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Abstract

Background Patient-specific gait and surgical variables

are known to play an important role in wear of total hip

replacements (THR). However a rigorous model, capable

of predicting wear rate based on a comprehensive set of

subject-specific gait and component-positioning variables,

has to our knowledge, not been reported.

Questions/purpose (1) Are there any differences between

patients with high, moderate, and low wear rate in terms of

gait and/or positioning variables? (2) Can we design a

model to predict the wear rate based on gait and positioning

variables? (3) Which group of wear factors (gait or posi-

tioning) contributes more to the wear rate?

Patients and Methods Data on patients undergoing pri-

mary unilateral THR who performed a postoperative gait

test were screened for inclusion. We included patients with

a 28-mm metal head and a hip cup made of noncrosslinked

polyethylene (GUR 415 and 1050) from a single manu-

facturer (Zimmer, Inc). To calculate wear rates from

radiographs, inclusion called for patients with a series of

standing radiographs taken more than 1 year after surgery.

Further, exclusion criteria were established to obtain rea-

sonably reliable and homogeneous wear readings. Seventy-

three (83% of included) patients met all criteria, and the

final dataset consisted of 43 males and 30 females, 69 ± 10

years old, with a BMI of 27.3 ± 4.7 kg/m2. Wear rates of

these patients were determined based on the relative dis-

placement of the femoral head with regard to the cup using

a validated computer-assisted X-ray wear-analysis suite.

Three groups with low (\ 0.1 mm/year), moderate (0.1 to

0.2 mm/year), and high ([ 0.2 mm/year) wear were

established. Wear prediction followed a two-step process:

(1) linear discriminant analysis to estimate the level of

wear (low, moderate, or high), and (2) multiple linear and

nonlinear regression modeling to predict the exact wear

rate from gait and implant-positioning variables for each

level of wear.

Results There were no group differences for positioning

and gait suggesting that wear differences are caused by a

combination of wear factors rather than single variables.

The linear discriminant analysis model correctly predicted

the level of wear in 80% of patients with low wear, 87% of

subjects with moderate wear, and 73% of subjects with

high wear based on a combination of gait and positioning

variables. For every wear level, multiple linear and non-

linear regression showed strong associations between gait
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biomechanics, implant positioning, and wear rate, with the

nonlinear model having a higher prediction accuracy.

Flexion-extension ROM and hip moments in the sagittal

and transverse planes explained 42% to 60% of wear rate

while positioning factors, (such as cup medialization and

cup inclination angle) explained only 10% to 33%.

Conclusion Patient-specific wear rates are associated

with patients’ gait patterns. Gait pattern has a greater

influence on wear than component positioning for tradi-

tional metal-on-polyethylene bearings.

Clinical Relevance The consideration of individual gait

bears potential to further reduce implant wear in THR. In

the future, a predictive wear model may identify individual,

modifiable wear factors for modern materials.

Introduction

In many patients, a total hip replacement (THR) does not

last for a lifetime and revision surgery is becoming more

common [29]. For traditional THR that used non-

crosslinked polyethylene liners, loosening and/or osteolysis

account for nearly 30% of all performed revisions [9]. With

the introduction of crosslinked polyethylene, the wear rate

has been greatly reduced even in the young active popu-

lation [22]; however, at this time it is unclear if the

loosening or lysis problem has been solved or just has been

delayed to the second or third decade of the lifetime of the

prosthesis. Therefore, it makes sense to further investigate

the factors governing wear in the hopes of keeping them

under control.

Many factors contribute to polyethylene wear, including

implant design variables (geometric features and material

properties) [1, 2, 23, 28, 31, 36], surgical variables (im-

plantation method and component positioning) [15, 16], and

patient factors [10, 14, 39]. Regarding patient factors, gait

andmotion patterns have been shown to affect the hip contact

force, one of the variables that influences polyethylene wear

[20, 21]. Two studies showed that the inclusion of patient-

specific factors in hip-wear simulation yielded to clinically

relevant wear results [27, 30]. However, it is not possible to

comprehensively account for large interpatient variability in

gait and implant positioning in simulators owing to machine

time and costs. Therefore, computational models such as

finite element analyses have been used tomodel the influence

of gait cycle [32], implant orientation [18, 19, 44], and joint

loading parameters [17, 34]. Despite these previous efforts, a

predictive wear model, based on a comprehensive set of

patient-specific gait and component-positioning variables, is

not available. Further, from a technical viewpoint, most

predictive models rely on multiple linear regression model-

ing which does not fully accommodate the existing

nonlinearities of the complex interactions between wear

factors and wear rate.

Using repository data of patients who had THR, we

therefore asked the following questions: (1) Are there any

differences between patients who had THR with high,

moderate, and low wear rate in terms of gait and/or posi-

tioning variables? (2) Using statistical models, such as

regressionmodels, can we predict the wear rate based on gait

and positioning variables? (3) Which group of wear factors

(gait or positioning) contributes more to the wear rate?

Patients and Methods

Patients

All patients who had THR who had performed a gait test

and were listed in the institutional review board-approved

data repository at the Motion Analysis Lab at Rush

University Medical Center were reviewed. All patients

provided written consent for inclusion. Patients with uni-

lateral hip arthroplasty and with one or more gait trials 10

months or more after surgery (to ascertain recovery from

surgery) and a minimum of 3 years of clinical followup

(that needed to be available and documented in the

orthopaedic tissue, implant, and information repository)

qualified for inclusion. Two senior surgeons (JOG and

AGR) performed the majority of the procedures ([ 90%)

and used a posterior and an anterolateral approach,

respectively. To control for the most important design and

material variables for THR wear between head and cup,

inclusion was further restricted to patients with a 28-mm

cobalt-chromium metal ball and a liner made of non-

crosslinked polyethylene (GUR 415 and 1050) that was

housed in a fiber mesh titanium cup (Zimmer, Inc, Warsaw,

IN, USA). While all cups were cementless and shared a

similar design philosophy, various cemented and cement-

less stems were used (Table 1). Finally, to calculate a

meaningful wear rate (defined as head penetration into the

polyethylene liner with time), inclusion called for patients

with at least two AP view standing radiographs, taken at

least 1 year apart with the first radiograph taken after the

bedding-in phase 1 year or more after surgery. This led to

the immediate inclusion of 88 patients from the repository.

Exclusion criteria were established to obtain reasonably

reliable and homogeneous wear readings: (1) patients with

a negative wear rate (implying material gain or growth

which is physically impossible), (2) patients with wear

readings for which the interobserver correlation coefficient

(ICC) was less than 0.90, and (3) patients with extreme

outliers of wear (ie, more than three times the interquartile

range from the rest of the wear readings) as identified from
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box plots (SPSS Version 15.0; SPSS Inc, Chicago, IL,

USA). These criteria led to the exclusion of 15 patients:

four patients were excluded owing to negative wear read-

ings, nine were excluded owing to low ICC wear readings

(0.2–0.77), and two were excluded owing to wear readings

classified as outliers (68 and 97 mm/year). This left 73

patients (83% of the included) for analysis: 43 males and

30 females, 69 ± 10 years old, and BMI of 27.3 ± 4.7 kg/

m2. These patients had their implants 10 to 123 months

(average, 37 ± 31 months) in situ and had two to 10

radiographs acquired every 9 to 20 months during fol-

lowups (Table 1).

Gait Analysis

Gait data had been collected from 1990 through 2004 using a

four-camera motion-capture system with passive markers

(120 frames per second) (Qualisys,Gothenburg, Sweden) and

a multicomponent force plate (Bertec Corporation, Colom-

bus, OH,USA) formeasurement of ground reaction forces. A

total of six retroreflective markers were placed on the lateral

aspect of the iliac crest, superior aspect of the greater tro-

chanter, mid-point of the lateral joint line of the knee, lateral

malleolus, head of the fifth metatarsal, and the lateral aspect

of the calcaneus. Patients were required to be pain free at the

date of the gait test. During gait analysis patients walked at

three self-selected speeds of ‘‘normal’’, ‘‘slow’’, and ‘‘fast’’

with multiple trials collected at each speed. The trial with

median speed was chosen as the most representative from the

patients’ self-selected ‘‘normal speed’’ trials.

To calculate external forces and moments, the lower

extremities were modeled as a collection of three rigid links

(thigh, shank, and foot). This linkmodel assumed that no axial

rotation occurred about the long axes of the segments. The hip

centerwas assumed to be at a point 2.5 cmbelow themid-point

of a line that runs from the anterior superior iliac crest to the

pubic tubercle [3]. The inertial properties for each segment

were lumped at its mass center and were used in the calcula-

tions for the external moments. Inverse dynamics was used to

calculate the external moments in all three dimensions about

the hip centers [3]. The externalmoments included themoment

about the joint center created by the ground reaction force and

inertial forces of the body segments. The external moments

were transformed into a local coordinate system aligned with

the femur. A total of seven gait variables (Table 2) were

extracted for each patient that were considered for further

analysis: hip range of motion (HROM), maximum hip flexion

moment (HMXFLEX), maximum hip extension moment

(HMXEXT), maximum hip adduction moment (HMYADD),

maximum hip abduction moment (HMYABD), maximum hip

internal rotation moment (HMZINT), and maximum hip

external rotation moment (HMZEXT).T
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Wear Analysis

A computer-assisted technique (Hip Analysis Suite;

UChicagoTech, Chicago, IL, USA) was used to determine

the relative, linear displacement (‘‘penetration’’) of the

metal ball into the polyethylene liner from digital radio-

graphs. The measured penetration correlates with material

removal (wear) from the polyethylene liner, as previously

described and validated by Martell and Berdia [33] and

Berzins et al. [11]. Standard AP radiographs with the

patient in a standing position were obtained from the

repository for all included patients. The radiographic films

were converted to digital format using a flatbed scanner

(Vision Ten Inc, Carlstadt, NJ, USA). Typically, during the

first year after surgery, embedding of the articulating

components takes place. Therefore, it is likely that the

actual wear rate is masked. For this reason, only radio-

graphs after the first year of surgery were chosen.

Moreover, because wear rates, determined from shorter

implant duration times, may tend to be higher, the associ-

ation between wear rate and the length of followup (time

in situ) was investigated using a linear regression model.

Ideally, several (minimum two) radiographs were available

to determine the wear rate using a linear regression model.

Two observers (PPAE and DB) independently measured

the wear rate using the Hip Analysis Suite. Only subjects

with ICCs of the wear readings greater than 0.90 were

included in the study. There were nine patients for whom

the ICC was less than 0.9 (range, 0.50–0.75). These

patients were excluded from the study.

Component Positioning

Vertical joint-center position was measured as the super-

oinferior distance between the center of the head and the

interteardrop line of the pelvis while the horizontal position

was measured as the mediolateral distance between the

center of the head and the teardrop. A line connecting the

most-lateral aspect of the greater trochanter and Charnley’s

origin of the abductors (defined at a location 2.5 cm medial

and 2.5 cm superior to the inferior portion of the anterior

superior iliac spine) was drawn to represent the line of

action of the abductor muscles [12]. A line perpendicular to

this line was drawn through the center of the femoral heads

to represent the abductor lever arm (ABD-L) (Fig. 1A).

The contralateral hip center was identified computationally

using the Hip Analysis Suite by a three-point click on the

native femoral head.

The horizontal offset (H-SET) was defined as the

mediolateral distance between the center of the head and

the anatomic axis of the femur [25] (Fig. 1A). Vertical

offset (V-SET) was identified by drawing a line through the

center of the head and perpendicularly on the femoral

implant axis. The offset is the perpendicular distance

between the center of the head and the implant axis

(Fig. 1B). Cup medialization (C-MED) was measured as

the distance between the medial wall of the acetabulum and

the center of the cup (Fig. 1A). The cup anteversion (C-

ANTE) was estimated as the angle formed by the long axis

of the cup component and the line connecting the top point

of the ellipse and the endpoint of the long axis (Fig. 1C).

Cup inclination (C-INCL) was defined as the angle

between the longitudinal axis of the patient and the

radiographic projection of the acetabular axis, that is,

perpendicular to the major axis of the cup projection [42]

(Fig. 1D). All measurements were expressed in degrees

and millimeters after correction for magnification.

Wear Predictive Model

Before proposing the wear predictive model, and to avoid

inclusion of redundant variables, potential collinearity

among gait variables and among positioning variables was

investigated using the variance inflation factor (VIF) as the

investigative tool. Each of the seven gait variables (or six

positioning variables) was considered as the output of a

linear regression model and all other remaining gait vari-

ables (or remaining positioning variables) served as

predictors. Only gait variables (or positioning variables) for

which all other gait (or positioning) variables yielded a VIF

less than 2.5 were considered independent and entered in

the wear predictive model.

Table 2. Summary of wear factor abbreviations and descriptions

Wear factor and

abbreviation

Description

Gait variable

HROM Sagittal hip range of motion

HMXFLEX Maximum hip flexion moment

HMXEXT Maximum hip extension moment

HMYADD Maximum hip adduction moment

HMZINT Maximum hip internal rotation

moment

HMZEXT Maximum hip external rotation

moment

Component positioning

C-INCL Cup inclination

C-ANTE Cup anteversion

C-MED Cup medialization

V-SET Vertical offset

H-SET Horizontal offset

ABD-L Abductor lever arm
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The proposed predictive model consisted of two parts: (1)

predicting the level of wear rate (high, moderate, or low) using a

linear classifier (ie, linear discriminant analysis (LDA) [35]) and

(2) predicting the amount of wear rate using a multiple linear

regression (MLR) and/or nonlinear regression in form of an

artificial neural network (ANN)model.The levelofwear ratewas

considered ‘‘low’’when the linearwear ratewas less than 0.1mm

peryear; ‘‘moderate’’when the linearwear ratewasmore than0.1

mmper year and less than 0.2mmper year; and ‘‘high’’when the

linear rate was greater than 0.2 mm per year. This classification

criterion was obtained from a study in which noncrosslinked

UHMWPEwear less than0.1mmperyearwasconsidered ‘‘low’’

and awear rate greater than 0.2mmper year was associatedwith

osteolysis and subsequent component loosening [41].Using these

criteria, our 73 patients with THRs were divided in three groups:

25 patients with low-wear rate (wear rate, 0.06± 0.02 mm/year;

age, 63.7± 7.8 years; BMI, 27.3± 4.3 kg/m2), 29 patients with

moderate-wear rate (wear rate, 0.15±0.03mm/year; age, 60.4±

10.7 years; BMI, 26.5 ± 4.7 kg/m2); and 19 patients with high-

wear rate (wear rate, 0.27± 0.04mm/year; age, 58.3± 9.8 years;

BMI, 28.6± 5.1 kg/m2) (Table 3).

The LDA model consisted of three classification rules;

one rule per wear group (low, moderate, and high wear).

Each rule was a linear combination of the wear factors and

calculated a membership score for each patient. Patients

then were assigned to the wear group whose classification

rule led to the highest membership score. To establish this

classifier, patients were randomly divided into two subsets:

80% of the patients were used to establish the classification

rules and the remaining 20% of patients were used to test

whether the classifier could correctly classify new patients

(test dataset). The classification accuracy of the LDA

model was defined as the number of correctly classified

patients divided by the number of total test patients. To

achieve a 95% CI about the classification accuracy, the

training and testing procedures were iterated until all

Fig. 1A–D Component posi-

tioning factors consisted of the

(A) abductor lever arm (1),

horizontal offset (2), and cup

medialization (3), (B) vertical

offset (4), (C) cup anteversion

(5), and (D) cup inclination (6).
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participants were used as test data. The classification

accuracy then was averaged over all the iterations.

Once classified, thewear rate of each patientwas predicted

using MLR and ANN models. Considering that the level of

patient activity plays a central role inwear of the polyethylene

liner, and age has been shown to be a surrogate of patient

activity [37], age was included as a factor, together with gait

and positioning variables. For the MLR, the relationship

between wear factors (that is, age, seven gait variables, and

six positioning variables) and wear rate was modeled by fit-

ting a linear equation to the observations of each wear group:

Wear rate ¼ a1 � x1 þ a2 � x2 þ a3 � x3 þ � � � þ a14
� x14 þ b

Where x1 to x14 represent the wear factors (age, gait, and

component-positioning variables), a1 to a14 represent

regression coefficients, and b is the intercept of the model.

Wear factors were entered in the regression model using a

backward-selection approach to reassure the exclusion of

redundant variables.As previously reported [8], two cases per

predictor variable are adequate for estimation of regression

coefficients, standard errors, and CIs in MLR modeling, a

condition which was just met in this study. The prediction

ability of the constructedmodels thenwas tested by the leave-

one-out cross-validation technique [40]. The cross-validation

procedure was repeated until each patient was used as the test

subject in his or her corresponding wear group.

ANN can be considered a nonlinear regression model that

canmodel the relationship between the independent variables

(predictors) and dependent variable in an analogous fashion

to linear regression [4–7, 38]. The most-featured difference

between linear regression and ANN is that the latter splits a

complex nonlinear relationship into several piecewise

approximations, where each approximation is generated as a

nonlinear function of predictors (instead of a simple linear

combination of predictors as in linear regression). ANN was

used to predict the wear rate from the 14 inputs (same vari-

ables as above) for each wear class. The proposed ANN

structure consisted of processor units (neurons) organized in

layered arrangements. In each layer, neurons were related to

the neurons of the next layer via weights (Fig. 2). Each input

node was related to each mid-level neuron (called hidden

neurons) via input weights. Thus, a weighted combination of

all input parameters was fed into each hidden neuron where a

nonlinear function (func), a hyperbolic tangent sigmoid,

determined the wear-rate output of the hidden neuron (rep-

resenting a nonlinear regression). A pure line function at each

output then was used to combine all the piecewise nonlinear

regressions produced by the hidden neurons. Using the above

ANN structure, the linear wear rate was modeled as:

Wear rate ¼ a1 � y1 þ a2 � y2 þ a3 � y3 þ � � � þ an
� yn þ b n ¼ number of hidden neurons

Where:

yi ¼ func x1; x2; x3; . . .þ x14ð Þ þ gi 1\ i \ n

Where y1 to yn are the outputs from hidden neurons, b is

the intercept related to the ANN output, and gi is the

intercept related to each hidden neuron and x1 to x14

0
-1

-0.5

0

0.5

1

C-INCL

Pure Line

Hyperbolic Tangent Sigmoid

HROM

HMXEXT
HMXFLEX

C-ANTE

Age

HMYABD
HMYADD
HMZEXT
HMZINT
C-MED

H-SET
V-SET
ABD-L

Fig. 2 The proposed three-layer artificial neural network had 14

input nodes including hip range of motion (HROM), hip flexion

moment (HMXFLEX), hip extension moment (HMXEXT), hip

abduction moment (HMYABD), hip adduction moment (HMYADD),

hip hip external rotation (HMZEXT), internal rotation (HMZINT),

cup medialization (C-MED), cup inclination (C-INCL), cup antever-

sion (C-ANTE), horizontal offset (H-SET), vertical offset (V-SET),

abductor lever arm (ABD-L), and subject age (Age).

Table 3. Demographic description of three classes (mean ± SD)

Group Number of patients Age (years) Height (m) BMI (kg/m2) Speed (m/second) Linear wear rate (mm/year)

Low wear 25 63.7 ± 7.8 1.7 ± 0.07 27.3 ± 4.3 1.1 ± 0.1 0.06 ± 0.02

Moderate wear 29 60.4 ± 10.7 1.7 ± 0.08 26.5 ± 4.7 1.1 ± 0.1 0.1 ± 0.03

High wear 19 58.3 ± 9.8 1.7 ± 0.08 28.6 ± 5.1 1.1 ± 0.2 0.3 ± 0.04
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represent the wear factors (age, gait, and component-po-

sitioning variables). A gradient-descent back-propagation

algorithm with adaptive learning rate was used to train the

ANN. A class-specific ANN was assigned to each wear

group (low, moderate, and high). In each wear group,

patients were randomly divided in three subgroups: 70%

of the patients were used to train the ANN (that is, adjust

the weights and biases), 15% were used to validate the

trained ANN, and the remaining 15% were used to

challenge the trained ANN with new patients and inves-

tigate the generalizability of the trained ANN. The

prediction accuracy of the trained ANN then was evalu-

ated by comparing ANN estimations versus radiograph-

based readings using normalized-root-mean-square error

(NRMSE %) and Pearson correlation coefficients. To

achieve a 95% CI for prediction accuracy, the training

and testing procedures were iterated for 100 times, as

suggested by Iyer and Rhinehart [24]. The prediction

accuracy of the ANN then was averaged over all the

iterations. The ANN structures were established using

Neural Network ToolboxTM (MathWorks1, Natick, MA,

USA).

Statistical Analysis

Statistical analysis was conducted using SPSS Version

15.0. Demographic characteristics of participants (age,

height, body weight) and all other variables of interest

(wear rate, gait, and positioning factors) were compared

among patients with high, moderate, and low wear using

one-way ANOVA with a significance level of p = 0.05 and

Bonferroni-adjusted post hoc tests. Before the analysis, the

presence of outliers was checked using boxplots. The

normality of the data and homogeneity of variances also

were tested using the Shapiro-Wilk and Levene’s tests

respectively to assure reliability of the ANOVA. To assure

the homogeneity of patient groups in terms of other wear

covariates that were not the main focus of this study, the

distribution of implant design, polyethylene material, and

surgical approach across wear groups was investigated

using Chi-square analysis.

Results

Differences Among Patients By Wear Rate

There were no group differences in terms of component

positioning (Table 4) and gait (Table 5). This suggested that

wear differences might be caused by a combination of wear

factors rather than by individual variables. Noteworthy, all

the VIF computations were less than 2.5. Of all 72 investi-

gated variable combinations, the VIF was less than 2.0 in

86% and 93% of the patients for positioning and gait vari-

ables, respectively. We therefore concluded that the predictor

variables are only weakly correlated with each other and

multicollinearity is not of concern. Regarding output, a weak

Table 4. Comparison of component positioning among three wear groups

Variable Group 1 Group 2 Mean difference Standard error 95% CI p Value Bonferroni p value

C-INCL Low Moderate �2.77 1.83 �6.42 to 0.87 0.134 1.000

Low High �0.71 2.04 �4.78 to 3.36 0.729 1.000

High Moderate �2.07 1.98 �6.01 to 1.88 0.300 1.000

C-ANTE Low Moderate �2.99 1.85 �6.68 to 0.70 0.110 1.000

Low High �0.93 2.06 �5.04 to 3.18 0.654 1.000

High Moderate �2.06 2.00 �6.05 to 1.93 0.306 1.000

H-SET Low Moderate 1.31 2.21 �3.19 to 5.81 0.558 1.000

Low High �3.21 2.47 �8.22 to 1.81 0.203 1.000

High Moderate 4.52 2.14 0.16–8.87 0.042 0.764

V-SET Low Moderate 0.61 1.33 �2.04 to 3.26 0.648 1.000

Low High 3.27 1.48 0.31–6.22 0.031 0.551

High Moderate �2.66 1.42 �5.49 to 0.18 0.066 1.000

C-MED Low Moderate �0.65 1.22 �3.10 to 1.79 0.596 1.000

Low High 1.02 1.37 �1.71 to 3.74 0.458 1.000

High Moderate �1.67 1.32 �4.31 to 0.97 0.211 1.000

ABD-L Low Moderate 0.78 2.21 �3.73 to 5.29 0.726 1.000

Low High �0.25 2.45 �5.26 to 4.76 0.919 1.000

High Moderate 1.03 2.12 �3.31 to 5.37 0.631 1.000

C-INCL = cup inclination; C-ANTE = cup anteversion; V-SET = vertical offset; C-MED = cup medialization; ABD-L = abductor lever arm.
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association between wear rate and time in situ was found

(adjusted R2 = 0.09) (Fig. 3). Regarding secondary variables,

there were no statistical differences in terms of implant

design or polyethylene among the three wear groups. How-

ever, ‘surgeon’ (or surgical approach) showed a difference:

Surgeon 2 (who used an anterolateral approach) had a larger

number of patients in the high-wear group compared with

Surgeon 1 (who used a posterior approach) (Table 6). No

group differences were found in demographic characteristics

such as age, height, and weight (Table 7).

Can We Predict Wear Rate Using Gait and Positioning

Variables?

The level of wear rate (high, moderate, low) was pre-

dictable based on wear factors (gait and positioning

variables) using the following classification rules:

Table 5. Comparison of gait biomechanics among three wear groups

Group 1 Group 2 Mean difference Standard error 95% CI p Value Bonferroni p value

Speed Low Moderate �0.025 0.048 �0.120 to 0.070 0.604 1.000

Low High 0.029 0.053 �0.076 to 0.135 0.581 1.000

High Moderate �0.054 0.051 �0.157 to 0.048 0.296 1.000

HROM Low Moderate �0.84 1.70 �4.22 to 2.55 0.624 1.000

Low High �1.45 1.89 �5.23 to 2.32 0.446 1.000

High Moderate 0.62 1.84 �3.05 to 4.28 0.738 1.000

HMXFLEX Low Moderate �0.28 0.58 �1.43 to 0.88 0.635 1.000

Low High 0.43 0.65 �0.86 to 1.71 0.511 1.000

High Moderate �0.70 0.63 �1.95 to 0.55 0.266 1.000

HMXEXT Low Moderate 0.12 0.30 �0.466 to 0.713 0.678 1.000

Low High �0.07 0.33 �0.729 to 0.585 0.828 1.000

High Moderate 0.20 0.32 �0.442 to 0.833 0.544 1.000

HMYADD Low Moderate 0.12 0.31 �0.489 to 0.729 0.695 1.000

Low High 0.16 0.34 �0.519 to 0.839 0.640 1.000

High Moderate �0.04 0.33 �0.698 to 0.619 0.905 1.000

HMYABD Low Moderate �0.33 0.20 �0.74 to 0.08 0.109 1.000

Low High �0.11 0.23 �0.57 to 0.34 0.624 1.000

High Moderate �0.22 0.22 �0.66 to 0.22 0.324 1.000

HMZINT Low Moderate 0.06 0.07 �0.0733 to 0.2010 0.357 1.000

Low High 0.07 0.08 �0.0802 to 0.2257 0.346 1.000

High Moderate �0.01 0.07 �0.1573 to 0.1394 0.905 1.000

HMZEXT Low Moderate 0.02 0.08 �0.147 to 0.187 0.816 1.000

Low High 0.05 0.09 �0.135 to 0.237 0.585 1.000

High Moderate �0.03 0.09 �0.212 to 0.149 0.728 1.000

HROM = sagittal hip range of motion; HMXFLEX = maximum hip flexion moment; HMXEXT = maximum hip extension moment; HMYADD

= maximum hip adduction moment; HMYABD = maximum hip abduction moment; HMZINT = maximum hip internal rotation moment;

HMZEXT = maximum hip external rotation moment.

Fig. 3 The association between time in situ and wear rate represented

a weak correlation (adjusted R2 = 0.09).
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Membership-of-low-wear-group

¼ 1:1� C-INCLð Þ þ 1:8� C-MEDð Þ þ 2:5

� HMXFLEXð Þ � 1:2� HMXEXTð Þ þ 8:5

� HMYADDð Þ þ 6:8� HMYABDð Þ � 21:6

� HMZINTð Þ � 15:0� HMZEXTð Þ � 68:7

Membership-of-moderate-wear-group

¼ 1:4� C-INCLð Þ þ 1:9� C-MEDð Þ þ 2:8

� HMXFLEXð Þ � 2:4� HMXEXTð Þ þ 10:1

� HMYADDð Þ þ 10:6� HMYABDð Þ � 29:7

� HMZINTð Þ � 20:2� HMZEXTð Þ � 85:4

Membership-of-high-wear-group

¼ 1:2� C-INCLð Þ þ 1:6� C-MEDð Þ þ 2:4

� HMXFLEXð Þ � 0:4� HMXEXTð Þ þ 8:7

� HMYADDð Þ þ 8:6� HMYABDð Þ � 24:9

� HMZINTð Þ � 19:9� HMZEXTð Þ � 69:8

Eachsubjectthenwasassignedtotheweargroupwiththehighest

membershipvalue.Eightypercentofpatientswithlowwearrate,

87%withmoderatewearrate,and73%withhighwearratewere

correctly classified (Table 8).This part of thewear prediction

model(LDA)willallowassignmentofanyfuturepatient tothe

appropriate wear class without prior knowledge of wear rate.

Once subjects were classified according to wear, the MLR

(Fig. 4)andANN(Fig. 5)wereabletosuccessfullypredictwear

ratefromwearfactors(age,gait,andimplantpositioning).The

MLR-basedpredictivemodelconsistedof the following three

equations:

MLR models:

ANN-based predictive model consisted of the three fol-

lowing equations:

In which ‘‘func’’ refers to tangent sigmoid function

modeling the nonlinearity aspects of the interaction

between wear factors and wear.

TheANNmodel provided higher prediction accuracywhen

comparedwith the actual wear data. For patients with low- and

moderate-wear rates, the average prediction errors of theANN

model were NRMSE 8% and 11% respectively, while those of

the MLR model were NRMSE 27% and 54%. Thus, ANN

outperformed the MLR model which became even more evi-

dent when the wear of the high-wear group was predicted. For

patientswith a highwear rate, theANNpredictedwearwith an

average prediction error of NRMSE 14%, while the prediction

error for the MLR model was NRMSE 43%.

Table 6. Chi-square distribution of cup, stem, polyethylene, and

surgical approach among the three wear groups

Variable Wear group p Value

High Low Moderate

Cup

HG I 3 11 13

HG II 6 9 7

Mark II 2 1 4 0.124

Trilogy1 8 4 5

Stem

Cemented 5 7 3

Cementless 14 18 26 0.215

Polyethylene

GUR 1050 8 4 5

GUR 4150 11 21 24 0.917

Surgical approach

Anterolateral 12 6 1

Posterior 17 17 26 0.002

Wear rate ¼
¼ �0:27 � Age þ 0:22 � HROM� 0:22 � HMXEXT þ 0:6 � HMYABD� 0:33 � HMZINT� 0:24 � HMZEXT For low-wear group

¼ 0:13 � Ageþ 0:55 � ABD-Lð Þ � 0:38 � HROMþ 0:47 � HMXFLEX� 0:45 � HMYABD For moderate-wear group

¼ �0:54 � C-MED� 0:55 � HMYADDþ 0:38 � HMZINTþ 0:40 � H-SET� 0:4 � C-INCL For high-wear group

8
<

:

Wear rate ¼

¼ 0:050� func Ageð Þ þ 0:15 � func HMXFLEXð Þ � 0:17� func HMYABDð Þ þ 0:19� func HMZINTð Þ � 0:21� func HMZEXTð Þ þ 0:25� func HROMð Þ For low-wear group

¼ 0:0030� func Ageð Þ þ 0:32 � funcðABD-LÞ þ 0:35 � func HROMð Þ þ 0:27� func HMXFLEXð Þ þ 0:32 � func HMXEXTð Þ � 0:24� HMYADDð Þ � 0:18� func HMYABDð Þ
þ0:17� func HMZINTð Þ � 0:15� func HMZEXTð Þ For moderate-wear group

¼ �0:35� func C-INCLð Þ � 0:40 � func C-MEDð Þ
þ 0:32 � func H-SETð Þ � 0:08� func V-SETð Þ þ 0:32� func HROMð Þ þ 0:14� func HMXFLEXð Þ þ 0:15 � func HMXEXTð Þ
� 0:27 � func HMYADDð Þ � 0:21� func HMYABDð Þ þ 0:25� func HMZINTð Þ � 0:16� func HMZEXTð Þ For high-wear group

8
>>>>>>>>><

>>>>>>>>>:
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Does Gait or Positioning Contribute More to Wear

Rate?

Gait was found to have a greater influence on the wear rate

than surgical positioning variables. In both predictive

models (ANN and MLR), gait variables explained between

42% to 60% of wear rate while positioning factors only

explained between 10% to 33% of the wear rate. It seemed

that positioning variables became more important in

patients with high wear rate. For example, in patients with

high-wear rate cup medialization and cup inclination angle

emerged as part of the predictive models.

Discussion

Wear, a major barrier for implant longevity, has been

greatly reduced with the introduction of crosslinked

polyethylene. However, at present it is unknown if the

problem of wear has been completely resolved or just has

been delayed to a later time in the lifetime of the prosthesis.

Therefore, it makes sense to further investigate the factors

governing wear in the hopes of better understanding (and

perhaps being able to influence) those factors. Patient-

specific variables, such as gait or implant positioning, play

an important role in wear. However, before this report, to

our knowledge, no study with a rigorous model capable of

predicting wear rate based on these variables has been

published. Therefore, in the current study, we developed a

predictive wear model based on subject-specific gait and

implant-positioning variables. Our predictive model

showed that (1) cup medialization and inclination angle

plus three-dimensional hip moments can predict the level

of wear rate (low, moderate, or high); (2) hip moments are

more important than positioning factors (as they emerged

with a higher contribution in the predictive models); (3)

cup-positioning variables, such as medialization and

inclination angle, become more important in the presence

of high wear rates.

This study had several limitations. Perhaps the most

important limitation was that patient activity was not

included in the model. It is known from wear simulators

that polyethylene wear increases linearly with cycles [13].

It has been shown that patient steps throughout the day play

a critical role in the wear of polyethylene, and it as been

postulated that ‘‘wear is a function of use not time’’ [43]. In

Table 7. Comparison of patient demographics and wear rates among three wear groups

Variable Group 1 Group 2 Mean difference Standard error 95% CI p Value Bonferroni p value

Age (years) Low Moderate 3.27 2.62 �1.96 to 8.50 0.217 1.000

Low High 5.36 2.92 �0.47 to 11.20 0.071 0.851

High Moderate �2.10 2.84 �7.76 to 3.56 0.462 1.000

Height (m) Low Moderate �0.035 0.023 �0.082 to 0.011 0.137 1.000

Low High �0.033 0.026 �0.085 to 0.019 0.214 1.000

High Moderate �0.002 0.025 �0.053 to 0.048 0.922 1.000

Weight (N) Low Moderate �36.3 43.6 �123 to 51 0.408 1.000

Low High �84.0 48.6 �181 to 13 0.088 1.000

High Moderate 47.7 47.1 �46 to 142 0.315 1.000

Linear wear rate (mm/year) Low Moderate �0.088 0.010 �0.11 to �0.07 0.000 0.000

Low High �0.207 0.0 �0.23 to �0.19 0.000 0.000

High Moderate 0.119 0.0 0.10–0.14 0.000 0.000

Table 8. Comparison between the actual wear level (determined based on radiography followups) and the predicted wear level (from LDA

technique)

Actual wear level Estimated wear level % correctly classified

Low Moderate High

Low 20 2 3 80%

Moderate 1 25 3 86%

High 2 2 15 79%

Twenty of 25 patients with low wear rate were correctly classified as ‘‘low-wear’’; 25 of 29 with moderate wear rate were correctly classified as

‘‘moderate wear’’; 15 of 19 with high wear rate were correctly classified as high wear.
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the current study, the number of daily performed steps was

unknown, as were the specific activities. We therefore used

age as a surrogate for steps per day [37] in the analyses. We

found that age was dropped from most regression models,

and if present, entered as a nonsignificant variable. Since

the meta-regression by Naal and Impellizzeri [37] showed

a relatively strong relation between age and steps per day,

we propose that the patient’s gait pattern is indicative of his

or her activity pattern, a hypothesis that needs to be verified

in the future.

In terms of other limitations, we note that our study

design allowed statistical associations to be drawn in the

hopes of increasing prediction accuracy; however, no

mechanisms and causes can be provided. However, it is

interesting that gait pattern (together with positioning) is

such a strong predictor for wear rate. In addition, the

patients in this series all received THRs without cross-

linked polyethylene (either GUR 415 or 1050).

Generalizing our findings to newer materials should be

done with caution as the influence and ranking of the wear

factors may vary depending on implant material and

design. However, the methodology (a two-step wear-pre-

dictive model consisting of a linear classifier and a

regression model) is equally applicable to other types of

implant design and material. Moreover, wear is a function

of other variables such as implant design, material, and

surgical approach that are not part of our proposed model.

We attempted to control the potential influence of these

variables by choosing patients with similar implant design

and material. There were no statistical differences in terms

of implant design or polyethylene type among the three

wear groups, but ‘surgeon’ emerged as a potential con-

founder. Surgeon 2 had a larger number of patients in the

high-wear group compared with Surgeon 1. Although this

might be related to surgical approach, we believe it is a

case-distribution issue in that Surgeon 2 may have worked

Fig. 5A–C Class-specific artificial neural network (ANN) predic-

tions of linear wear rate compared with radiographic wear assessment

for patients with (A) low wear, (B) moderate wear, and (C) high wear

are shown.

Fig. 4A–C Class-specific linear regression predictions of linear wear

rate compared with radiographic wear assessment for patients with

(A) low wear, (B) moderate wear, and (C) high wear are shown. MLR

= multiple linear regression.
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on more-complex cases. Unfortunately, this retrospective

study does not allow a more-definite conclusion. Future

studies on a larger patient population with a heterogeneous

distribution of implant design and surgical technique may

consider these variables as additional predictors.

In addition, patients underwent only one gait test that

was conducted 1 year after surgery, whereas radiographic

followups continued for several years after surgery.

Patients’ gait may have changed with time as a function of

age, rehabilitation, or weight gain or loss, that is not

accounted for in this study. Further, the hip center has been

assumed to be at a point 2.5 cm below the mid-point of a

line that runs from the anterior superior iliac crest to the

pubic tubercle. We did not compare this preassumed

location versus hip centers calculated from the radiographs.

However, Kirkwood at al. [26] reported that this hip center

leads to the least error in the hip moment calculation (0.4

Nm/kg in the frontal plane, 0.07 Nm/kg in the sagittal

plane, and 0.03 Nm/kg in the transverse plane). Ten of our

patients had only two radiographs each; therefore, the

quality of these wear-rate calculations may have suffered.

Two observers independently measured the wear rate, and

only patients with an ICC greater than 0.90 were included.

This makes the inclusion of reading errors unlikely, but

cannot account for inferior radiographs in the first place.

Moreover, two patients with wear rates between 0.4 and 1.0

mm per year (0.68 and 0.97 mm/year) were excluded from

our study. These two patients were not removed because of

having a high wear rate but because their wear rate was

more than three times the interquartile range from the rest

of the data and caused a prediction gap in the dataset.

Ignoring these outliers would have affected the prediction

accuracy of the MLR and ANN. For example, the accuracy

of the ANN would have been reduced by 10%. For these

prediction models it is necessary to have a sufficient

number of patients to uniformly cover the whole data

range. In the future the model could be expanded to include

extreme wear.

Historically, gait pattern has not been implicated as a

wear factor of polyethylene in THR, but for the first time,

to our knowledge, we document this relationship. Despite

the availability of newer materials that seem to marginalize

the wear problem, the observed relationship is of more than

academic value. A patient’s gait pattern provides infor-

mation beyond loading of the hip during walking and

should be considered a potential (mechanical) biomarker.

In addition, the interdependence between component

positioning and gait in the wear outcome is clinically rel-

evant. Thus, to minimize wear, the ideal placement of

implant components should be determined from the indi-

vidual gait pattern. In the future, with the availability of

modern technology (such as inertial measurement units),

gait analysis will become a more-widespread and

accessible tool in hospitals. Therefore, a patient’s gait

pattern should become part of the clinical evaluation for

THR. A predictive wear model then might identify indi-

vidual wear factors, which are modifiable, either during

surgery with the appropriate component placement or after

surgery through gait retraining.

Our predictive wear model consists of two steps: (1) LDA

to estimate the level of wear (low, moderate, or high) from

gait and implant-positioning parameters, and (2) ANN (or

MLR) to further estimate the contribution ofwear factors and

the exact wear value. Before designing such a two-step

predictive model, we attempted to design a one-step wear-

predictivemodel that consisted of only one regressionmodel

(ANN orMLR). Themodels could predict the wear rate with

an average accuracy of 65% forANN and 32% forMLR. The

low prediction accuracy may be related to two reasons: (1)

there is no reasonable relationship between input and output

and (2) the statistical model is only incompletely trained. In

our case, we believe the latter is true, because the limited

number of patients (73) and high interpatient variability of

wear rates (range, 0.001–0.4) prevented meaningful training

of a one-stepANNmodel. In addition, for the two-stepmodel

herein, a priori knowledge of a patient’s wear class is not

required and knowledge of gait and implant-positioning

variables are sufficient.

Our predictive model showed that patient-specific wear

rates are associated with the patients’ gait patterns. Gait

was found to have a greater influence on the wear rate than

surgical positioning variables, which suggests that gait

analysis should become part of the clinical evaluation

process for THR. We believe that the consideration of

individual gait bears potential to further reduce implant

wear. In the future, a predictive wear model might identify

individual wear factors that could be modified during sur-

gery or after surgery through gait retraining. Although the

findings are based on traditional polyethylene, the concept

is applicable to modern materials.
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