ideal solution.

C+
i =

S−
i

S+
i + S−

i

, i = 1,2, . . . . . . . . . , m; 0 ≤ C+
i ≤ 1  (15)

A flow diagram of the optimization process used in this 
study is shown in Fig. 10.

The experiments were conducted using the L9 orthogonal 
array, and the results (HAZ, DOP, and BW) were recorded 
and presented in Table 9. The results were then normalized 
using Eq. 9 and the normalized values are shown in Table 9. 
In this study, all of the responses were given equal impor-
tance, so equal weightage was assigned to each response 
using Eq. 10 (shown in Table 9). Since the responses are 
conflicting, it is necessary to determine the most favorable 
and least favorable solutions (shown in Table 10) using 
Eqs. 11 and 12, respectively. In this context, lower values for 
HAZ and BW were preferred, so the lowest values for these 
responses were considered the most favorable solutions and 

Step 3 Assigning weightage to the normalized decision 
matrix:

V = [vij] V = wjr ij

D =





y11 y12 . y1j y1n

y21 y22 . y2j y2n

. . . . .

yi1 yi2 . yij .

. . . . .

ym1 ym2 . ymj ymn





 (10)

where, 
∑n

j=1wj = 1

Step 4 Identifying the most favorable (positive best) and 
least favorable (negative worst) solutions.

a) Most favorable solu-
tion:A

+ =
{(

max
i

yij |j ∈ J
)

,
(
min

i
yij |j ∈ J ′| i = 1,2, . . . . . . . . . , m

)}

 (11)=
{
y+

1 , y+
2 , . . . . . . . . . , y+

j , . . . . . . . . . y+
n

}

b) Least favorable solu-
tion:A

− =
{(

min
i

yij |j ∈ J
)

,
(
max

i
yij |j ∈ J ′| i = 1,2, . . . . . . . . . , m

)}

 (12)=
{
y−

1 , y−
2 , . . . . . . . . . , y−

j , . . . . . . y−
n

}

where,
J = {j = 1,2, 3, . . . . . . . . . , n |j} : beneficial features

Table 9 Experimental data for normalization and assigned weightage
N-HAZ N-DOP N-BW W-HAZ W-DOP W-BW
0.206 0.286 0.273 0.068 0.097 0.090
0.357 0.339 0.344 0.118 0.115 0.113
0.370 0.308 0.339 0.122 0.105 0.112
0.236 0.282 0.264 0.078 0.096 0.087
0.348 0.308 0.345 0.115 0.105 0.114
0.326 0.467 0.358 0.107 0.159 0.118
0.283 0.326 0.332 0.093 0.111 0.110
0.331 0.284 0.315 0.109 0.097 0.104
0.470 0.359 0.408 0.155 0.122 0.135

Table 10 Most favorable (positive best) and least favorable (negative 
worst) solutions

HAZ DOP BW
A- 0.155 0.096 0.135
A+ 0.068 0.159 0.087

Fig. 10 TOPSIS method’s flow path
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ii. Analysis of the S/N ratio revealed voltage as the most 
influential factor, highlighting its critical role in control-
ling HAZ, DOP, and bead width.

iii. The established methods offer a reliable framework for 
determining optimal RMD welding conditions in vari-
ous applications.

iv. Implementing these optimized parameters can enhance 
welding integrity, and worker safety, and pave the way 
for sustainable manufacturing and continuous qual-
ity improvement in pipeline welding across various 
industries.

vice versa. Similarly, higher values for DOP were preferred, 
so the highest value for DOP was considered the most favor-
able solution and vice versa. The separation distance from 
the positive and negative ideal solutions was then calculated 
using Eqs. 13 and 14, respectively, and listed in Table 11. 
The closeness coefficient was then determined using Eq. 15, 
with the highest value being the preferred result. Finally, the 
Taguchi method of S/N ratio was applied to the closeness 
coefficient to determine the optimal welding combination, 
which was found to be a current of 135 A, a voltage of 14 V, 
and a gas flow rate of 13 L/min (shown in Fig. 11). The 
predicted S/N ratio was also calculated to validate the opti-
mal combination, and it was observed from Table 11 that 
the predicted S/N ratio was higher than the other computed 
S/N ratios, supporting the chosen optimal combination. The 
mean response table in Table 12 shows that voltage is the 
most significant governing variable.

4 Conclusions

This study evaluates and optimizes current, voltage, and gas 
flow rate for regulated metal deposition (RMD) welding on 
ASME SA387 Gr. 11 Cl. 2 steel in terms of the heat-affected 
zone (HAZ), depth of penetration (DOP), and bead width 
(BW). The following conclusions are derived:

i. Using a dual-pronged optimization approach (Utility-
Taguchi and TOPSIS with Taguchi S/N ratio), this study 
identified the optimal welding parameters as 135 A cur-
rent, 14 V voltage, and 13 L/min gas flow rate.

Table 11 The separation distance from the most favorable (positive 
best) and least favorable (negative worst) solutions together with 
closeness coefficient and S/N ratios
S+ S- C+ SNRA1 PSNRA1
0.0618 0.0980 0.613 -4.24584 -1.18307
0.0714 0.0470 0.397 -8.02477
0.0806 0.0411 0.338 -9.42624
0.0639 0.0909 0.587 -4.62744
0.0765 0.0463 0.377 -8.4715
0.0502 0.0805 0.616 -4.20627
0.0589 0.0684 0.537 -5.39756
0.0767 0.0553 0.419 -7.55582
0.1059 0.0260 0.197 -14.0967

Table 12 S/N ratios mean response table
Level A V GFR
1 -7.232 -4.757 -5.336
2 -5.768 -8.017 -8.916
3 -9.017 -9.243 -7.765
Delta 3.248 4.486 3.58
Rank 3 1 2

Fig. 11 Main effects plot for 
parametric settings
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The work may further be extended by investigating the 
applicability of these optimization methods to other steel 
grades and material types beyond ASME SA387 Gr.11 
Cl.2. Development and validation of predictive models and 
simulations can further optimize RMD welding settings and 
exploring the relationship between process parameters and 
microstructure/mechanical properties.
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