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Abstract
This paper presents a novel reliability-based parametric methodology for quantifying the reliability of cost estimates for new
composite aircraft components. In recent years, the aircraft production sector has increased its attention on optimizing their
compositemanufacturing operations. It has become clear that a key factor in the success of these operations is the consideration
that not only technical factors, but also economic ones as well are relevant. Composite manufacturing variability is greatly
influenced by many of these factors, and since manufacturing with composites is significantly more difficult than with
more traditional materials, there are many sources of uncertainty that could influence the reliability of manufacturing cost
estimates for new composite aircraft components. Therefore, it is worth considering these sources of uncertainty during the
cost estimation process and to quantify the reliability of the cost estimates. To demonstrate the proposed methodology, a
numerical example featuring a real-life composite aircraft component from a Boeing 787, with real-life data, is presented.
Results show that the proposed methodology can quantify the uncertainty associated with cost estimates for new composite
aircraft components in an effective manner, thereby supporting engineers in optimising the cost of their designs, helping them
avoid errors in budget definition, and enabling them to allocate resources more efficiently.
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Abbreviations

CI Confidence interval
CERs Cost estimation relationships
CDF Cumulative distribution function
DFM Design for manufacturing
LCC Life cycle cost
MAPE Mean absolute percentage error
MSE Mean square error
PCA Principal component analysis

Symbols

Y Vector of the recordedmanufacturing costs
X Matrix of the cost drivers
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yi Actual cost of the i’th historical component
ŷi Predicted cost of the i’th historical compo-

nent
β0 Intercept of the regression model
β Coefficient of the regression model
εi Term accounting for random error
k Initial number of cost drivers
p Final number of cost drivers
n Number of observations included into the

historical database
R2 Determination coefficient of the regression

model
R2

adj Adjusted determination coefficient of the
regression model

Hj,0, Hj,1 Null hypothesis and alternate hypothesis
for the partial F test

H0, H1 Null hypothesis and alternate hypothesis
for the overall F test

ta/2, n-(k+1) Student’s t-distribution parameter
ρ Pearson correlation coefficient
λ Threshold value for Pearson coefficient
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xnew Vector of the cost driver of the new com-
ponent

ŷnew Predicted cost of the new component
Fcritical Critical value of the Fisher distribution
df1, df2 Degrees of freedom of the Fisher distribu-

tion
α Level of significance in the Fisher distri-

bution
Rrequired Desired reliability value for the cost esti-

mation
Cmax Maximum budget
μ Mean value of normal distribution
σ Standard deviation of normal distribution
d Vector of the design variables of product
dU Upper limit value for the design variables
dL Lower limit value for the design variables
Costmanufacturing Manufacturing cost
CN_plies Regression coefficient related to the num-

ber of composite plies
Clenght Regression coefficient related to the length

of the component
Cradius Regression coefficient related to the corner

radius of the component
Cwidth Regression coefficient related to the width

of the component
Cflange_width Regression coefficient related to the flange

width of the component
C0 Intercept of the regression model

1 Introduction

A significant percentage of the total life cycle cost (LCC)
of an aircraft is associated with the production of its compo-
nents; studies have shown that this percentage is around 32%
[1]. As demonstrated in [2], more than 70% of the produc-
tion cost is determined in the design phase. Authors in [3]
identified data and information related to several Design for
Manufacturing (DFM) factors by analysing 100 case studies.
These factors were then evaluated by three criteria concern-
ing the importance according to experts, the applicability in
operations and the percentage of cost reduction.According to
[4], itmakesmuchmore sense to carry out amore comprehen-
sive and accurate cost analysis during the early design phase
to reduce costs before the start of the production phase. As
proved by the authors in [5] the application of their algorithm
allowed a production cost reduction of 18% by optimizing
the product design. Moreover, a careful cost analysis in the
design phase could be a point of agreement between design-
ers and manufacturers as proved by the authors in [6] where

they investigated the influence on production cost of the prod-
uct tolerances on which designers and manufacturers often
disagree. Indeed, a reliable estimate of costs is one of the key
principles to maximise a company’s efficiency and, conse-
quently, its profitability. This last aspect is highlighted in [7]
where the authors investigated the interaction between the
economic and manufacturing fields, highlighting the impor-
tance of having an estimate of the cost as soon as possible to
submit a proposal to a competitive bidding process.

With the advancement of the aerospace industry and
increasingly fierce competition in the market, presenting a
design with a low production cost can have a significant
impact on the market [8]. In recent years, composites have
becomemorewidely used in the aviation industry due to their
inherent characteristics, i.e., good corrosion and fatigue resis-
tance, higher specific strength, resulting in reduced aircraft
weight and improved performance [9]. Indeed, according
to [10] and [11] about 35% of metallic components of air-
craft were replaced with composite ones in the latest models
of aircraft. Although composite materials have proven their
superiority in terms of weight, mechanical properties, and
can provide significant savings in terms of fuel costs during
the service life of the aircraft [12], their use is often limited
due to their relatively high cost. In fact, they are about three
times more expensive per kg than aluminium alloys in terms
of raw material cost [13, 14]. Thus, cost estimation in the
early design phase of a new aircraft is particularly important
when composites materials are used [15, 16]. However, due
to the greater complexity of the techniques and an applica-
tion that is still in its early phases in the aeronautical field, the
knowledge and information available for the cost estimation
of composites is particularly scarce [4]. It is common prac-
tice to conduct a cost analysis to choose the best compromise
between cost andperformance [17, 18].Aircraft development
and production is considered a complex engineering pro-
cedure, characterised by many interconnected design steps
with long and manual production cycles, high occurrence
of technical difficulties, operational uncertainty factors, etc.
The modern aircraft industry started to use cost estimation
as a decision-making tool for processes such as production
and maintenance, as well as structural analysis.

The European project MASCOT [19] (Modular multi-
level cost Analysis Software for COmposiTe smart fuselage)
aimed to contribute to this topic by developing a multi-
disciplinary optimisation open-source software to estimate
the cost of manufacturing activities of a transport com-
posite fuselage during its design phase, integrating it in a
wider design vision that involves also CAD representation,
structural analysis, Structural and Health Monitoring (SHM)
technologies and statistical confidence. Indeed, the design
process of a fuselage is an optimization procedure involving
the geometrical and structural definition of its main com-
ponents, which are skins, stringers and frames, floor beams,
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Fig. 1 SCERLOC design vision

pressure bulkhead,windowframeandfittings.TheMASCOT
project belongs to the general framework named SHER-
LOC [20] (Structural HEalth monitoring, manufacturing and
Repair technologies for Life management Of Composite
fuselage)which design vision involves threemainmodules as
can be seen from Fig. 1: (1) the design module that provides
the GUI/CAD parametric representation of the fuselage; (2)
the structural and risk analysis module that exploits two
modules coming from SHERLOC i.e. the Finite Element
Analysis (FEM) and Probabilistic Risk Assessment (PRA)
to verify the structural requirements and manage the risks
associated with the activities on the fuselage, respectively;
finally (3) the cost analysis module that estimates the cost
related with the manufacturing processes of the fuselage. It
includes three sub-modules, i.e. Analogous, Parametric and
Bottom-Up cost estimation methods.

Therefore, the SHERLOC design loop exploits data com-
ing from all modules at each iteration of the design process
to find the optimal design alternative that meets the require-
ments of all fields involved in the design process.

The presence of different cost estimation methods makes
MASCOT more flexible enabling its use under different cir-
cumstances, i.e. the most appropriate cost estimation method
should be chosen according to the requirements and data
availability. It is worth noting that the three cost estimation
methods require different inputs to estimate the cost of a new
product achieving a different level of accuracy. In particular,
the first two methods have a lower level of accuracy than the
third ones because they use historical data to estimate the cost
of a new product but require less information about product
and manufacturing processes, therefore, are more appropri-
ate to estimate the cost of product in the early phase of design.

While the lastmethod, i.e. Bottom-Up, allowsmaking amore
accurate cost estimation but it requires detailed information
about the product and its manufacturing process. Thus, for
example in light of the above considerations, the analogous
method could be used for a quick cost estimation when lit-
tle data about the new product are known, and a high level
of accuracy is not required. The parametric cost estimation
could be used to analyse the effects of the variation of some
parameters related to the product andprocess on its cost under
specific assumptions, e.g., the newcomponentmust belong to
the same family as the historical ones (for example they must
share the same material, geometry and manufacturing pro-
cess). Finally, the Bottom-Up approach could be used to get
a detailed cost estimation under less stringent assumptions
than the parametric method since the information required
by the method allows to estimate the cost of the new product
considering different materials, geometry andmanufacturing
processes.

For the specific purposes of this paper only the parametric
cost estimation module developed for MASCOT project is
described.

The remind of the paper is organised as follows: Sect. 2
reports a literature about cost estimation methods; Sect. 3
describes the proposed methodology in detail; Sect. 4 pro-
vides a numerical example to validate the proposed method-
ology, after which Sect. 4.1 shows how the reliability of the
presented reduced regression model can be quantified, and
finally, Sect. 5 presents the conclusions.

2 Literature review

As detailed in [21], three different cost estimation methods
are usually adopted in the aeronautical field: analogue, para-
metric and bottom-up. Analogue models estimate cost by
analogywith similar existingproducts, identifying the closest
element among many available in historical data. An exam-
ple of the application of the analogous approach to estimate
the cost of space missions and maintenance for new aircraft
is given in [22] and [23] respectively. Parametric models are
also based on available data, but the cost estimation is gov-
erned by cost estimation relationships (CERs) between the
cost and certain influential parameters [24]. One example of
the parametric approach is given in [25], where a paramet-
ric equation describing the manufacturing cost of a metal
plate structure, as a function of the plate geometry, was used
to optimise the design of the plate to minimise manufactur-
ing cost. The bottom-up approach estimates the total cost by
identifying and dimensioning all components and detailing
all activities involved. An example of a bottom-up approach
applied to a composite aircraft part, with some simplified
assumptions, is given in [16] and [26]. The analogous cost
estimation method due to its characteristics is simple to use
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and very fast but on the other hand it provides a rough cost
estimate. Moreover, it is not possible to delve deeper into
the relationships among all the features that affect the cost.
In contrast, the bottom-up cost estimation method, due to its
characteristics, enables the user to make a very detailed esti-
mate, but on the other hand, it requires a significant amount
of information and a deep knowledge of the manufacturing
process.Moreover, it requires a great deal of effort in terms of
time andmoney, and it is necessary to build a different model
for each alternative design. Therefore, it is not suitable for
use in the early phases of design when little information is
known about a new product. Instead, the literature suggests
the parametric approach as the best method to use in the early
phase of the design phase [27–29] when little information
about new product is known and, due to its characteristics, it
can be used perform sensitivity analyses, i.e., what happens
to the cost if a particular feature is changed? Therefore, it is
more straightforward to analyse several alternative designs.
This is possible because the parametric method considers
several cost drivers (main factors influencing the cost) in its
formulation.

The parametric method can be traced back to the work of
Wright when he first proposed the learning curve [30]. The
technique iswidespreadwithin the aerospace industry, even if
its application has often involved relatively simple statistical
approaches. In [31] the manufacturing cost of commercial
aircraft was carried out by a parametric approach coupled
with neural networks and linear regression models created
via Principal Component Analysis (PCA); the data of 17 air-
craft projects were collected and seven global factors, such as
total weight andmaximum thrust, were identified as themain
factors influencing the cost, i.e. cost drivers. In [32], cost
drivers for material cost related to skin, sheets, extrusions,
rivets, and fabrication cost related to skin, stringers, frames
and cleats, and assembly cost involving manual/automatic
riveting, were detailed in a parametric approach to estimate
the cost of several aircraft panels; the cost estimation proce-
dure was then coupled to a simplified structural analysis to
obtain the optimal design. A simple but useful description
of the generic parametric procedure, as well as its advan-
tages and disadvantages, can be found in [33]. As detailed
by [27], a difficult aspect of parametric cost estimation is the
actual CER formulation itself; the cost model’s robustness
and reliability is heavily dependent on the type and size of
the database used. Furthermore, the quality of the represen-
tative regression models also affects the reliability of the cost
estimation tool. A further complicating factor that is related
to composites, is that the manufacturing of composite com-
ponents is more labour-intensive than traditional materials.
One consequence of this, is that the manufacturing cost of
a composite component is no longer simply related to the
empty weight of the component, but needs to be estimated
with less empirical relationships [34].

The parametric approach has some general features that
make it applicable to a wide range of applications, especially
for systems in the early phases of development. For instance
in [35] some CERs were developed for estimating the man-
ufacturing cost of commercial satellite launch vehicles. In
[36] a parametric approach was adopted to evaluate the cost
effectiveness of alternative infrastructure investments in civil
engineering; the study was limited to roadway construction
and the model was set in terms of a few data variables, no
geometrical or physical properties were taken into account.

Although the approaches taken in the past by the research
community to estimate production costs have often been
very accurate, the research community has not yet consid-
ered the reliability of its cost estimates in the context of
composite materials. There are many sources of uncertainty
that heavily influence the reliability of an estimate for the
manufacturing cost of a new composite aircraft component;
databases for previous similar components might be incom-
plete, measurements of dimensions could be incorrect, prices
of subcomponents could fluctuate for unknown reasons, the
manufacturing processes used can change over time even
for the same component etc. Therefore, it is important to
consider these sources of uncertainty during the cost estima-
tion process and quantify the reliability of the cost estimates
obtained for new composite aircraft components. This would
allow engineers to allocate costs in a more reliable manner,
avoiding errors in budget definition and enabling resources
to be allocated more effectively.

Thus, estimating the cost of a newproduct is a difficult pro-
cess [37]. In the initial design phase, there are several hidden
cost items that are not always easy to quantify, such as many
of the details of the production process, e.g., the number and
type of machines, indirect costs, labour, etc. Using the para-
metric method enables these critical issues to be overcome,
since the total cost of the component is considered, which
is obtained from historical data that indirectly considers all
cost sources, allowing for a more complete view.

In this regard, this paper proposes a new cost estima-
tion procedure that allows the full potential of the regression
method to be exploited, presenting a procedure that identifies
the most suitable parameters to be used. In addition, it allows
the reliability associated with production cost estimation to
be quantified, helping engineers to use this decision-making
tool in the optimisation cycle that starts with a design, moves
on to production cost estimation with a certain level of relia-
bility, and finally modifies the design if the cost or reliability
does notmeet the objectives. This provides both amore accu-
rate picture of how each independent variable affects cost,
allowing for more accurate project cost optimisation, and
the avoidance of errors in budget setting, allowing for more
effective resource allocation.

The main novelties of this research are as follows (i) the
development of a parametricmodelling approach that enables
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Fig. 2 Identification of the best
design alternative—design
iterative loop

the efficient choice of cost factors, considering the limitations
of linear regression; and (ii) the analysis of the reliability of
the cost estimate based on the confidence interval obtained
from the regression model created.

3 Methodology

The proposed methodology provides a costing method to use
in the early design phase of a new product to choose the best
design alternative among the suitable ones according to the
structural and cost requirements. Furthermore, a configura-
tion of the product that minimizes the probability of going
over-budget is provided by means of a reliability analysis.
Nevertheless, this must be first confirmed by the structural
and risk analysis before its final acceptance, as shown in the
design iterative loop of Fig. 2.

The parametric cost estimation method was used to esti-
mate the cost of a new component. This method estimated
the cost as a function of one or more independent variables
that are believed to be strongly correlated with it and, and
so are named “cost drivers”. In this work, multiple linear
regression was used to derive the cost estimation relation-
ship (CER). This, in its general form, appears as in Eq. (1):

Yi � β0 + β1Xi1 + β2Xi2 + · · · + βp Xik + εi i � 1, . . . , n
(1)

where Y is the dependent variable (the variable whose value
is to be estimated, i.e., the cost in this study), X is the inde-
pendent variable (the variable used to estimate the cost of
the dependent variable, i.e. “cost drivers”), n is the number
of observed values, k being the number of independent vari-
ables/cost drivers, β are the regression coefficients and εi is
a term accounting for random error. As can be noted from
Eq. (1) a database of n historical data values is necessary to
compute the β coefficients establishing in this way the rela-
tionship between the cost and cost drivers. Thus, the above
equation can be written in matrix form as:

Y � Xβ + ε (2)

where:

X �

⎡
⎢⎢⎢⎢⎣

x11 x12 · · · x1k
x21 x22 · · · x2k
...

...
. . .

...
xn1 xn2 · · · xnk

⎤
⎥⎥⎥⎥⎦
Y �

⎡
⎢⎢⎢⎢⎣

y1
y2
...
yn

⎤
⎥⎥⎥⎥⎦

β �

⎡
⎢⎢⎢⎢⎣

β1

β2
...

βk

⎤
⎥⎥⎥⎥⎦

ε �

⎡
⎢⎢⎢⎢⎣

ε1

ε2
...

εn

⎤
⎥⎥⎥⎥⎦

(3)

where the matrix X and vector Y compose the historical
database. A linear regression model can be fitted to the data
shown in Eq. (3):

(4)ŷi � β0 + β1xi1 + β2xi2 · · · + βk xik (i � 1, 2, . . . , n)

where ŷi is the predicted cost for the i’th part xi , and β0, β1,
. . . , βk are regression coefficients.

The main steps of the cost estimation module are sum-
marized in flowchart of Fig. 3, where can be seen that some
novel features are used to fully exploit the performance of
the linear regression: (i) the homoskedasticity assumption is
tested and mitigated if necessary; (ii) only variables with a
strong linear relationship and effect on the cost are used in
the regression model by the use of the Pearson coefficient;
(iii) stepwise forward procedure is used to identify the most
useful cost drivers. Following a detailed description of the
five steps shown in Fig. 3 is given.

Hypothesis The parametric cost estimation method relies
on a CER to estimate the cost of a product. CER establishes
a link between the cost (Y) and cost drivers (Xk) and, it is
inferred from the historical values included in a database.
Thus, the estimation of the cost of a new product by means
of this method requires that the new product must be similar
to the ones included in the database used to create CER,
i.e. the new component must belong to the same family of
the historical ones (for example they must share the same
material, geometry and manufacturing process).

Step 1 In the first step, a database is created for the aircraft
component under study, namely the X matrix and the Y vec-
tor of Eq. (3). To create the database, information is gathered
on the cost of other similar components, as well as the values
of the cost drivers (i.e., the characteristics that affect the cost
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Fig. 3 Flowchart of the proposed methodology for manufacturing cost estimation

of producing the product, e.g., the production time needed,
the curing time, etc.) for each of these similar components.
Cost drivers included in X matrix could be production or
design parameters. Typically, cost drivers are chosen based
on expert experience and/or data reported in the literature.
It is important that each identified cost driver is measurable
and available at an early design phase. Regarding the vector
Y , it includes the known costs of the components included
in the database. It is worth noting that Y represents the cost
of item e.g., it could be the total manufacturing cost, labour
cost, testing cost, etc. Only complete observations must be
included in the database, i.e. observations in which both the
cost and all cost driver values are known. Then the relevant
range for each cost driver is evaluated. This includes all val-
ues, from smallest to largest, for each cost driver used in
the development of the regression model. It is worth not-
ing that the product cost (Y) included in the database could

be its total production cost, thus, parametric cost estimation
can consider indirectly all cost items related to the produc-
tion of the product and overcome the uncertainty related to
the knowledge of all cost items in the early design phase
of the product. Two examples taken from literature are pro-
vided for a better comprehension of this step. Example 1.
The authors in [31] estimated the general aviation develop-
ment cost using collected data across 17 similar aircraft past
projects with seven cost drivers that are: maximum take-off
weight (tons), Mach number (Ma), maximum range (km),
maximum thrust (kips), maximum ceiling (m), maximum oil
load (L) and the length of the fuselage (ft). Thus, for each of
the 17 past aircraft projects the vector Y includes the value
of the general aviation development cost while the matrix X
includes the values of the seven cost drivers. Example 2. The
authors in [25] estimated the manufacturing cost of a plate
structure using collected data across 100 similar historical
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plates and, six cost drivers that are: outer width (m), outer
length (m), outer radius (m), inner width (m), inner length
(m) and thickness (m). Thus, for each of the 100 historical
plates the vector Y includes the value of the manufacturing
cost while the matrix X includes the value of the six cost
drivers.

Step 2 Since linear regression assumes the absence of
heteroskedasticity, the second step tests and mitigates its sig-
nificance in the database. There are several methods to test
whether the hypothesis of homoskedasticity is satisfied: the
Breusch Pagan test, theWhite test, the Goldfeld-Quandt test,
the Harvey Godfrey test and so on. Of these, the Breusch
Pagan test was used in our case study due to its widespread
use and its good compromise between simplicity and power
[38]. If heteroskedasticity is found to be significant, its effect
can be mitigated by taking the log of the matrix X in Eq. (3),
i.e., X � ln(X), before creating the regression model seen
in Eq. (4) [39] [40].

Step 3 The cost drivers (X) with the strongest relationship
with the cost are identified based on their Pearson correla-
tions coefficients with respect to the cost (Y). The Pearson
correlation coefficient is a statistical tool able to provide an
indication of how much two variables are linearly dependent
on each other; such dependence does not imply the existence
of a cause—effect relationship between them, but simply
implies that the variability of one of them is related to the
variability of the other. The Pearson correlation coefficient
(ρ(a, b)) between two variables, a and b, can assume value
in range [− 1; 1], where ρ � ±1 means a perfect positive
(+ 1) or negative (− 1) linear correlation between a and b,
while ρ � 0 means that no linear relationship exists between
a and b [40].

Therefore, a user-defined threshold coefficient λ is used to
determinewhich cost drivers exclude based on the strength of
their linear relationship with cost. Indeed, if ρ

(
X j , Y

) ≥ λ,
where X j is the j’th column of X , then the j’th cost driver is
accepted for the next selection. It is worth to note that closer
is λ to 0 less accurate will be the prediction because cost
drivers with a weak linear relationship with the cost will be
considered too.

Step 4The stepwise forwardmethod is used to identify the
most important cost drivers (i.e., those linearly independent
of each other) overcoming in this way the multicollinear-
ity problem among the cost drivers included in the model.
Indeed, the stepwise forward regression method enables the
creation of an accurate regression model without examining
all possiblemodels [40]. The starting point of thismethod is a
regression model that only includes one cost driver: usually
the one with the highest Pearson coefficient with the cost.
Following this, the cost driver with the next highest Pear-
son coefficient is added. Its effect on the regression model
is determined via partial F test and adjusted R2; if the test
succeeds and the adjusted R2 of the model is improved, the

newly added cost driver is judged to have improved themodel
and it is kept in the model; otherwise, the newly added cost
driver is judged to haveworsened themodel and it is removed
from the model. This procedure is repeated for all the cost
drivers which have a Pearson coefficient with the cost higher
than a user-defined threshold value, λ. Therefore, the final
model will only include those p cost drivers that are deemed
necessary to ensure the accuracy of the model; reducing the
complexity of the model and ensuring that the problem of
multicollinearity is mitigated. Three types of test are per-
formed in this fourth step: (i) F-Test is performed on the
incomplete regression model to judge if the addition of a
variable has improved its performance; (ii) Overall F-Test is
performed on the final regressionmodel to judge if the regres-
sion relationship between the cost and the final set of cost
drivers is statistically significant; (iii) Mean Absolute Per-
centage Error (MAPE) is performed on the final regression
model to judge if the average of the absolute percentage errors
of predictions where error is defined as actual or observed
value minus the predicted value is acceptable. Finally, if the
regressionmodel is accepted, the 100×(1 − α)percent confi-
dence interval (CI) for a new cost prediction ŷnew (also called
the prediction interval) can be calculated via the following
equation:

ŷnew ± ta/2, n−(k+1)

√
MSE

(
1 + xnew(X ′X)−1xnew ′) (5)

where X is a historical database of n parts and p cost drivers,
andY is a list of historicalmanufacturing costs corresponding
to the n parts in X , as seen in Eq. (3), MSE is the Mean
Squared Error of the regression model, i.e.:

MSE � 1

n − (k + 1)

n∑
i�1

(yi − ŷi )
2 (6)

where ŷi is the predicted cost from the regression model for
the i’th part in X . xnew in Eq. (5) is a vector containing the
value of the cost drivers of a new part for which a cost ŷnew
needs to be predicted:

xnew � [xnew1xnew2 · · · xnewk] (7)

ta/2, n−(k+1) in Eq. (5) can be found from the Student’s t-
distribution. For a confidence interval of 95%: ta/2, n−(k+1) ≈
1.96.

Brief descriptions of the three tests executed in this step
are given in sections 3.1, 3.2 and 3.3.

3.1 F-test

The partial F test is amethod used to evaluate the contribution
provided by each cost driver to the model. It determines the
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contribution to the regression sum of squares made by each
cost driver after all the other cost drivers have been included
in the model. Therefore, the new cost driver is included only
if it significantly improves the model [40]. To verify the sig-
nificance of the contribution given by the j’th cost driver to
the model, a statistical hypothesis test is executed consider-
ing the following hypotheses:

Hj , 0: The j’th cost driver does not significantly improve the
model.
Hj , 1: The j’th cost driver does significantly improve the
model.

The F statistic has a Fisher distributionwith 1 and n−k−1
degrees of freedom. Given a user-defined significance level
α, the decision rule is the following:

reject Hj , 0 i f Fj > Fcritical (8)

The value Fcritical is obtained by Fisher’s distribution
tables and is equal to: Fcrit � F−1(1−α; d f 1, d f 2), where
F−1 is the inverse cumulative distribution function of the F-
distribution, d f 1 and d f 2 are degrees of freedom, and α is a
user-defined parameter.

3.2 Overall F-test

The overall F test is used to determine whether the regression
relationship between the cost and the final set of cost drivers
is statistically significant [40]. It is a statistical hypothesis test
and for a regression model with p cost drivers the hypotheses
are:

H0: There is no linear relation between the dependent and
the independent variables.
H1: There is a linear relation between the dependent variable
and at least one of the independent variables.

TheF statistic has a Fisher distributionwith p and n−p−1
degrees of freedom. Given a defined significance level α, the
decision rule is the following:

reject H0 i f F > Fcritical (9)

3.3 MAPE

A quality measure of a regression model is given by the
MAPE. It is the mean or average of the absolute percent-
age errors of predictions where error is defined as actual or
observed value minus the predicted value [38]. If n observa-
tions are given, the MAPE is computed by Eq. (10), in which

yi and ŷi are the actual cost and the predicted cost of the i ′
th observation respectively.

MAPE � 1

n

n∑
i�1

∣∣∣∣
yi − ŷi

yi

∣∣∣∣ × 100 (10)

Step 5 The parametric cost estimation method allows to
create a CER capable to link the cost with the cost drivers,
thus, once developed CER allows to make a “what if” anal-
ysis, i.e., it can assess how the cost of the product changes
as the value of one or more cost drivers change [28]. In this
work this ability is used to make a reliability analysis with
the aim to find the product configuration that minimise the
probability of going over-budget, i.e. namedwith d the vector
of design variables of product that can be modified (d ⊆ X)
and with Cmax the maximum budget, it is possible to set
an optimisation problem that finds the value of d that min-
imises the probability of going over-budget with a reliability
of Rrequired:

Minimise : 1 − F(Cmax , Costmanufacturing(d), C I (d)/2)

Subject to : 1 − F(Cmax , Costmanufacturing (d) ,

C I (d)/2) ≤ 1 − Rrequired

dL ≤ d ≤ dU

where F � F(X , μ, σ) is theCumulativeDistributionFunc-
tion (CDF) of a normal distribution evaluated at X with a
meanofμ and standard deviationσ ; Costmanufacturing is calcu-
lated using CER obtained in step 4;C I is the 95% confidence
interval calculated using the procedure described in step 4.
Instead, dL and dU are the technical constraints, i.e., are the
lowest and highest value that the elements of d can assume,
respectively.

4 Numerical example: Boeing 787 stanchion

To demonstrate the proposed methodology, it was applied
to a composite support reinforcement, also known as a stan-
chion, from the fuselage of a Boeing 787. The geometry
of a stanchion is shown in Fig. 4a, while its location within
the Boeing 787 fuselage is illustrated in Fig. 4b.The database
used to demonstrate the effectiveness of the presented estima-
tion method contains details of 176 similar stanchions used
in the Boeing 787, due to the privacy issues it is not possible
to report the real data; thus, they were altered by multiplying
the real ones by a scale factor. Of these stanchions, length,
corner radius, width, flange width and number of composite
layers used in the strut were reported. Table 1 shows themax-
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Fig. 4 The figure represents: a A stanchion from the fuselage of a Boeing 787 and b Location of the stanchion in the fuselage of a Boeing 787
highlighted by a dashed red circle [41]

Fig. 5 The database for the stanchion
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Table 1 Stanchion properties from the database. The minimum, mean,
and maximum values are shown for each property

Beam property Minimum Mean Maximum

Length (mm) 280 473 607

Corner radius (mm) 8.76 9.55 9.94

Width (mm) 92.7 109 168

Flange width (mm) 20.8 23.9 399

Number of composite plies 20 24.7 30

Manufacturing cost (e) 255.00 399.07 513.00

imum, minimum andmain values of the individual variables.
Figure 5 shows the raw data from the database.

Based on this database, the multiple regression model for
this numerical example has the following form:

Costmanufacturing � C0 +CLength Length +CN_Plies N .plies

+ CRadius Radius + CWidthWidth

+ CFlange_width Flangewidth

(11)

The procedure outlined in Sect. 3 is used to create a
regression model of the form seen in Eq. (11) using the stan-
chion database. During preliminary tests, the p-value from
the Breusch-Pagan test for heteroskedasticity (Sect. 3, step
2) was found to be 4.76 ×10−6. This value is less than the
threshold of 0.05, thus indicating that heteroskedasticity is
significant in the database. Therefore, the x-data seen inFig. 5
is logged and the multiple regression model for this numeri-
cal example will now have this form:

(12)

Costmanufacturing � C∗
0 + C∗

Length ln (Length)

+ C∗
NPlies

ln (N .plies)

+ C∗
Radius ln (Radius)

+ C∗
Width ln (Width)

+ C∗
Flangewidth

ln(Flangewidth)

where the superscript * in the regression coefficients indi-
cates that the regression coefficients in Eq. (12) are different
than the regression coefficients in Eq. (11).

Following the procedure, the Pearson correlations coeffi-
cients were computed, and they are provided in Table 2. It
can be seen that the cost is heavily correlated with Length,
Number of plies (N. plies), and Width. The cost is weakly
correlated with the Radius, and the Flange width. Several of
the independent variables are also correlated with each other,
such as Length and Width, Length and Flange width.

According to the procedure a threshold value for Pearson
coefficient was arbitrarily set to 0.3 (λ � 0.3). Thus, only
cost drivers which absolute value of the Person coefficient

was greater than 0.3 were selected to the next step of the
procedure; thus, the following ones were selected: Length,
N. plies and Width.

As part of the proposed procedure, stepwise regression
was used to determine the independent variables that have
the greatest influence on the cost. Thus, several regression
models were created adding one cost driver per time and
evaluating its usefulness according to the R2 value and partial
F-Test, as shown in Table 3. The value Fcritical was obtained
by Fisher’s distribution tables considering α � 0.1, n � 176,
while k is equal to 2 and 3, for the 2nd and 3rd regression
model, respectively.

As can be seen from Table 3 all cost drivers identified in
the previous step (Length, N. plies andWidth) were included
in the final model as each of them significantly improve its
performance, indeed each of them increased the value of R2

and passed the partial F-test.
The overall F-test was executed on the 3rd regression

model to judge if the regression relationship between the
dependent variable and the final set of independent variables
is statistically significant. To this purpose the F statistic was
computed and compared with the critical value of F obtained
by Fisher’s distribution tables considering α � 0.1, n � 176
and k � 3. The Fcritical was found equal to 2.705 and as it was
lower that the value of F � 201.8 the test was considered
passed. Thus, the 3rd regressionmodel was assumed as a final
reduced regression model which contains fewer independent
variables than that seen in Eq. (12).

The statistics of the reduced regression model can be seen
in Table 4, while the statistics of its regression coefficients
can be seen inTable 5. The R2 and R2

ad j for the reducedmodel
are 0.779 and 0.774, respectively. Moreover, the MAPE was
computed for the reducedmodel, and it is equal to 6.56%, i.e.,
in average the prediction error of the model is about 6.5%.

4.1 Reliability of the cost estimate

In this section, the reliability of the reduced regressionmodel
presented in the previous section is quantified. The reduced
regression model, with the values for the regression coeffi-
cients seen in Table 5, is:

(13)

Costmanufacturing � −2825.8 + 314.25ln (Length)

+ 249.81ln (N .plies)

+ 106.22ln (Width)

This reduced regression model is plotted in Fig. 6 for each
of the individual variables in the database. 95% confidence
intervals were calculated for this reduced regression model
using the procedure described in Sect. 3 at step 4 and are
also included in Fig. 6. The average 95% confidence interval
over the range of x-values seen in Fig. 6 was± 73.78e, with
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Table 2 Pearson correlation
coefficients for the stanchion
database

Length N. plies Radius Width Flange width Cost

Length 1.00 – – – – –

N. plies 0.06 1.00 – – – –

Radius – 0.16 0.47 1.00 – – –

Width – 0.74 0.21 0.57 1.00 – –

Flange width – 0.68 – 0.03 0.13 0.80 1.00 –

Cost 0.78 0.46 – 0.04 – 0.37 – 0.26 1.00

Table 3 Stepwise forward procedure—intermediate regression models

CER R2 F Fcritical

1st regression
model

Costmanufacturing � C1st
0 + C1st

Length ln(Length) 0.574 – –

2nd regression
model

Costmanufacturing � C2nd
0 + C2nd

Length ln(Length) + C2nd
NPlies

ln(N .plies) 0.750 122.129 2.705

3rd regression
model

Costmanufacturing � C3rd
0 + C3rd

Length ln(Length) + C3rd
NPlies

ln(N .plies) + C3rd
Width ln(Width) 0.779 21.969 2.705

Table 4 Statistics of the reduced model

Statistic Value

R2 0.779

R2
ad j 0.775

F-value 201.8

p-value 4.19 ×10−56

MAPE 6.56%

Table 5 Coefficient statistics of the reduced model

Coefficient Regression
coefficient

p-value Standard
error

C∗
0 − 2825.8 2.08 ×

10−30
200.9

C∗
Length 314.25 1.86 ×

10−34
20.28

C∗
NPlies

249.81 1.45 ×
10−15

28.40

C∗
Radius – – –

C∗
Width 106.22 5.61 ×

10−6
22.66

C∗
Flange_width – – –

a maximum of ± 84.78 e, and a minimum of ± 71.57 e,
representing significant levels of uncertainty.

Using Eq. (13) and the procedure described in Sect. 3,
the manufacturing cost and 95% confidence interval for a
new stanchion design with: Length � 525.35 mm, N. plies

� 28, radius � 9.5 mm, width � 140 mm, and flange width
� 30 mm, are estimated to be 500.00 e and 67.25 e respec-
tively. As shown in Fig. 7, this is equivalent to a normal
distribution with a mean of 500.00 e, and a standard devia-
tion of 33.63 e:

Given the significant level of uncertainty associated with
the cost shown in Fig. 7, an engineer using the regression
model in Eq. (13) cannot be certain that the actual cost of the
new stanchion will be 500.00 e. If the engineer is assigned
a budget of 500.00 e for the new stanchion (Cmax � e500),
then a 50% chance of going over this budget would be unde-
sirable. To minimise the probability of going over-budget,
and therefore enable engineers to allocate their resources in a
more effective manner, the regression model seen in Eq. (13)
can be used to optimize the cost of a new stanchion. To this
purpose the optimisation problem defined in Sect. 3 at step
5 was used:

Minimise : 1 − F(500, Costmanufacturing(d), C I (d)/2)

Subject to : 1 − F(500, Costmanufacturing(d), C I (d)/2) ≤ 0.01

dL ≤ d ≤ dU (14)

where F � F(X , μ, σ) � F(500, Costmanufacturing(d),
C I (d)/2) is CDF of a normal distribution evaluated at X with
a mean of μ and standard deviation σ . d is a vector of three
design variables (length, N. plies, andwidth) Costmanufacturing

is calculated using Eq. (13). C I is the 95% confidence inter-
val calculated using the procedure described in Sect. 3. This
optimisation procedure is designed to find the optimal com-
bination of values for the three design variables such that the
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Fig. 6 Confidence intervals for the reduced regression model

probability of going over-budget is only 1% i.e., the reliabil-
ity is 99% (Rrequired � 0.99).

The optimisation problem described in Eq. (14) is solved
using Matlab® with the optimisation solver ‘fmincon’. The
results can be seen in Table 6. The objective function F in
Eq. (14) converges to 0.99 after four iterations. It is found
that, to keep the cost of the design under or equal to 500.00e
with 99% reliability, the optimal design should have a length
of 435.64 mm, the number of plies should be 28, and the
width should be 116.29 mm.

This result represents an optimum from an economic point
of view, as shows in the loop of Fig. 2 before its final
acceptance, a new structural analysis must be carried out
to check if the suggested dimensions satisfy the structural
constraints too. The results in Table 6 underline that the
proposed reliability-based approach can help engineers stay
within budgetwith a high level of reliability; enabling them to
allocate resources more effectively. In fact, if this reliability-
based approach is not used, there is a 50% chance that the

Fig. 7 Equivalent normal distribution for a new stanchion with an esti-
mated cost of 500.00 e and a 95% confidence interval of 67.25 e

design will be over-budget, i.e., this would mean to look at
the first row of Table 6. On the other hand, by using the
approach presented in this paper, the chance that the design
will be over-budget is significantly reduced to only 1%, i.e.,
the fourth row of Table 6. It is worth noting that the variables
values shown in Table 6 are referred to a starting database
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Table 6 Results of the
optimisation solver ‘fmincon’
with the optimisation problem
shown in Eq. (14)

Iteration Length (mm) N. plies Width (mm) Costmanfacturing(e) CI (e) F

0 525.35 28 140.00 500.00 67.25 0.500

1 521.22 28 134.79 493.49 67.24 0.577

2 503.20 28 112.06 462.81 67.38 0.865

3 463.83 28 112.03 437.19 67.49 0.969

4 435.64 28 116.29 421.45 67.53 0.990

that was opportunely scaled for privacy issue, so themechan-
ical implications of these values are strongly limited by this
facet.

5 Conclusions

This paper presents a novel methodology for efficiently
choosing the cost drivers for composite aircraft components
and to quantify the reliability associated with cost estimates.
The estimation and the reliability of a production cost esti-
mate is a well-known research topic especially at the early
design phase of a new product when an accurate cost anal-
ysis could allow for improved cost management and help
avoid unexpected costs during production. Indeed, a reliable
estimate of costs is one of the key principles to maximise
the company’s efficiency and, consequently, its profitability.
Cost can be a deciding element in the design loop to identify
the optimal product configuration according to technical and
economic constraints. Obtaining a reliable cost estimate in
the early design phasemay be a heavy task due to the frequent
scarcity of necessary information. This scarcity is even more
significant when new materials are used in the production
process, since it is the source of many of the uncertainties
influencing the reliability of a cost estimate. The parametric
approach developed in this work can overcome this issue by
providing a cost estimate based on historical data and using
a cost estimation relationship that links cost drivers (inputs)
to the cost (output). The proposed methodology includes five
steps, three of which focus on determining the best choice
of cost drivers to fully exploit the ability of the linear regres-
sion while the last step involves a reliability analysis to
identify a possible configuration of the product according
to technical and economic constraints. The results show that
the proposed reliability-based approach can lead to budget
compliance with a high level of reliability, reducing the pos-
sibility of a budget overrun to only 1%. The results show a
clear improvement over classical approaches that did not take
reliability into account, allowing for a more efficient alloca-
tion of resources within a project. This research therefore
offers an interesting starting point for the reliable estima-
tion of new composite components in the aircraft industry. It

is worth noting that the structural reliability of the compo-
nent was not considered in the cost model, e.g. the impact
of different design alternatives against the failure rate of the
component was neglected. However, even if this shortcom-
ing represents a specific limitation for the presented study, it
can be overcome by contextualising the methodology in the
wider framework of the SHERLOC project, i.e. considering
the structural and risk analysis module as shown in Figs. 1
and 2
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