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Abstract

Background It is still unclear why many individuals with

a cam morphology of the hip do not experience pain. It was

recently reported that a decreased femoral neck-shaft angle

may also be associated with hip symptoms. However, the

effects that different femoral neck-shaft angles have on hip

stresses in symptomatic and asymptomatic individuals with

cam morphology remain unclear.

Questions/purposes We examined the effects of the cam

morphology and femoral neck-shaft angle on hip stresses

during walking by asking: (1) Are there differences in hip

stress characteristics among symptomatic patients with

cam morphology, asymptomatic individuals with cam

morphology, and individuals without cam morphology? (2)

What are the effects of high and low femoral neck-shaft

angles on hip stresses?

Methods Six participants were selected, from a larger

cohort, and their cam morphology and femoral neck-shaft

angle parameters were measured from CT data. Two par-

ticipants were included in one of three groups: (1)

symptomatic with cam morphology; (2) asymptomatic with

a cam morphology; and (3) asymptomatic control with no

cam morphology with one participant having the highest

femoral neck-shaft angle and the other participant having

the lowest in each subgroup. Subject-specific finite element

models were reconstructed and simulated during the stance

phase, near pushoff, to examine maximum shear stresses on

the acetabular cartilage and labrum.

Results The symptomatic group with cam morphology

indicated high peak stresses (6.3–9.5 MPa) compared with

the asymptomatic (5.9–7.0 MPa) and control groups (3.8–

4.0 MPa). Differences in femoral neck-shaft angle influ-

enced both symptomatic and asymptomatic groups;

participants with the lowest femoral neck-shaft angles had

higher peak stresses in their respective subgroups. There

were no differences among control models.

Conclusions Our study suggests that the hips of individ-

uals with a cam morphology and varus femoral neck angle

may be subjected to higher mechanical stresses than those

with a normal femoral neck angle.

Clinical Relevance Individuals with a cam morphology

and decreased femoral neck-shaft angle are likely to

experience severe hip stresses. Although asymptomatic
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participants with cam morphology had elevated stresses, a

higher femoral neck-shaft angle was associated with lower

stresses. Future research should examine larger amplitudes

of motion to assess adverse subchondral bone stresses.

Introduction

Thepathomechanismof the cam-type hipmorphology,which

in some patients is associated with femoroacetabular

impingement (FAI), has been intensely investigated to better

understand anatomic and functional parameters associated

with symptomatology. The cam deformity, characterized by

an aspherical femoral head-neck junction, has been suggested

as a cause of labral-chondral damage as well as an early cause

for hip osteoarthritis [11, 17]. Several studies suggest that

a severe cam deformity, as defined by larger alpha angles,

could indicate which individualsmay be at risk of developing

early hip pain and arthritis [1, 22]. Although many symp-

tomatic individuals with a cam morphology experienced

different hip kinematics, notably during level walking [21]

and maximal squatting [23, 24], other individuals with a cam

morphology may not experience any clinical signs or symp-

toms [2, 12, 13, 19, 22, 33, 45]. In addition to elevated alpha

angles, it was recently noted that a decreased femoral neck-

shaft angle might be indicative of early symptoms as well

[13, 33, 34, 45]; however, it is unclear what combined effects

a large cam morphology and decreased femoral neck-shaft

angle have on resultant hip stresses. To our knowledge, no

study has incorporated these subject-specific anatomic

parameters with computational, finite element methods to

determine the effects on mechanical hip stresses.

According to a recent systematic review on finite ele-

ment simulations of cam FAI [36], there has been limited

work pertaining to finite element simulations that examine

cam FAI and, moreover, many of the previous studies used

idealized hip geometries [8, 15] as opposed to models

reconstructed from subject-specific imaging data. It has

also been demonstrated that subchondral bone density is

higher in individuals with a symptomatic or asymptomatic

cam morphology [52, 53]; however, previous finite element

simulations neglected subject-specific bone material prop-

erties. Previous finite element studies also attempted to

delineate pathomechanics of cam FAI using hip reaction

loads from instrumented hip prostheses [8, 15, 18] or from

inverse dynamics [37], which is typically limited to

external and inertial forces and neglects muscle activity

[26, 54]. Because muscles contribute greatly to hip contact

forces, it may be more appropriate to implement rigid body

dynamics and musculoskeletal modeling (including gravi-

tational, inertial, and muscle forces) to calculate joint

contact loads.

Because elevated mechanical stresses in the subchondral

bone may play a pathomechanical role in cam FAI

[42, 52, 53], subject-specific input parameters (perhaps

including geometries, material properties, joint loading) are

critical to adequately represent a patient demographic. It

would also be necessary to examine hip stresses in indi-

viduals with an asymptomatic cam morphology to

determine if stress magnitudes and distributions of these

individuals are comparable to either an at-risk, symp-

tomatic population or healthy control population without

cam morphology.

The purpose of this study therefore was to examine the

combined effects of the cam morphology and femoral

neck-shaft angle on hip stresses during level walking. We

specifically addressed two research questions: (1) Are there

any differences in hip stress characteristics among patients

with cam morphology, asymptomatic individuals with cam

morphology, and control individuals without cam mor-

phology? (2) What are the effects of a high or low femoral

neck-shaft angle on hip stresses for each respective

subgroup?

Patients and Methods

Six male participants (n = 6, age = 32 ± 7 years, body mass

index = 26 ± 3 kg/m2), from a larger patient cohort in a

prior study of cam morphology [33], were recruited

through the senior orthopaedic surgeon’s clinical practice

(PEB). Because cam morphology has been more prevalent

in younger, athletic males [11], the six participants

recruited for this study were male as well. Each participant

underwent pelvic imaging using conventional CT scanners

(Acquilion; Toshiba Medical Systems Corporation, Ota-

wara, Japan; or Discovery CT750; GE Healthcare,

Mississauga, Ontario, Canada) to confirm if they had cam

morphology, as indicated by either an axial 3:00 or radial

1:30 alpha angle greater than 50.5� or 60�, respectively
[38, 44] (Fig. 1). Participants were scanned in a supine

position with a calibration phantom (Model 3; Mindways

Software, Austin, TX, USA) placed under the lumbar

vertebra for bone mineral densitometry. Participants from

the earlier study cohort who initially presented with clinical

symptoms, impingement sign, and a cam morphology on

CT images were considered as symptomatic participants

and candidates for surgery. The other participants were

recruited as volunteers who had no hip pain or clinical

impingement signs and were unaware whether they had a

cam morphology. From these volunteers, participants who

showed a cam morphology on CT images but did not

present with clinical signs or symptoms were considered

asymptomatic, whereas participants with no cam mor-

phology and no clinical signs or symptoms were considered
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control subjects. Each participant’s alpha angles were as-

sessed by a senior-level musculoskeletal radiologist (KSR),

where for each symptomatic, asymptomatic, or control

participant, the affected side was defined by the hip with

symptoms, higher alpha angle, or smaller alpha angle,

respectively. Each participant’s affected hip underwent

subsequent MRI (MAGNETOM Symphony; Siemens

Healthcare GmbH, Erlangen, Germany) to determine car-

tilage thickness and labral contours. Any participant with a

history of a major lower limb injury or musculoskeletal

abnormality was excluded.

In addition to the cam morphology, the femoral neck-

shaft angle of each participant’s affected hip was measured

from their CT data [33] using a DICOM viewer (Onis 2.4;

DigitalCore, Tokyo, Japan) to determine whether the

symptomatic group had a decreased femoral neck-shaft

angle, an anatomic characteristic associated with FAI

symptomatology [33, 34] (Fig. 1). Lateral center-edge

angles were measured as well and confirmed to be normal

(B 39�). Participants also completed pain questionnaires—

Hip Disability and Osteoarthritis Outcome Score (HOOS)

and WOMAC—to assess any subjective differences in

symptoms. We expected the symptomatic group to have

lower pain questionnaire scores compared with the

asymptomatic and control groups (which should have

scores near 100%). Based on the resultant anatomic and

clinical indications, the larger cohort from the aforemen-

tioned earlier study consisted of 12 symptomatic, 17

asymptomatic, and 14 control participants [33]. For this

study, we selected two participants for each of the three

groups from the larger cohort—one participant with the

highest femoral neck-shaft angle and one with the lowest

femoral neck-shaft angle for each of the symptomatic,

asymptomatic, and control groups (Table 1). The study

protocol was approved by the university and hospital

research institute ethics boards. Participants provided

informed consent before the study and all investigations

were conducted ethically in conformity with research

principles.

Before motion analysis, in efforts to minimize skin

artifacts and pelvic misalignment during motion capture,

surface radioopaque markers were placed onto each par-

ticipant’s pelvic landmarks before CT imaging at the left

and right anterosuperior iliac spines and posterosuperior

Fig. 1 The cam morphology

was determined by an alpha

angle greater than 50.5� or 60�
either in the 3:00 axial plane

(left) or 1:30 radial plane

(right), respectively. The

femoral neck-shaft angle

(FNSA) was also determined to

examine the effects of a high

and low femoral neck-shaft

angle on each participant group.

SUP = superior; LAT = lateral;

ANT = anterior.

Table 1. Summary of clinical assessments and measured anatomic parameters for each symptomatic, asymptomatic, and control participant

with high (H) and low (L) femoral neck-shaft angle

Participant Age

(years)

Body mass

index (kg/m2)

HOOS

pain (%)

WOMAC

pain (%)

Axial 3:00

alpha angle (�)
Radial 1:30

alpha angle (�)
Femoral

neck-shaft angle (�)

Symptomatic H 25 25 53 55 51 63 125

Symptomatic L 33 22 65 80 58 64 119

Asymptomatic H 28 27 100 100 52 66 134

Asymptomatic L 44 27 100 100 56 70 123

Control H 32 26 100 100 44 56 132

Control L 30 29 100 100 41 52 124

HOOS = Hip Disability and Osteoarthritis Outcome Score; H = high femoral neck-shaft angle; L = low femoral neck-shaft angle.
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iliac spines. Each participant performed level walking tri-

als, at a self-selected pace, in the motion capture

environment. Three-dimensional kinematics were recorded

using a 10-camera motion capture system (MX-13; Vicon,

Oxford, UK) with retroreflective markers placed on ana-

tomic landmarks according to a modified Plug-in-Gait

model [28]. Ground reaction forces of each participant’s

affected leg, during single stance, were captured using two

stationary force plates (FP4060-08; Bertec, Columbus, OH,

USA). The trajectories were filtered (Woltring, MSE = 15

mm2) using motion analysis software (Nexus 1.8; Vicon)

and ground reaction forces were filtered (zero-lag, fourth-

order Butterworth, cutoff frequency 6 Hz) using numerical

computational software (MATLAB R2014a; MathWorks,

Nantick, MA, USA).

Muscle and hip contact forces were estimated using a

musculoskeletal modeling program (OpenSim 3.1; SimTK,

open source program). We adapted a model that consisted

of the torso and lower body segments [9], where the hip

and lumbar spine were modeled as ball-and-socket joints,

which contributed to a total of 29 degrees of freedom and

92 musculotendinous actuators [28]. Muscle forces were

computed using a static optimization approach with a

quadratic cost function [31] and resultant three-dimen-

sional hip contact forces were calculated and expressed in

the pelvic reference system [63].

Each participant’s affected hip model was manually

segmented from their CT data using image segmentation

software (3D-Doctor 4.0; Able Software Corp, Lexington,

MA, USA), including slices from the superior iliac crest to

the proximal femur (Fig. 2A). The MRI was manually reg-

istered and centered on four control points of the target CT

images,where the deepestwidth and depth of the acetabulum

and the femoral head center were denoted as registration

landmarks. The midpoint between the femoral and acetab-

ular cartilages and their thicknesses were determined. The

femoral cartilage, acetabular cartilage, and labrum were

manually segmented. None of the participants indicated

signs of osteoarthritis or joint space narrowing; therefore,

cartilage was modeled as a smooth layer with no surface

discrepancies. The segmented models were then resurfaced

to reduce geometric artifacts using computer-aided design

software (SolidWorks; Dassault Systèmes, Concord, MA,

USA). Anatomic hip parameters of the resurfaced models

were measured using computer-aided design software and

compared with the original CT data to confirm the accuracy

of the resurfacing and modeling procedure [35].

Each participant’s hip assembly was imported into finite

element analysis software (ANSYS 12.1; ANSYS Inc,

Canonsburg, PA, USA) and meshed with tetrahedral,

SOLID187 elements. Bone material properties were based

on subject-specific apparent density using the calibration

Fig. 2A–C Frontal view of the

segmented left hip assembly,

from the superior iliac crest to

the proximal diaphysis (A). The
segmented model was resur-

faced to reduce geometric

artifacts and bone material prop-

erties were determined from a

density-elasticity relationship

that assigned a unique elastic

modulus to each individual ele-

ment (B), that resulted in

heterogeneous, isotropic bone

models (C).
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phantom and quantitative mapping. Meshes were first

imported into the bone density mapping software (Bonemat

v3.1; Istituto Ortopedico Rizzoli, Bologna, Italy) and a

density-elasticity relationship assigned unique elastic

moduli to individual elements (Fig. 2B), for each individ-

ual participant model, based on the conversion from the

densitometry calibration (qCT) to the corrected density

(qash), resulting in heterogeneous, isotropic bone models

(Fig. 2C) [47, 56]. Cartilage and labrum were modeled as

Neo-Hookean, hyperelastic materials [16, 40] with constant

hydrostatic pressure (Keyopt[6] = 1, hyperelasticity).

Bone and soft tissue models started with an element size

of 3 and 2 mm, respectively, and were further refined to

ensure mesh sensitivity. Mesh convergence was considered

adequate if the change in stress magnitudes was less than

5% with increasing element refinement. Unaveraged

stresses were also compared with averaged integration

point results to ensure that the meshes were sufficiently

refined. (The smallest resultant element size for the carti-

lage model was 0.22–0.74 mm.) Contacts between femoral

and acetabular cartilages were modeled with a frictional

coefficient of 0.01 [57]. Boundary conditions were fixed at

the pubis symphysis and iliac crest (from anterior to pos-

terior superior iliac spines) (Fig. 3). The femur model was

oriented using the kinematics data during the loading

condition and was permitted to translate in the loading

direction [16, 37]. A quasistatic loading scenario, using the

highest resultant hip forces during terminal stance, was

selected for comparison with hip contact forces applied at

the femoral head. Because cartilage may be most suscep-

tible to shear stresses under quasistatic loading [27],

maximum shear stresses were examined on each partici-

pant’s acetabular cartilage and labrum to examine adverse

loading conditions [15, 37]. A process flowchart from

subject-specific input data to resultant hip stresses is

summarized (Fig. 4).

Results

The symptomatic and asymptomatic models showed higher

maximum shear stresses than the controls. Both symp-

tomatic participants indicated peak maximum shear

stresses on the anterolateral cartilage (6.3–9.5 MPa), but

also secondary posteroinferior stresses (Fig. 5). Both

asymptomatic participants showed moderate stress magni-

tudes in the superior and posterior cartilage (5.9–7.0 MPa),

whereas the controls experienced the lowest stresses with

more well-conforming contacts and dissipated distributions

along the superior and posterior domes as well (3.8–4.0

MPa; Fig. 5).

Differences in femoral neck-shaft angle influenced both

cam morphology groups. The symptomatic participant with

the lower femoral neck-shaft angle (119�) had the highest

maximum shear stress in the anterolateral cartilage (9.5

MPa; Fig. 6) with a high secondary peak stress in the

posterior region (7.9 MPa) as well, whereas the symp-

tomatic participant with the higher femoral neck-shaft

angle (125�) showed a lower magnitude (6.3 MPa). The

asymptomatic participant with the lowest femoral neck-

shaft angle (123�) also had slightly higher peak stress (7.0

MPa) than the asymptomatic participant with the highest

femoral neck-shaft angle (134�, 5.9 MPa). There were no

substantial differences between the two controls.

Discussion

It is unclear why certain individuals with cam deformities

develop progressive degenerative changes and symptoms,

whereas others remain asymptomatic for most of their lives

[12, 19, 46, 55]. Gaining a better understanding of stresses

in asymptomatic hips can provide critical insights into

those who are at risk of arthritic changes. In an effort to

address differences in the FAI population, we incorporated

subject-specific anatomic parameters, geometries, material

properties, and joint loading to determine if stresses

resulting from an asymptomatic morphology share simi-

larities with symptomatic or healthy individuals. We

examined if decreased femoral neck-shaft angles could

explain early symptoms resulting from adverse loading

Fig. 3 Boundary conditions were fixed at the pubic symphysis and

iliac crest, from the anterosuperior iliac spine to the posterosuperior

iliac spine. The femur was oriented according to the kinematics data

and was permitted to translate in the loading direction.
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conditions. Although asymptomatic participants had ele-

vated stresses, a higher femoral neck-shaft angle was

associated with lower stresses despite cam morphology.

Our study had certain limitations. First, there was slight

overlap in femoral neck-shaft angles between the

symptomatic and asymptomatic groups that resulted in

overlapping peak hip stresses as well. None of our symp-

tomatic participants had a valgus neck to directly compare

with the upper limits of the asymptomatic and control

groups (134� and 132�, respectively), whereas similarly,

Fig. 4 Process flowchart showing subject-specific input data used for the finite element simulations. The subject-specific hip geometries,

material properties, and contact loads were combined and simulated to determine resultant hip stresses.
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our asymptomatic and control participants did not have

varus angles. The participants were selected from a larger

cohort (n = 43) that examined differences in anatomic

parameters among symptomatic, asymptomatic, and con-

trol participants [33]. From that study, the femoral neck-

shaft angles of the asymptomatic (127� ± 3�; 123�–134�)
and control groups (128� ± 2�; 124�–132�) were higher in

comparison with the symptomatic group (123� ± 2�; 119�–
125�; g2 = 0.496, p\0.001) [33]. It was interesting to note

that higher stresses were not necessarily dependent on

participant group or symptoms, but perhaps were more

associated with femoral neck-shaft angle and a cam mor-

phology. This might also further support the concept that a

higher femoral neck-shaft angle decreases the risk of early

symptoms [10, 33, 34, 49, 50]. We also accounted for the

highest and lowest femoral neck-shaft angles in each group

as opposed to examining the largest and smallest cam

deformities. Second, certain limitations were imposed by

the small sample size. We captured the upper and lower

neck angles, but a larger sample size would increase the

robustness and differences among the subgroups, which

may further delineate intersubject variability and correlate

impingement severities with associated anatomic parame-

ters (cam morphology and femoral neck-shaft angle). As a

Fig. 5 Sagittal view of the acetabular cartilage and labrum, from the

resultant finite element simulations, showing the maximum shear

stress distributions for each symptomatic, asymptomatic, and control

participant with the highest (H = top row) and lowest (L = bottom

row) femoral neck-shaft angle. The reference locations are denoted by

anterior (ANT), posterior (POS), superior (SUP), and inferior (INF).

Fig. 6 Graph indicating the peak maximum shear stress for each

symptomatic, asymptomatic, and control participant with the highest

and lowest femoral neck-shaft angle.
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result of this smaller sample size, we also did not match for

body mass index (BMI) between subgroups. We had a

small BMI range for each subgroup and thus were unable

to observe the effects of varying BMI on hip stresses.

Furthermore, because the cam morphology is more

prevalent in males [11, 13], our larger cohort that we

selected these participants from consisted solely of male

participants [33]. Increasing the sample size and including

female participants could examine functional and anatomic

variances.

Additional limitations of the study include that hip

contact forces were determined using static optimization

[39, 41]. Previous studies indirectly validated and com-

pared their results with contact forces from instrumented

prostheses [7, 14, 26]. Our contact forces were marginally

higher than those from instrumented prostheses, but dif-

ferences in population characteristics, age, walking speed,

and activity level should be considered [7, 25, 28, 58, 61].

Fourth, although we improved subject-specific bone

material properties to examine FAI, we did not examine

biphasic cartilage properties or consolidation, which should

be considered in future studies along with dynamic

responses [3, 27, 51]. Although subject-specific bone

densities were mapped onto individual elements, resulting

in heterogeneous bone models, another limitation may be

the isotropic property. Isotropy is a conventional material

property when implementing subject-specific bone density

mapping for heterogeneous components; however, future

steps should consider anisotropic or orthotropic properties

to simulate the material behavior of bone. Fifth, capsular

ligaments and muscle lines of action were not included in

the model, because we focused on the contributions of the

bony morphology to adverse contact loading. Taut hip

ligaments would properly seat the femoral head into the

acetabulum at more neutral positions, but may restrain hip

ROM in individuals with cam morphology. However,

knowing that capsular ligaments also play a vital role in

minimizing edge loading [59, 60], poorly functioning

ligaments may be unable to prevent adverse contact load-

ing at higher amplitudes of motion. Therefore, it would be

imperative to further examine the effects of the surround-

ing capsule on limiting adverse stresses and

microinstability [20, 32]. Finally, we examined level

walking and, although there were differences in cartilage

stresses among the subgroups, we did not note any sub-

stantial subchondral bone stresses. The baseline bone

densities for each model were within the range of typical

values for cortical and trabecular bone. There were no

differences in elastic modulus between participants within

a subgroup. The symptomatic and asymptomatic partici-

pants had marginally higher elastic moduli than the control

group, but no differences were observed in the subchondral

bone. It would be important to examine other activities that

require larger hip motions (eg, squatting, stair ascent/des-

cent) to compare if elevated subchondral bone stresses are

different among subgroups and delineate pathomechanical

arthritic changes [29, 52, 53]. It is hypothesized that

impinging motions may cause higher stresses not only to

the articulating cartilage, but also to the subchondral bone.

This would further reinforce the theory that early sub-

chondral bone adaptation may lead to secondary cartilage

degeneration [42].

As mentioned, there was an overlap in femoral neck-

shaft angles between the symptomatic and asymptomatic

groups. The symptomatic cohort that we were selecting

from did not have a high femoral neck-shaft angle and,

similarly, the asymptomatic and control participants did

not have low femoral neck-shaft angles for direct com-

parisons. The resultant consequence of these small

differences has yet to be fully elucidated. The asymp-

tomatic participants’ moderate stresses were higher than

the control subjects but were more evenly distributed than

the symptomatic models. To our knowledge, no study has

investigated hip contact stresses resulting from an asymp-

tomatic cam morphology [36]. In one of the first finite

element studies in this area, Chegini and associates [8]

examined cartilage stresses using an idealized ball-and-

socket model parameterized to various cam and acetabular

coverage morphologies, applying instrumented prosthesis

loads. They reported no changes in stress as alpha angles

were increased, which may be attributed to their idealized

geometry. Our results for the control subjects were slightly

higher than their control parameters (contact pressure =

2.57 ± 0.89 MPa); however, we included subject-specific

geometries, bone material properties, and, more impor-

tantly, joint loading, which could have yielded a higher

result. Another earlier study on FAI applied subject-

specific intersegmental hip forces during maximal squat

[37]. Our resultant contact stresses were within a reason-

able range during the lower amplitude of hip motion, but

cannot directly compare with the different squatting

activity. The current study considered hip contact forces as

opposed to intersegmental forces from inverse dynamics,

thus improving the representation of hip contact stresses.

Jorge and associates [18] found much higher cartilage

contact pressures at higher amplitudes of hip motion.

However, their study was limited to one male subject with

a severe cam deformity (age = 27 years, alpha angle = 98�)
matched with one healthy female control subject (age = 50

years, alpha angle = 48�). A recent study by Hellwig and

associates [15] also implemented idealized geometries and

instrumented prosthesis loads during walking to compare

one cam (alpha angle = 74�) with one control hip (alpha

angle = 40�). Using a poroelastic, orthotropic cartilage

model, they found peak contact pressures in the superior

cartilage for the control hip (2.87 MPa). Peak pore pressure
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was also different between control (0.42 MPa, posterior

cartilage) and FAI (3.76 MPa, anterosuperior cartilage).

The authors remarked that their geometries were idealized

for convergence.

In this study, the symptomatic and asymptomatic partic-

ipants with low femoral neck-shaft angles had the highest

resultant stresses in their respective subgroups. Both symp-

tomatic participants and the asymptomatic participant with

the lower femoral neck-shaft angle indicated anterolateral

and posterior stress concentrations, which coincided very

closely to known areas of cartilage damage [4–6], sub-

chondral bone stiffening [53], and decreased proteoglycan

content [29, 43] as a result of cam FAI. Elevated stresses of

the symptomatic group could also be attributed to preexisting

chondrolabral damage, resulting in incongruent articulations

and unfavorable contact mechanics. The control participant,

with the lower femoral neck-shaft angle, showed more

favorable contact mechanics, justifying that it could be a

combination of both cam and neck angle parameters that

contribute to adverse stresses. Although clinical assessment

of the cam deformity is usually from multiplanar imaging, it

does not provide a complete picture in regard to the likeli-

hood for the onset of degenerative symptoms. Recent work

by our group suggests that differences in peak stresses

between the symptomatic and asymptomatic groups further

support that a decreased femoral neck-shaft angle may be an

indicator of those at risk of developing early symptoms and

onset of osteoarthritis [33, 34]. Also, in recent in vivo studies

by Siebenrock and associates [49, 50], intertrochanteric

varus osteotomies were performed on healthy ovine hips to

reduce the femoral neck-shaft angle and experimentally

induce mechanical cam impingement. This resulted in

localized chondrolabral degeneration, comparable to pro-

gressive damage in human hips with FAI. The coxa vara

construct seated the femoral head further into the acetabulum

and brought the cam morphology closer to the anterolateral

and anterosuperior labrum. This may predispose to early

labral damage and perhaps explain why some asymptomatic

individuals do not experience early symptoms. Although the

cam morphology rarely impinges at lower amplitudes of

motion, the effect of a lower femoral neck-shaft angle and

shortened abductor may contribute to more adverse contact

loading to stabilize the pelvis during level walking

[58, 61, 62]. We retrospectively examined the participants’

terminal stance phase and remarked that both asymptomatic

participants along with the control participant with high

femoral neck-shaft angle all had higher hip extensions.

Interestingly, both symptomatic individuals had small hip

extensions during terminal stance, which may have been

limited by capsular ligaments or perhaps indicate a protec-

tive mechanism to minimize anterior hip contact forces

[25, 61]. This could be a neuromuscular adaptation mecha-

nism to avoid pain by altering the direction andmagnitude of

the force vectors [30]. The unaffected, contralateral hip of

the symptomatic group should be further investigated to

confirm asymmetry and if compensatory load is applied onto

the unaffected hip [48].

In conclusion, our study suggests that individuals with

cam morphology and varus neck angle may be subjected to

elevated mechanical stresses. Although asymptomatic

participants had elevated stresses, a higher femoral neck-

shaft angle was associated with lower stresses despite cam

morphology. Thus, individuals with an asymptomatic cam

morphology and low femoral neck-shaft angle may be at a

greater risk of developing clinical signs and symptoms.

Future studies will involve higher amplitudes of hip and

pelvic motions as well as contact stresses at the underlying

subchondral bone to better understand the contributions of

various anatomic and functional parameters in individuals

with cam morphology.
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