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Abstract
Recent advances in machine learning have revolutionized numerous research domains by extracting the hidden features and
properties of complex systems, which are not otherwise possible using conventional ways. One such development can be seen
in designing smart materials, which intersects the ability of microfluidics and metamaterials with machine learning to achieve
unprecedented abilities. Microfluidics involves generating and manipulating fluids in the form of liquid streams or droplets
from microliter to femtoliter regimes. However, analysis of such fluid flows is always tiresome and challenging due to the
complexity involved in the integration and detection of various chemical or biological processes. On the other hand, acoustic
metamaterials manipulate acoustic waves to achieve unparalleled properties, which is not possible using natural materials.
Nonetheless, the design of such metamaterials relies on the expertise of specialists or on analytical models that require an
enormous number of expensive function evaluations, making this method extremely complex and time-consuming. These
complexities and exorbitant function evaluations of both fluidic and metamaterial systems embark on the need for the support
of computational tools that can identify, process, and quantify the large amounts of intricacy, thusmachine learning techniques.
This review discusses the shortcomings of microfluidics and acoustic metamaterials, which are overcome by neoteric machine
learning approaches for building smartmaterials. The following reviewendsbyproviding the importance and future perspective
of integrating machine learning and optimization approaches with microfluidic-based acoustic metamaterials to build smart
and efficient intelligent next-generation materials.
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1 Introduction

Artificial intelligence and machine learning methods have
metamorphosed the existing research domains and set up new
pathways for researchers, academics, and industrialists to
establish far-fetched research goals. These interdisciplinary
tools have benefitted emerging research areas by exploring
the complex phenomenon of existing systems and extracting
the useful features based on the historic data values [1–3].
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Moreover, forecasting or predicting the future events/states
is another paradigm achieved by integrating machine learn-
ing techniques in various systems [4, 5]. Leveraging the
capability of machine learning algorithms to efficiently pro-
cess the large data sets and surrogating the computationally
expensive analysis with relatively cheap black-box models
have led to the development of intelligent or smart systems
to achieve superlative performance in contrast to conven-
tional ways [6–8]. In this review, we present the development
of smart systems focusing on two domains of microflu-
idics and acoustic metamaterials, which are recently been
merged to develop next-generation fluid-based metamateri-
als. It has been observed that integrating the merits of fluidic
systems and acoustic metamaterials with machine learn-
ing techniques resulted in the intelligent systems enabling
their applicability in real-time for varied application spaces.
This work demonstrates an efficient paradigm for engineer-
ing multifunctional microfluidic devices and smart acoustic
materials by utilizing the machine learning (ML) algorithms
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such as deep neural, convolutional and recurrent networks,
autoencoders, reinforcement learning, etc. We have first
described the important works on microfluidic integrated
machine learning intelligent devices where ML algorithms
have been utilized to efficiently optimize the design of chal-
lenging and cumbersome existing microfluidic systems. In
addition, we highlighted the unique approach of develop-
ing acoustofluidic systems, which combines the strengths
of microfluidics and acoustics to achieve the remarkable
capabilities of acoustic metamaterials. Although extensive
work has been done in designing acoustic metamaterials
with machine learning techniques, allowing for real-time
design by addressing expensive function calls, no studies
have reported combining microfluidic acoustic metamate-
rials with machine learning. Through this review, we are
proposing the possibility of merging these emerging fields
with the neotericmachine learning approaches to create inno-
vative acoustofluidic machine learning smart materials with
exceptional capabilities.

Over the past two decades, microfluidics has emerged as
a potential tool that deals with the manipulation and control
of the fluids frommicroliter (10−6 L) to femtoliter (10−15 L)
regimes [9, 10]. The fluid surface properties such as viscosity
and surface tension become dominant at themicro/nano scale
[11], and microfluidics defines the physics of fluids at this
scale [12]. Microfluidics has become a solution for various
industries and applications, such as, cosmetics [13], biomed-
ical [14], electronics [15], lab on chip [16–18], sensing [19],
generation of micron-sized droplets [20, 21] etc. However,
the design and analysis of suchmicrofluidic systems is a skill-
ful and time-consuming task [22].Depending upon the nature
of the application and analysis, the competence of machine
learning models in learning and generalizing the large data
sets have proven to be successful in such scenarios [23, 24].

Acoustic metamaterials (AMMs), on the other hand, are
the artificially createdmaterials, designedwith extraordinary
properties to manipulate, and control sound waves [25, 26].
The most common examples of acoustic metamaterials [27]
are Helmholtz resonators [28], space-coiling metamaterial
[29, 30], slit-type metamaterials [31] and many more. Con-
ventionally, the design of these metamaterials relies on the
time-consuming and complex modelling methods, thus hin-
dering its applicability and limiting its application spaces.
The emphasis nowadays is to develop smart metamaterial
structures to attain chimeric tunability and reconfigurabil-
ity by integrating them with machine learning methods.
Recently, studies have been carried out to integrate the
microfluidic systems with metamaterials to achieve wide-
scale tunability and applicability of next-gen metamaterials
in real-time.

Machine learning (ML) approaches have emerged as
powerful tools for designing novel smart materials with
engineered properties. Various types of machine learning

techniques include- supervised learning (where the algorithm
is trained on labelled data), unsupervised learning (where
the algorithm is trained on unlabelled data), reinforcement
learning (in which the algorithm learns by interacting with
an environment), and Deep Learning (which utilizes arti-
ficial neural networks to model complex patterns in large
datasets). Machine learning (ML) algorithms have been
utilized in the design of both microfluidic devices and acous-
tic metamaterials. As per a recent review article [32], the
database construction process for building metamaterials
can be assessed using quantum–mechanical, atomistic, and
macroscale simulation methods. Another article [33] dis-
cusses the integration of machine learning withmicrofluidics
and its potential applications. In the case of microfluidics,
ML algorithms have also been utilized to efficiently optimize
the design of acoustofluidic devices. A unique approach for
design automation of acoustofluidic devices was introduced
in a study by integrating machine learning and multi-
objective heuristic optimization approaches [34]. In the case
of acoustic metamaterials, ML algorithms have been used to
develop efficient design methodologies for one-dimensional
periodic and non-periodic metamaterial systems [35]. The
study proposes two ML-based approaches for the design of
these systems: a reinforcement learning-based approach for
periodic metamaterials and a neural network-based approach
for non-periodic metamaterials. The proposed approaches
are capable of modeling different metamaterial assemblies
satisfying user-defined properties while requiring only a one-
time network training procedure [35].

In summary, the integration of machine learning with
microfluidics and metamaterials can enable the design of
novel smart materials with engineered properties. ML-based
approaches and simulation methods can be used to create a
database for building smart materials, making it possible to
achieve effective results. Specifically, smart materials are a
special type of material that can have one or more properties
significantly altered in a controlled manner through external
stimuli. Some examples of smart materials include pho-
toelectric, piezoelectric, thermochromic, and various other
materials. In this work, we demonstrate an efficient paradigm
for engineering multifunctional microfluidic devices and
acoustic metamaterials by utilizing machine learning (ML)
algorithms such as deep neural, convolutional and recur-
rent networks, autoencoders, reinforcement learning, etc.We
have first described the important works onmicrofluidic inte-
grated machine learning smart devices whereML algorithms
have been utilized to efficiently optimize the design of chal-
lenging and cumbersome existing microfluidic systems. In
addition, we highlighted the unique approach of develop-
ing acoustofluidic systems, which combines the strengths
of microfluidics and acoustics to achieve the remarkable
capabilities of acoustic metamaterials. Although extensive
work has been done in designing acoustic metamaterials
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with machine learning techniques, allowing for real-time
design by addressing expensive function calls, no studies
have been reported combining microfluidic-acoustic meta-
materials designwithmachine learning. Through this review,
we are proposing the possibility of merging these emerging
fields with the neoteric machine learning approaches to cre-
ate innovative acoustofluidicmachine learning smart systems
with exceptional capabilities.

Overall, this review brings together the convergence of
machine learning methods in the integrated systems of
fluidics-based acousticmetamaterials. Thepaper is organized
as follows: Sect. 2 describes the microfluidics-integrated
machine learning smart systems, which is followed by
reviewing the development of machine learning based intel-
ligent acoustic metamaterials in Sect. 3. Section 4 concludes
the study with future directions and perspectives.

2 Microfluidics integrated withmachine
learning

2.1 Introduction tomicrofluidics

Despite the immense potential of microfluidics in multiple
domains, analysis of fluidics at such a small regime is always
a complex and time-consuming process and generates large
amounts of data which limits its reproducibility and general-
izability [36]. In addition, microfluidics design and operation
can take months and years of iterations to optimize their
performance [33]. To remove these hindrances and offer a
wide scale applicability, in recent days, the amalgamation of
microfluidics with machine learning has led to the formation
of intelligent microfluidic devices enabling the microfluidic
systems to achieve unparalleled properties, which was not
possible earlier. Exploiting the merits of both microfluidics
(high-throughput nature, miniaturization fluid flow, and con-
trollability) and machine learning (accessing large complex
data, surrogate modelling), has led the researchers to explore
the applicability of microfluidics in real time and in high-
dimensional space with reduced computational efforts [11,
37]. Various kinds of machine learning methods categorized
such as supervised, unsupervised, reinforcement and deep
learning methods have been applied to analyse, process, and
develop intelligent microfluidic devices (Fig. 1).

2.2 Significance of machine learning inmicrofluidics

Integration of machine learning (ML) in the microfluidic
device design has demonstrated the effectiveness of the
statistical methods, thus providing a trade-off between the
analytical and numerical methods. Machine learning has
mostly been used for automated data analysis and has proven
to be effective for device performance prediction and design

automation [38]. The design ofmulticomponent microfluidic
devices is achieved through several iterations and is quite
expensive to fabricate [39]. The use of machine learning
techniques has proven to be helpful in the design of such
devices. The capability of the machine learning models to
process a large amount of data has accelerated the develop-
ment of single devices that can generate large experimental
data. Nitta et al. [40] combined the cell sorting microflu-
idic technique with neural network architecture to build the
first smart cell sorter for accurate focusing of sample cells at
the center of a two-step 3D hydrodynamic microfluidic cell
focuser. Fidalgo and Maerkl [41] have devised a general-
purpose programmable software-based microfluidic device
for large-scale microfluidic integration. This work demon-
strated the merits of using automated computing devices
for numerous applications like microfluidic display, surface
immunoassays, cell culture, and fluid metering, and active
mixing. Yu et al. [42] utilized supervised machine- learn-
ing models for classifying the microscopic images of yeast
cells in a microfluidic channel environment. A distance-
based classification technique as a combination of k-nearest
neighbour and support vector machine (SVM) is developed
to extract the useful features from a large data of microscopic
yeast images. ML has also been used to predict various com-
plex microfluidic instabilities such as Hele-Shaw flow [43].
Lendhe et al. [43] used an accurate and robust ML model to
predict the fractal pattern generated due to Saffman–Taylor
instability in Hele-Shaw flow.

Automation of the complete microfluidic systems, rang-
ing from flow control to droplet classification, is conceivable
with proper training and the use of optimal machine learn-
ing models leading to efficient droplet classification, sorting,
droplet flow recognition, and droplet size prediction [44].
Laskaripour et al. [38] categorized the fluid droplets in
different size, shapes, and frequencies bydevising an automa-
tion tool using an adaptive neuro-fuzzy interference method
trained on888data pointswith six different geometric param-
eters. In another work, Mahdi et al. [45] employed Reynolds
and capillary number data to train ML algorithm to predict
the water droplet size in glycerine oil to achieve momen-
tum in the performance of droplet generation. Banaei et al.
[46] utilized themerits of intelligentmicrofluidics in creating
a smart multiplex protein biomarker detection platform for
efficiently predicting and differentiating diseases like pan-
creatic cancer, ovarian cancer, etc. Khor et al. [47], predicted
the droplet stability in tightly packed emulsion using a 8-
dimensional convolutional auto-encoder feature extraction
model trained on 5,00,000 droplets with an improvement of
31.7% in droplet breakup as compared to conventional meth-
ods. The attempts towards automated flow control include
robotics automation of droplet microfluidics to allow simul-
taneous processing of thousands of reactions, which has also
been made possible using machine learning methods [48].
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Fig. 1 Summarization of prominent works of deploying different machine learning approaches, namely, supervised learning, unsupervised learning,
reinforcement learning and deep learning, to build smart/intelligent microfluidic devices

Reinforcement learning algorithms represent another
paradigm of the machine learning approaches where an
agent maximizes reward based on the performance within
the environment [49, 50]. The amalgamation of microflu-
idics and reinforcement learning has progressed significantly
in the last couple of years. Integrated microfluidic network
design requires a large combinatorial space and worth-
while exploration of such a design space is possible through
the learned decisions [33]. The network-based microfluidic
design identification using Reinforcement learning algo-
rithms is expected to create a unified framework that can
support a large number of droplets with varying capa-
bilities and functionalities [51]. Techniques like temporal
difference-based Q-Learning and model-free episodic con-
trollers (MFECs) have been successfully implemented in
microfluidic systems for applications like target sequencing,
droplet sorting and droplet control [52–54].

The collection of large amounts of microfluidic data as
images or pictures has recently opened the pathways for
deep learning methods to extract useful features. Chen et al.
[55] explored the predictive capability of the Deep Learn-
ing methods for cell identification. They integrated feature

extraction and deep learning with the high throughput quan-
titative imaging to retrieve label-free classification of cells
with higher operational accuracy. Wang et al. [56] utilized
the convolution networks to predict the fluid velocity and
solute concentration in randomly designed gridmicro-mixers
with 86.7% accuracy. Riordon et al. [57] categorized the deep
neural network, from an application viewpoint, into differ-
ent classifications: (a) Unstructured to unstructured neural
networks, (b) Sequence to unstructured neural networks,
(c) Sequence to sequence neural networks, (d) Image to
unstructured neural networks, and (e) Image to image neural
networks and showed their applicability in differentmicroflu-
idic biological and chemical domains. Image analysis is one
of the key traits in variousmicrofluidic experiments like rapid
throughput and multiplexing. In such cases, deep learning
can accelerate the classification process with the minimum
human intervention [58]. Zaimi et al. [59] demonstrated
the usage of image-to-image neural network architecture
and extracted a useful feature from successive frames of a
video/images, image segmentation, and depth image analy-
sis for nerve cell segmentation applications.
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Fig. 2 Schematic procedure for generating deep neural network (DNN)-based channel geometries that produce designed acoustic fields [60]

Fig. 3 Illustration of the controlled acoustic-microfluidicmanipulation setup using bulk acoustic waves and closed-loopmachine learning techniques
inside a microfluidic chip [61]

2.3 Machine learning in designing acoustofluidic
systems

Interestingly, a limited number of studies have also been con-
ducted in designing smart acoustofluidic systems using the
fusion ofmachine learningwith acousticwaves andmicroflu-
idics. Raymond et al. [60] addressed the problem of limited
patterning activities (up to one or two-dimensional grids) in
microfluidic channels to generate a desired acoustic field by
using deep neural networks (DNN). Here, at first, a spatial
variable acoustic pressure field image library consisting of
1000 s of distinct shapes is first generated bymapping acous-
tic waves with different channel geometries to train the DNN
model. This trained DNN model is then utilized to create
novelmicrochannel architectures for designingmicroparticle

patterning. Figure 2 shows the stepwise procedure for gener-
ating deep learning-based channel geometries that produce
designed acoustic fields. In another work, Yiannacou et al.
[61] worked on the design of the programmable acoustic-
microfluidic setup using bulk acousticwaves and closed-loop
machine learning control algorithms inside a microfluidic
chip for the 2Dmanipulation of droplets. Through this work,
a machine-learning-assisted particle sorting, transportation,
and merging processes of water droplets in oil, and oil
droplets in water are demonstrated, enabling the develop-
ment of a robust programmable droplet microfluidic device.
Figure 3 depicts the machine-learning-assisted manipulation
of droplets and the transport and merging of droplets inside
a programmable microfluidic chip environment.
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Table 1 Prominent works on
smart acoustic metamaterials
with ML reported in the literature

Method Comments/outcomes References

Radial basis function (RBF) network and
Quasi-Monte Carlo sequence

Deals with the amplitude optimization of
the low-frequency band gaps in AMM
by handling the expensive function
calculations using viable surrogate
optimization strategy to achieve
sub-optimal solutions at a smaller
computational effort

[69]

Artificial neural networks (ANN) By varying the weights and numbers of
PVC buttons, sound absorption
measurements are carried out for training
the artificial neural network model. This
trained model is further used to perform
the sensitivity analysis to assess the
relationship between input–output values

[70]

Gauss-Bayesian model Targeted the analytical model dependency
and large functional evaluations for the
efficient design of AMMs by using the
adaptive acquisition functions based on
machine learning using the
Gauss-Bayesian model. This results in an
improved sound absorption performance
of AMM design with fewer evaluations

[71]

Convolutional neural networks (CNN) Adopted the deep learning-based
modelling approach to reduce the
associated computational efforts and
execution time for designing the
ultra-thin acoustic meta-surface
absorbers. The proposed method
achieved the perfect absorption in λ/5.7
path length, thus breaking the
quarter-wavelength resonator theory

[72]

Reinforcement learning (RL) and artificial
neural networks (ANN)

Using machine learning-based RL and
ANN approaches, two 1D periodic and
non-periodic metamaterials are designed
to address the issue of highly intensive
search in the design space required by
conventional optimization-based
approaches for the design of AMM

[35]

3 Acoustic metamaterials integrated
withmachine learning

By periodically arranging structures, metamaterials have
opened an exciting path for acoustic and elastic wave
manipulation, which was not achievable before using nat-
ural materials [35, 62]. In recent days, the acoustics and
mechanics communities have gained significant interest in
applying ML methods in designing and optimizing meta-
material structures [37]. Various ML techniques such as
Convolution neural network (CNN) [63], Generative Adver-
sarial Networks (GAN) [64], Genetic algorithms (GA) [65],
Multilayer Perceptron (MP) [66], Auto-Encoders (AE) [67],
Reinforcement Learning (RL) [35] etc. have been adopted in
the literature in designing machine learning-based metama-
terials.

Conventionally, the design of acoustic metamaterials
(AMM) relies on the expertise of specialists based on
localized solutions or on analytical models that require an
enormous number of expensive function evaluations, highly
intensive search in the design space, and many physical and
geometrical parameters, thus making this method extremely
complex and time-consuming. Therefore, developing an
efficient design methodology for AMM design remains a
challenging problem in front of the acoustics community.
Very few works have been carried out in the literature to
extend the current knowledge of the design of AMM using
ML and Deep learning (DL) methods. Gurbuz et al. [64]
developed theML-baseddesignmethodusing the conditional
GANmethod and achievednovelAMMdesigndirectives that
can be tailored to attain desired acoustic transmission char-
acteristics to be implemented in varied application spaces
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like designing absorption layers in vehicle cabins, design
of acoustic scatterers, etc. Liu et al. [2] tackled the lim-
ited working bandwidth of the resonators and the problem
complexity of coupling resonators by using deep learning
methods.Here, the coupling effect among resonators is inves-
tigated in a broad frequency regime from 800 to 8000 Hz by
harnessing the power of CNNs for designing the broadband
AMM to realize near-perfect (~ 97%) absorption character-
istics. Tran et al. [68] have worked with sets of cylindrical
objects in a confined space and used machine learning meth-
ods to streamline the 2D configurations of the acoustic cloak
designs. In this work, an inverse design algorithm is devel-
oped by combining the variational AE trained with total
scattering cross-section data to predict the optimal arrange-
ments of cylindrical scatterers at different wavenumbers by
eliminating the use of time-consuming gradient-based opti-
mizationmethods.Otherworks conducted in designing smart
acoustic metamaterials are listed in Table 1.

4 Conclusion and futuristic directions

Over the last few years, recent advancements in machine
learning methods have gained significant attention in
microfluidics and acoustic metamaterial domains for build-
ing intelligent systems. Surpassing the drawbacks of conven-
tional systems, such as enormous expensive functional calls,
tiresome experimental processes, complex phenomena, and
many more, intelligent microfluidics and smart metamateri-
als have paved the way in establishing fanciful research goals
with reduced computational efforts in real-time. This review
has summarized the prominent works of machine learning
techniques integrated with microfluidics and acoustic meta-
material domains.

The high throughput nature and capability of dealing
with fluidics at a small-scale regime have enabled microflu-
idics to be amalgamated with numerous interdisciplinary
fields like lab-on-chip and acoustics. One such advance-
ment has been made where microfluidics is combined with
acoustics and machine learning to develop a robust pro-
grammable microfluidic device [61]. Similarly, deploying
the merits of microfluidics for active fluid control through
various actuation mechanisms has led to its integration
with acoustic metamaterial designs to achieve wide-scale
active tunability and dynamic controllability [31, 73]. How-
ever, the proposition of applying machine learning to the
combined field of microfluidic-integrated acoustic metama-
terials is still missing in the literature. Despite research
in its infancy, there lies a vast scope ahead to intersect
the ability of acoustic-microfluidics and machine learning
methods with the novel emerging acoustic metamaterials to
design efficient INtelligent Acoustic-Microfluidic Metama-
terial (INAMM) structures.
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