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Abstract

Background Extremity sarcoma has a preponderance to

present late with advanced stage at diagnosis. It is impor-

tant to know why these patients die early from sarcoma and

to predict those at high risk. Currently we have mid- to

long-term outcome data on which to counsel patients and

support treatment decisions, but in contrast to other cancer

groups, very little on short-term mortality. Bayesian belief

network modeling has been used to develop decision-sup-

port tools in various oncologic diagnoses, but to our

knowledge, this approach has not been applied to patients

with extremity sarcoma.

Questions/purposes We sought to (1) determine whether

a Bayesian belief network could be used to estimate the

likelihood of 1-year mortality using receiver operator

characteristic analysis; (2) describe the hierarchal rela-

tionships between prognostic and outcome variables; and

(3) determine whether the model was suitable for clinical

use using decision curve analysis.

Methods We considered all patients treated for primary

bone sarcoma between 1970 and 2012, and excluded sec-

ondary metastasis, presentation with local recurrence, and

benign tumors. The institution’s database yielded 3499

patients, of which six (0.2%) were excluded. Data extracted

for analysis focused on patient demographics (age, sex),

tumor characteristics at diagnosis (size, metastasis, patho-

logic fracture), survival, and cause of death. A Bayesian

belief network generated conditional probabilities of vari-

ables and survival outcome at 1 year. A lift analysis

determined the hierarchal relationship of variables. Internal

validation of 699 test patients (20% dataset) determined

model accuracy. Decision curve analysis was performed

comparing net benefit (capped at 85.5%) for all threshold

probabilities (survival output from model).

Results We successfully generated a Bayesian belief

network with five first-degree associates and describe their

conditional relationship with survival after the diagnosis of

primary bone sarcoma. On internal validation, the resultant

model showed good predictive accuracy (area under the

curve [AUC] = 0.767; 95% CI, 0.72–0.83). The factors

that predict the outcome of interest, 1-year mortality, in

order of relative importance are synchronous metastasis

(6.4), patient’s age (3), tumor size (2.1), histologic grade

(1.8), and presentation with a pathologic fracture (1).

Patient’s sex, tumor location, and inadvertent excision

were second-degree associates and not directly related to

the outcome of interest. Decision curve analysis shows that

clinicians can accurately base treatment decisions on the 1-

year model rather than assuming all patients, or no patients,

will survive greater than 1 year. For threshold probabilities
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less than approximately 0.5, the model is no better or no

worse than assuming all patients will survive.

Conclusions We showed that a Bayesian belief network

can be used to predict 1-year mortality in patients pre-

senting with a primary malignancy of bone and quantified

the primary factors responsible for an increased risk of

death. Synchronous metastasis, patient’s age, and the size

of the tumor had the largest prognostic effect. We believe

models such as these can be useful as clinical decision-

support tools and, when properly externally validated,

provide clinicians and patients with information germane

to the treatment of bone sarcomas.

Clinical Relevance Bone sarcomas are difficult to treat

requiring multidisciplinary input to strategize management.

An evidence-based survival prediction can be a powerful

adjunctive to clinicians in this scenario. We believe the

short-term predictions can be used to evaluate services,

with 1-year mortality already being a quality indicator.

Mortality predictors also can be incorporated in clinical

trials, for example, to identify patients who are least likely

to experience the side effects of experimental toxic

chemotherapeutic agents.

Introduction

Primary malignant bone cancers are rare, known to present

late with advanced stage at diagnosis, and have a 12% to

47% 1-year mortality risk depending on healthcare

resources [9, 30, 32, 43]. One-year mortality is a quality

indicator for cancer diagnosis and treatment which corre-

lates to stage at presentation [8, 25, 31]. Strategies to

improve public awareness, primary care engagement,

screening uptake, and access to diagnostic services aim to

diagnose cancers earlier, thus at a lower stage to improve

survival outcomes at 1 year in line with other European

countries [19, 24]. We also are seeing 1-year mortality

estimates for cardiovascular and neurologic conditions,

with researchers developing mortality predictors and

decision-support tools [4, 6, 27, 44].

Bone sarcomas are a challenge to treat and require

complex multidisciplinary discussions to define individu-

alized strategies to suit each patient. Bearing in mind the

patient’s demographics, tumor characteristics, and resour-

ces, surgeons weigh the merits of chemotherapy, tumor

resection margins, and limb reconstruction techniques [42].

When debating treatment a clinician’s survival estimate can

be inaccurate, and we require better prognostication [15]. A

decision-support tool can facilitate this process using evi-

dence drawn from past patient outcomes [14]. Current

staging systems estimate 5-year survival and lose discrimi-

natory power with high-grade tumors, such as osteosarcoma

[1, 11]. Five years may be considered a long time to evaluate

the efficacy of changes in practice and delivery of service.

We believe that short-term mortality is best suited to these

tasks and there is no evidence-based statistical tool to pre-

dict 1-year mortality in patients with bone sarcomas.

Bayesian belief network modeling has been used to

develop decision-support tools in various oncologic diag-

noses [12, 14, 35–37]. The preferred statistical method for

this is logistic regression [14], based on inferential statistics

which tests the probability of the null hypothesis without

considering prior knowledge or beliefs. A probability less

than 5% (p\ 0.05) is commonly used to deem sample data

unlikely, in which case the alternative hypothesis is accep-

ted. Bayesian methods use conditional probabilities to

generate a ratio of likelihood of a specific hypothesis, a direct

test. Bayesian belief networks readily identify relationships

of conditional dependence, how and under what circum-

stances the value assumed by one factor depends on the

value(s) of other factors. This is very intuitive and something

we do every day as clinicians. Maki et al. [22] suggests that

Bayesian belief network may overcome the limitations of

current staging systems. Bayesian belief network models are

useful in clinical situations because they maintain func-

tionality in the setting of incomplete or outlying input data

and have the ability to analyze large datasets. We believe the

Bayesian belief network is well suited for analysis of vari-

ables inherent to the treatment of sarcomas because it is

capable of codifying highly complex relationships into clear

graphic representations that are easily understood.

With this in mind, we sought to (1) determine whether a

Bayesian belief network could be used to estimate the

likelihood of 1-year mortality in patients with primary

sarcomas of bone using receiver operator characteristic

(ROC) analysis; (2) describe the hierarchal relationships

between prognostic and outcome variables; and (3) deter-

mine whether the model was suitable for clinical use using

decision curve analysis.

Materials and Methods

The research was conducted at a tertiary referral center for

orthopaedic oncology serving a population of approxi-

mately 18 million for patients with primary bone tumors.

All patients with a newly diagnosed bone sarcoma who

underwent treatment at the center were identified from the

institution’s prospectively maintained database between

1970 and 2012. The study included 3499 patients, of whom

395 died within 1 year of diagnosis. Data extracted for

analysis included patient demographics, tumor character-

istics at diagnosis, and survival. Patients presenting for

treatment of a local recurrence where the primary tumor

had been treated previously were excluded from the study;

similarly benign tumors (n = 2) or metastatic lesions
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(n = 1) and those lacking a tissue diagnosis (n = 3) were

excluded from the final Bayesian belief network analysis

leaving a total of 3493 patients.

Patients underwent staging (plane radiographs, MRI

[from 1990 onward], CT of the thorax, and radionuclide

scanning) at the time of diagnosis to identify the presence

of metastatic disease and were treated according to national

guidelines [17]. Staging was defined by the American Joint

Committee on Cancer (AJCC) [1] and the classification of

Enneking et al. [11]. Patients were routinely followed up in

the outpatient clinic for 10 years, which comprised a

review every 3 months for the first 2 years, with a chest

radiograph performed at each visit [17]. Distant metastasis

and local recurrence were treated on an individual basis,

offering resection and adjuvant chemotherapy or radio-

therapy where appropriate. The date and cause of death

retrieved from our database were verified by the West

Midlands Cancer Intelligence Unit, which records clinical

data for all patients with cancer in England. We are con-

fident that all patients in this study have accurate 1-year

mortality data since mortality data were verified with the

West Midlands Cancer Intelligence unit, and so no patients

were lost to followup with respect to this endpoint.

A summary of the features was performed, comparing

the prevalence of each feature in patients who died within

1 year with those of patients who survived. These features

recorded either categorical (Table 1) or continuous data

(Table 2). Eleven candidate features were chosen based on

availability at the time of diagnosis and in most cases

scientific evidence associating features with survival in

patients with bone sarcoma (Table 3). Some of the candi-

date features were not suitable for the final model owing to

greater than 30% missing data or detection bias (Table 3).

The date of diagnosis was defined as the date of confirmed

histologic diagnosis. Extremity tumors distal to the shoul-

der or hip were regarded as distal upper and distal lower,

respectively, at the shoulder girdle as proximal upper, and

at the pelvic girdle as proximal lower. Thus a lesion of the

proximal humerus was categorized as proximal upper and

those of the proximal femur as proximal lower. For anal-

ysis purposes, tumor size was recorded as the maximum

dimension in centimeters in any plane on CT or MRI, at the

time of diagnosis. Tumor grade and stage were recorded

after radiologic and histologic investigations and patients

were managed through a multidisciplinary team.

We developed a Bayesian belief network model for bone

sarcoma data. Before model development, 20% of the

entire dataset was extracted to an independent test set using

R� Version 3.0.2 (R Foundation for Statistical Computing,

Vienna, Austria). The proportion of patients surviving

longer than 1 year (88%) was kept equal between sets. This

process resulted in a bone sarcoma training set containing

2794 records and a test set containing 699 records. The

Bayesian belief network model was developed in a manner

similar to that previously described using commercially

available machine learning software (FasterAnalyticsTM;

DecisionQ, Washington, DC, USA) [12]. Briefly, all 11

variables (features) were considered as candidate features

for inclusion in the model. We used equal-area binning

based on prior distributions learned from the training set. In

an effort to balance goodness-of-fit against robustness, a

parsimony metric was used to reduce the risk of overfitting

the final model to the training data. Using a stepwise

process, unrelated and redundant features were pruned

from the preliminary models to produce the final model.

Table 1. Categorical variables dichotomized by status at 1 year from

diagnosis

Category Alive Dead Significance

Sex

Female 1286 162

Male 1812 233 0.850

Grade

High 2311 326

Intermediate 314 60

Low 470 8 0.001

Location

Head and neck 18 2

Lower extremity 1922 199

Pelvic girdle 515 129

Upper extremity 427 44

Upper trunk 211 20 0.001

Metastasis at diagnosis

No 2750 261

Yes 348 134 0.001

Pathologic fracture

No 2727 308

Yes 371 87 0.001

The sum of patients does not always equate to 3493 owing to missing

data; a chi-square analysis was performed for each variable; signifi-

cance is reported for each univariate analysis.

Table 2. Distribution of continuous variables in patients alive or

dead at 1 year after diagnosis

Variable Alive (interquartile

range)

Dead (interquartile

range)

Age of patient* (years) 22 (14–17) 43 (18–67)

Size of tumor* (cm) 9.5 (7–13) 12 (9–17)

Time to metastasis*

(days)

472 (271–826) 133.5 (35–213)

Time to local recurrence*

(days)

514 (317–917) 177.5 (109–232)

Median values reported; comparison of size is limited by missing data

(49%); Mann-Whitney U test was performed on the distribution of

each variable; *p\ 0.05.
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To account for missing data in the training set (Table 3),

we used a passive, truncation-based imputation algorithm

[3]. We imputed values for features in which missing data

represented less than 30% of the total record count and for

which there was no adequate substitute feature. The

imputation algorithm was applied to eight features in the

Bayesian belief network model (patient age, tumor size,

tumor grade, metastasis, location, fracture, sex, and inad-

vertent excision), which was trained to estimate the

likelihood of survival 1 year after diagnosis by discrimi-

nating two possible outcomes (death within 1 year: yes or

no). Because Bayesian belief networks can be used to

describe relationships of conditional dependence, for

example, how the value of one feature depends on the

value(s) of other features, the hierarchal relationships

between features can be displayed graphically. For this

study, prior distributions (the value or values each feature

is likely to assume under various circumstances) were

estimated from the training set and thus were not specified

a priori. Unrelated and redundant features were pruned to

generate the final model. We performed validation using

the test set containing the 699 records not used for model

development and calculated the area under the ROC (area

under the curve [AUC]) to assess accuracy of the model.

Validation was considered successful if the AUC was

greater than 0.7 and was determined a priori. To determine

the relative importance of each first-degree associate in

estimating the likelihood of 1-year survival, we first cal-

culated each feature’s contribution to overall AUC by

omitting each, in turn, and performing validation using the

holdout set, as described previously. To estimate each first-

degree associate’s relative importance, we ranked each

according to its contribution to the overall AUC and divi-

ded by the lowest value.

A decision curve analysis evaluates whether a given

model is suitable for clinical use. The analysis tests the

consequences of a false positive or false negative result

[14, 41]. We constructed decision curves with the intention

to treat based on survival at 1 year generated from the

Bayesian belief network. The graph plots a range of

threshold probabilities against net benefit. The threshold

probability is the probability estimate (from model) that

would cause a clinician to procrastinate over treatment

strategies, for example, in a skeletally immature patient

whether to use allograft reconstruction, a growing pros-

thesis, or a conventional endoprosthesis based on the

invasiveness of surgery, rehabilitation, survival estimate,

and growth potential. It is the point at which one becomes

indecisive regarding whether to offer a particular therapy.

Thresholds are clinician-, patient-, and situation-specific

and the decision curve analysis evaluates model perfor-

mance over a range of threshold probabilities [14]. Net

benefit is defined as a single patient who duly receives an

appropriate treatment based on the model output [41].

Results

The clinical data for 11 candidate features were encoded in

a Bayesian belief network to estimate the probability of

Table 3. Description of candidate features selected for the final analysis

Candidate feature Variables Outcome

Age Continuous (years) Included in analysis

Gender Male or female Included in analysis

Size Continuous (cm) 51% missing data; included in analysis with

‘‘missing category’’

Location Five categories (pelvic girdle,

lower or upper extremity,

upper trunk, and head and neck)

Included in analysis

Grade High, intermediate, low Included in analysis

Alkaline phosphatase Continuous 36% missing data; excluded owing to investigation bias

Metastasis at diagnosis Yes or no Included in analysis

Pathologic fracture at diagnosis Yes or no Included in analysis

Diagnosis 46 histologic diagnoses Excluded from analysis owing to number of histologic

subtypes

Site 85 variants Subcoded to location category

Status at 1 year after diagnosis Alive or dead Included in analysis

Year of diagnosis Calendar year 7% missing data; excluded from analysis

The proportion of missing data is quantified.
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death within 1 year of diagnosis. Based on the network

structure there are five first-degree associates related to

survival at 1 year (Fig. 1). Inadvertent excision of the

tumor before histologic diagnosis was a second-degree

associate, conditional to grade and pathologic fractures.

Similarly, patient’s sex and tumor location were second-

degree associates which have an indirect relationship with

outcome at 1 year. We successfully generated a predictive

model that can be used as a clinical decision-support tool.

Model accuracy was determined by cross validating the

training (n = 2794) and test sets (n = 699) to calculate the

area under the ROC (AUC = 0.767; 95% CI, 0.72–0.83).

The AUC quantifies the discriminative ability, or accuracy,

of the model. The model performs well when classifying

the probability that a patient who died within 1 year has a

higher predicted probability of death compared with a

patient who did not die [7].

First-degree associates to death at 1 year were: the

presence of synchronous metastasis, increasing age of the

patient, larger tumor size, higher histologic grade, and

presentation with a pathologic fracture (Fig. 1). To esti-

mate each first-degree associate’s relative importance, we

ranked each according to its contribution to the overall

AUC and divided by the lowest value (pathologic fracture).

In doing so, we established the hierarchal relationship of

the variables with outcome at 1 year. Metastasis at diag-

nosis had the largest influence (6.4 times greater than

pathologic fracture) followed by increasing age (3),

increasing tumor size (2.1), histologic grade (1.8), and last,

the presence of a pathologic fracture at diagnosis (1).

To clarify, because we are not testing the null hypothesis

in the classic sense, we do not calculate a p value. Models

such as the Bayesian belief network presented in this study

are evaluated using measures of accuracy and classification

ability (ROC analysis), which contains 95% CI estimate as

a measure of uncertainty, and by decision curve analysis.

Ideally, these metrics would be applied to a unique

‘‘holdout set,’’ as we have done, or an external validation

set, which will be the focus of further studies.

With a trained and tested model, we can add evidence,

given knowledge of a specific case, to generate a person-

alized prediction of mortality risk. For example, a 33-year-

old patient with a 12-cm tumor of high histologic grade and

metastasis has a 79.1% probability of surviving 1 year.

Using the model, all potential first-degree associate con-

figurations and survival predictions can be tabulated. This

contingency table can be easier to interact with than a web-

based decision support tool (Table 4). Overall survival

estimates, from 120 combinations of associate features,

ranged from 35.6% to 99.7%. It is clear that metastasis at

diagnosis and increasing age have the greatest discrimi-

natory power (Table 4).

A decision curve analysis helps to weigh the clinical

consequences of over- or underestimating mortality based

on model output. The x-axis of the decision curve repre-

sents a threshold probability, which is the point at which

one would be indecisive about offering a particular treat-

ment. For example, clinicians have a low threshold for

treating healthy patients, and a higher threshold for treating

sick patients. Thresholds are patient-, clinician-, and situ-

ation-dependent, therefore it is important that decision

curve analysis evaluates model performance over a broad

range of clinically relevant threshold probabilities. The

decision curve does not estimate the likelihood of 1-year

survival (the Bayesian belief network serves this purpose),

but it helps determine whether the Bayesian belief network

model should or should not be used in certain situations.

The current decision curve analysis shows the Bayesian

belief network model is either equivalent, or better than,

adopting a ‘‘treat all’’ philosophy, when basing treatment

decisions. For illustrative purposes we discuss a middle-

aged patient with a large high-grade pelvic tumor and

metastasis (1-year mortality p = 42.3%). In light of this

evidence the clinician and patient may deliberate treatment

options, namely the role of chemotherapy, planned positive

margins, and limb reconstruction to mobilize early and

retain function, or hindquarter amputation to achieve local

clearance. False optimism may result in a dying patient

Fig. 1 The Bayesian belief network structure defines five first-degree

associates that are directly related to the outcome (line); second-

degree associations have an indirect relationship with the outcome

(dotted line). Only 4.2% of patients underwent an inadvertent

excision and the prevalence of synchronous metastasis or pathologic

fracture was 13.98% and 13.57% respectively.
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undergoing reconstruction of a limb which requires

extensive recovery and rehabilitation, and subsequently

may experience prosthetic complications that were, in

hindsight, avoidable. False pessimism could result in an

unnecessary amputation to achieve local clearance in a

patient who lives more than a year with reduced mobility

and the risk of soft tissue complications. Clinicians can

accurately base treatment decisions on the 1-year model

rather than assuming all patients, or no patients, will sur-

vive greater than 1 year (Fig. 2). For threshold

probabilities less than approximately 0.5, the model is no

better or no worse than assuming all patients will survive.

Thus, as the threshold probability (probability estimate of

survival) decreases the model loses benefit. Net benefit,

defined as a single patient who duly receives the correct

survival estimate based on the model output, was capped at

88.5%, which was the proportion of patients who survived

more than 1 year. We can safely recommend the model be

used for all threshold probabilities.

Discussion

Bone sarcomas are uncommon, difficult to treat, and result

in patients tending to present late with advanced disease

[43]. It is important to understand why these patients die

early and predict those at risk [29]. The goal of this study is

to provide a decision-support tool that will personalize the

short-term survival risk of patients with a diagnosis of bone

sarcoma to facilitate complex treatment decisions and align

patients’ expectations. Bayesian belief networks are suited

to this task, combining conditional probabilities and

machine learning software to compute large datasets [14].

We showed that a Bayesian belief network can be used to

predict 1-year mortality and identified the hierarchal rela-

tionship of the factors with increased risk of death. In order

of importance these are: synchronous metastasis, patient’s

age, tumor size, histologic grade, and presentation with a

pathologic fracture. The model’s discriminative accuracy is

good with an AUC of 0.76, comparable to other models

[4, 21, 37]. Decision curve analysis supported the model

for clinical use across all threshold levels; net benefit was

higher for the model with threshold probabilities of sur-

vival greater than 50%.

The results of this study must be considered in the

context of its limitations. The data were gathered from a

single institution’s registry. This is a prospectively main-

tained database with consistent definitions and uniform

assessment. Patients were referred for investigation of a

suspected bone tumor, and the population studied is from a

highly selective tertiary center and may not be represen-

tative of other populations. In this scenario overfitting can

occur with Bayesian belief networks, which would cause

the results of the decision curve analysis to be overly

optimistic. As such, despite showing positive net benefit,

the model must undergo external validation to show its

Table 4. Inference table based on four first-degree associates

Inferential

examples

Age

(years)

Grade Metastasis Size

(cm)

Mortality

risk

1 \ 14 High None \ 7 1.5%

2 14–23 High None \ 7 1.8%

3 24–51 High None \ 7 2.2%

4 [ 51 High None \ 7 7.7%

5 24–51 Intermediate None \ 7 2.3%

6 [ 51 Intermediate None \ 7 5.8%

7 24–51 Low None \ 7 0.3%

8 [ 51 Low None \ 7 0.7%

9 14–23 High Yes \ 7 6.6%

10 \ 14 High None 7–9.9 3.6%

11 14–23 High None 7–9.9 4.5%

12 24–51 High None 7–9.9 5.4%

13 [ 51 High None 7–9.9 17.3%

14 24–51 Low None 7–9.9 0.8%

15 [ 51 Low None 7–9.9 1.6%

16 \ 14 High Yes 7–9.9 12.4%

17 14–23 High Yes 7–9.9 15.0%

18 24–51 High Yes 7–9.9 17.6%

19 [ 51 High Yes 7–9.9 44.0%

20 \ 14 High None 10–15 4.4%

21 14–23 High None 10–15 5.5%

22 24–51 High None 10–15 6.6%

23 [ 51 High None 10–15 20.6%

24 [ 51 Intermediate None 10–15 16.0%

25 24–51 Low None 10–15 1.0%

26 [ 51 Low None 10–15 2.0%

27 \ 14 High Yes 10–15 14.8%

28 14–23 High Yes 10–15 17.9%

29 24–51 High Yes 10–15 20.9%

30 [ 51 High Yes 10–15 49.2%

31 \ 14 High None [ 15 8.0%

32 14–23 High None [ 15 9.8%

33 24–51 High None [ 15 11.6%

34 [ 51 High None [ 15 32.6%

35 [ 51 Intermediate None [ 15 26.2%

36 24–51 Low None [ 15 1.9%

37 [ 51 Low None [ 15 3.7%

38 14–23 High Yes [ 15 29.0%

39 24–51 High Yes [ 15 33.0%

40 [ 51 High Yes [ 15 64.0%

Estimates of probability ranged from 0.3% to 64.4%; examples with a

case probability[ 0.5% from the 120 inferential variations are pre-

sented, these describe the relationship of each interdependent feature

and the likelihood of death within 1 year of diagnosis.
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applicability in other patient populations. Prospective

external validation will be the focus of further research. We

chose not to include certain variables in the model, and we

cannot state whether their inclusion would have improved

the predictive power of the final model. Alkaline phos-

phatase and lactate dehydrogenase were collected in

patients with osteosarcoma and had greater than 30%

missing data [10, 40]. Tumor necrosis after chemotherapy,

the ability to downstage the tumor, and resection margins

are key prognostic indicators [2, 3]. However, these are not

available at the time of diagnosis and are not among the

factors that can be modified to diagnose patients earlier.

Future work could investigate treatment variables, to gen-

erate a modified prognostic score. The model does not

differentiate by histologic subtype to enhance the usability

of the final predictive model by end users and because of

small subtype sample sizes. The final model output man-

aged to generate five first-degree associates despite

grouping all histologic subtypes together. This suggests

that age, metastasis at diagnosis, and grade, for example,

are more important than the specific tumor subtype. The

contingency table provides sample survival estimates for

low-grade tumors such as chondrosarcoma, which we know

biologically behave differently than osteosarcoma or

Ewing’s sarcoma (Table 4). We recognize that other

methods of analysis, including proportional hazard

regression, decision tree, or artificial neural network anal-

ysis, may be used to successfully estimate risk of death.

However, the Bayesian belief network used for this anal-

ysis is particularly well suited for analysis of complex

interactions intrinsic to the treatment of soft tissue tumors

[13]. To our knowledge, however, this technique has not

been applied to primary malignancies of bone. In addition,

Bayesian techniques are particularly useful in the setting of

missing input data common to registry data and clinical

practice in general.

Bayesian belief networks are being used by clinicians to

support diagnostic and treatment decisions [14, 35–37]. For

the first time, we have a visual representation of the factors

that are related to 1-year survival and their relationship to

each other. Not only does this enhance the understanding of

the factors that are important, the model can generate

objective personalized mortality risks specific to a patient’s

circumstances. This prediction can be used to support

treatment decisions or counsel patients. In third-world

countries, where chemotherapy lacks funding and ampu-

tation has negative perceptions, it can be used as a tool to

educate patients [32]. In skeletally immature patients

prognostic estimates can help guide whether a patient is

suitable for a growing prosthesis, an invasive growing

prosthesis, allograft reconstruction, or conventional limb

salvage with an endoprosthesis [20, 39]. A hypothetical

example would be where the clinician decides to neglect

the growth potential of a child who has a poor prognosis

and opts for an endoprosthesis that will provide short-term

function and quality of life. The model could be incorpo-

rated in the selection process for targeted chemotherapy, or

in the most advanced cases whether amputation or planned

positive margins retain quality of life and autonomy

[16, 45]. After external validation the model will be

available as a web-based tool for clinicians to use [33].

The final Bayesian belief network we used in this study

differs from studies reporting the factors related to long-

term survival [3, 9, 10, 23, 26, 28]. Tumor location and sex

were second-degree associates and histologic grade had

less discriminatory power than metastasis, increasing age,

and tumor size. Grade was only 1.8 times better than

pathologic fracture at discriminating survival. Although we

Fig. 2 Net benefit is plotted on

this decision curve analysis

graph against threshold proba-

bilities and shows the benefit of

intervention based on decision

to treat from a model output.

Threshold probability (pt), is the

probability of survival at which

the surgeon would recommend

treatment. Net benefit = ([true

positive count/n] � [false posi-

tive count/n]) 9 (pt / 1 � pt).
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included all histologic subtypes (eg, osteosarcoma,

Ewing’s sarcoma, and chondrosarcoma), three-quarters of

the patients had high-grade tumors (2624 of 3493). Current

evidence would struggle to discriminate between these

high-grade malignancies [1, 11], highlighting the strength

of this model which prioritizes the predictive value of other

features. The final model adds to existing evidence which

debates the prognostic value of pathologic fractures

[5, 34, 38] .

Tumor stage is an important predictor of 1-year mor-

tality in breast, prostate, colorectal, ovarian, and lung

cancer [25]. The staging systems for bone sarcoma are the

AJCC system [1] and that of Enneking et al. [11]. These are

heavily dependent on histologic grade and metastasis at

diagnosis to discriminate malignancies and estimate 5-year

survival. The AJCC system stratifies patients in four risk

groups with 5-year survival decreasing from 98% in Stage

1 to 30% in Stage 5 [1]. Nomograms also have been

developed to try to predict survival [21]. Although generic

survival systems after diagnosis of cancer exist, these lack

validation in patients with bone sarcoma, limiting their use

[4, 6]. The model described in this study will generate a

specific mortality estimate that is more valuable to patients

and clinicians than estimates of risk by hazard ratios or

relative risk. Bayesian belief networks use conditional

probabilities and machine learning software to solve

complex interactions between variables and the outcome of

interest. This statistical technique has been successfully

applied to 1-year mortality for patients with primary bone

sarcoma, and we showed that synchronous metastasis,

increasing patient age, larger tumor size, higher tumor

grade, and pathologic fracture are influential, in that order.

To improve 1-year mortality, which is a proxy for

advanced stage at diagnosis, we should focus on the

modifiable variables such as tumor size [18, 19]. Strategies

to raise public awareness, engagement with primary care

doctors, and availability of diagnostic resources may

reduce the stage at presentation and improve 1-year sur-

vival. Decision curve analysis supported use of the model

as an adjunct to clinical decisions specific to the treatment

of bone sarcomas. These may be related to the use of

chemotherapy, surgical resection margins, or the most-

suitable limb salvage procedure. Modeling tumor markers

and treatment factors such as tumor necrosis and resection

margins were beyond the scope of this study, but may

provide better prognostication in the future. We believe

cohesive models such as the Bayesian belief network de-

scribed herein can be useful as clinical decision-support

tools and, when properly externally validated, provide

clinicians and patients with information germane to the

treatment of bone sarcomas.
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32. Noor S, Thornormóðsson HS, Zervas CT, Ly T, Gollogly J. Limb

versus life: the outcomes of osteosarcoma in Cambodia. Int

Orthop. 2014;38:579–585.

33. Pearl J. Bayesian inference. Probabilistic Reasoning in Intelligent

Systems: Networks of Plausible Inference. San Francisco, CA:

Morgan Kaufmann; 1988:29–75.

34. Salunke AA, Chen Y, Tan JH, Chen X, Khin LW, Puhaindran

ME. Does a pathological fracture affect the prognosis in patients

with osteosarcoma of the extremities?: a systematic review and

meta-analysis. Bone Joint J. 2014;96:1396–1403.

35. Sesen MB, Nicholson AE, Banares-Alcantara R, Kadir T, Brady

M. Bayesian networks for clinical decision support in lung cancer

care. PLoS One. 2013;8:e82349.

36. Steele S, Bilchik A, Eberhardt J, Kalina P, Nissan A, Johnson E,

Avital I, Stojadinovic A. Using machine-learned bayesian belief

networks to predict perioperative risk of clostridium difficile

infection following colon surgery. Interact J Med Res. 2012;1:e6.

37. Stojadinovic A, Peoples GE, Libutti SK, Henry LR, Eberhardt J,

Howard RS, Gur D, Elster EA, Nissan A. Development of a

clinical decision model for thyroid nodules. BMC Surg. 2009;9:12.

38. Sun L, Li Y, Zhang J, Li H, Li B, Ye Z. Prognostic value of

pathologic fracture in patients with high grade localized

osteosarcoma: a systemic review and meta-analysis of cohort

studies. J Orthop Res. 2015;33:131–139.

39. Thompson PA, Chintagumpala M. Targeted therapy in bone and

soft tissue sarcoma in children and adolescents. Curr Oncol Rep.

2012;14:197–205.

40. van Maldegem AM, Hogendoorn PC, Hassan AB. The clinical

use of biomarkers as prognostic factors in Ewing sarcoma. Clin

Sarcoma Res. 2012;2:7.

41. Vickers AJ, Van Calster B, Steyerberg EW. Net benefit approa-

ches to the evaluation of prediction models, molecular markers,

and diagnostic tests. BMJ. 2016;352:i6.

42. Wafa H, Grimer RJ. Surgical options and outcomes in bone

sarcoma. Expert Rev Anticancer Ther. 2006;6:239–248.

43. Whelan J, McTiernan A, Cooper N, Wong YK, Francis M, Vernon

S, Strauss SJ. Incidence and survival of malignant bone sarcomas

in England 1979–2007. Int J Can. 2012;131:E508–E517.

44. Wolf J, Safer A, Wöhrle JC, Palm F, Nix WA, Maschke M, Grau

AJ. Factors predicting one-year mortality in amyotrophic lateral

sclerosis patients: data from a population-based registry. BMC

Neurol. 2014;14:197.

45. Xu S, Yu X, Xu M, Fu Z, Chen Y, Sun Y, Su Q. Limb function

and quality of life after various reconstruction methods according

to tumor location following resection of osteosarcoma in distal

femur. BMC Musculoskelet Disord. 2014;15:453.

Volume 475, Number 6, June 2017 Bayesian Bone Sarcoma Survival Model 1689

123

http://www.ncin.org.uk/view?rid=66
http://www.ncin.org.uk/view?rid=66

	Can a Bayesian Belief Network Be Used to Estimate 1-year Survival in Patients With Bone Sarcomas?
	Abstract
	Background
	Questions/purposes
	Methods
	Results
	Conclusions
	Clinical Relevance

	Introduction
	Materials and Methods
	Results
	Discussion
	References




