Skip to main content
Log in

Development of antibacterial waterborne polymeric coating using iodine complex

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

With advancements in architectural coatings, the demand for antimicrobial coatings in this sector has increased significantly. The COVID-19 pandemic has also been a primary force behind the increased demand for and production of antimicrobial coatings. Typically, antimicrobial coatings are used to resist and decolonize microbial attacks such as biofilm formation, fungal contamination, and black mold formation. In this study, we synthesized a water-based antimicrobial polymer nanocomposite, I-P(MMA/BA), by blending an iodine complex with a poly (methyl methacrylate-butyl acrylate) latex with the aid of polyol and polyvinylpyrrolidone. Antimicrobial efficacy was evaluated in two habitats, namely planktonic and biofilm. Biomass studies indicated that iodinated latex nanocomposites and films show excellent antibacterial and antibiofilm activities. About 85–97% of biofilm formation was reduced by covering 15–30% of the area with iodinated latex film. The contact angle measurement of the iodinated latex-coated surface provides evidence of good hydrophobicity, which prevents stagnation of water over the surface. The developed dual-functional water-based iodinated nanocomposite displays great potential for inhibiting biofilm formation on surfaces when employed as a binder in paints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Machado Querido, M, Paulo, I, Hariharakrishnan, S, Rocha, D, Barbosa, N, Galhano, R, Santos, D, Moura Bordado, J, Teixeira, JP, Pereira, CC, Borges, P, Simões, M, Maresca, M, “Self-Disinfecting Paints with the Natural Antimicrobial Substances: Colophony and Curcumin.” Antibioticshttps://doi.org/10.3390/antibiotics10111351 (2021)

    Article  Google Scholar 

  2. Wu, S, Wang, Y, Jin, X, Tian, J, Liu, J, Mao, Y, “Environmental Contamination by SARS-CoV-2 in a Designated Hospital for Coronavirus Disease 2019.” Am. J. Infect. Control, 48 (8) 910–914. https://doi.org/10.1016/J.AJIC.2020.05.003 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cloutier, M, Mantovani, D, Rosei, F, “Antibacterial Coatings: Challenges, Perspectives, and Opportunities.” Trends Biotechnol., 33 (11) 637–652. https://doi.org/10.1016/J.TIBTECH.2015.09.002 (2015)

    Article  CAS  PubMed  Google Scholar 

  4. Yao, H, Li, L, Li, W, Qi, D, Fu, W, Wang, N, “Application of Nanomaterials in Waterborne Coatings: A Review.” Resour. Chem. Mater., 1 (2) 184–200. https://doi.org/10.1016/J.RECM.2022.06.004 (2022)

    Article  Google Scholar 

  5. Dileep, P, Jacob, S, Narayanankutty, SK, “Functionalized Nanosilica as an Antimicrobial Additive for Waterborne Paints.” Prog. Org. Coat., 142 105574 (2020)

    Article  CAS  Google Scholar 

  6. Nevalainen, A, Täubel, M, Hyvärinen, A, “Indoor Fungi: Companions and Contaminants.” Indoor Air, 25 (2) 125–156. https://doi.org/10.1111/INA.12182 (2015)

    Article  CAS  PubMed  Google Scholar 

  7. Jayaprakash, B, Adams, RI, Kirjavainen, P, Karvonen, A, Vepsäläinen, A, Valkonen, M, Järvi, K, Sulyok, M, Pekkanen, J, Hyvärinen, A, Täubel, M, “Indoor Microbiota in Severely Moisture Damaged Homes and the Impact of Interventions.” Microbiome, 5 (1) 138. https://doi.org/10.1186/S40168-017-0356-5/TABLES/6 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kportufe, GS, “The Devastating Effects of Rising Damp in the Construction Industry.” Indus. Eng. Lett., 5(10) 28–35 (2015)

  9. Dannemiller, KC, Weschler, CJ, Peccia, J, “Fungal and Bacterial Growth in Floor Dust at Elevated Relative Humidity Levels.” Indoor Air, 27 (2) 354–363. https://doi.org/10.1111/INA.12313 (2017)

    Article  CAS  PubMed  Google Scholar 

  10. Gupta, S, Puttaiahgowda, YM, Nagaraja, A, Jalageri, MD, “Antimicrobial Polymeric Paints: An Up-to-Date Review.” Polym. Adv. Technol., 32 (12) 4642–4662. https://doi.org/10.1002/PAT.5485 (2021)

    Article  CAS  Google Scholar 

  11. Burkhardt, M, Zuleeg, S, Vonbank, R, Schmid, P, Hean, S, Lamani, X, Bester, K, Boller, M, “Leaching of Additives from Construction Materials to Urban Storm Water Runoff.” Water Sci. Technol., 63 (9) 1974–1982. https://doi.org/10.2166/WST.2011.128 (2011)

    Article  CAS  PubMed  Google Scholar 

  12. Nazar, FN, Weerasinghe, TK, Perera, S, “A Preliminary Study on the Resistance of Paints Against the Growth of Algae and Fungi.” Adv. Mat. Res., 746 186–191. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMR.746.186 (2013)

    Article  Google Scholar 

  13. Machado Querido, M, Paulo, I, Hariharakrishnan, S, Rocha, D, Barbosa, N, Galhano, R, Santos, D, Moura Bordado, J, Teixeira, JP, Pereira, CC, Borges, P, Simões, M, Maresca, M, “Self-Disinfecting Paints with the Natural Antimicrobial Substances: Colophony and Curcumin.” Antibioticshttps://doi.org/10.3390/antibiotics10111351 (2021)

    Article  Google Scholar 

  14. Jämsä, S, Mahlberg, R, Holopainen, U, Ropponen, J, Savolainen, A, Ritschkoff, AC, “Slow Release of a Biocidal Agent from Polymeric Microcapsules for Preventing Biodeterioration.” Prog. Org. Coat., 76 (1) 269–276. https://doi.org/10.1016/J.PORGCOAT.2012.09.018 (2013)

    Article  Google Scholar 

  15. Machado Querido, M, Paulo, I, Hariharakrishnan, S, Rocha, D, Barbosa, N, Gonçalves, D, Galhano, R, Santos, D, Moura Bordado, J, Teixeira, JP, Pereira, CC, “Development and In Vitro Validation of Antibacterial Paints Containing Chloroxylenol and Terpineol.” Toxicshttps://doi.org/10.3390/toxics10070343 (2022)

    Article  Google Scholar 

  16. Munita, JM, Arias, CA, “Mechanisms of Antibiotic Resistance.” Microbiol. Spectr., 4 (2) 464–472. https://doi.org/10.1128/MICROBIOLSPEC.VMBF-0016-2015 (2016)

    Article  Google Scholar 

  17. Sun, G, Ge, H, Luo, J, Liu, R, “Highly Wear-Resistant UV-Curing Antibacterial Coatings via Nanoparticle Self-Migration to the Top Surface.” Prog. Org. Coat., 135 19–26. https://doi.org/10.1016/J.PORGCOAT.2019.05.018 (2019)

    Article  CAS  Google Scholar 

  18. MacMullen, J, Zhang, Z, Dhakal, HN, Radulovic, J, Karabela, A, Tozzi, G, Hannant, S, Alshehri, MA, Buhé, V, Herodotou, C, Totomis, M, Bennett, N, “Silver Nanoparticulate Enhanced Aqueous Silane/Siloxane Exterior Facade Emulsions and Their Efficacy Against Algae and Cyanobacteria Biofouling.” Int. Biodeterior. Biodegrad., 93 54–62. https://doi.org/10.1016/J.IBIOD.2014.05.009 (2014)

    Article  CAS  Google Scholar 

  19. Ghorbani, HR, “Biological and Non-Biological Methods for Fabrication of Copper Nanoparticles.” Chem. Eng. Commun., 202 (11) 1463–1467. https://doi.org/10.1080/00986445.2014.950732 (2015)

    Article  CAS  Google Scholar 

  20. Ghorbani, HR, “Biological Coating of Paper Using Silver Nanoparticles.” IET Nanobiotechnol., 8 (4) 263–266. https://doi.org/10.1049/IET-NBT.2013.0039 (2014)

    Article  PubMed  Google Scholar 

  21. Hamid, RG, Saeid, S, “Antibacterial Effects of Silver Nanoparticles on Escherichia coli and Bacillus subtilis.” Oriental J. Chem., 31 341–344 (2015)

    Article  Google Scholar 

  22. Ghorbani, HR, Molaei, M, “Optimization of Coating Solution for Preparation of Antibacterial Copper-Polyethylene Nanocomposite.” Mater. Res. Exp., 4 (6) 065017 (2017)

    Article  Google Scholar 

  23. Ghorbani, HR, Molaei, M, “Antibacterial Nanocomposite Preparation of Polypropylene-Silver Using Corona Discharge.” Prog. Org. Coat., 112 187–190. https://doi.org/10.1016/J.PORGCOAT.2017.07.020 (2017)

    Article  CAS  Google Scholar 

  24. Tornero, ACF, Blasco, MG, Azqueta, MC, Acevedo, CF, Castro, CS, López, SJR, “Antimicrobial Ecological Waterborne Paint Based on Novel Hybrid Nanoparticles of Zinc Oxide Partially Coated with Silver.” Prog. Org. Coat., 121 130–141. https://doi.org/10.1016/J.PORGCOAT.2018.04.018 (2018)

    Article  CAS  Google Scholar 

  25. Chen, MC, Koh, PW, Ponnusamy, VK, Lee, SL, “Titanium Dioxide and Other Nanomaterials Based Antimicrobial Additives in Functional Paints and Coatings: Review.” Prog. Org. Coat., https://doi.org/10.1016/J.PORGCOAT.2021.106660 (2022)

    Article  Google Scholar 

  26. Liao, C, Li, Y, Tjong, SC, “Bactericidal and Cytotoxic Properties of Silver Nanoparticles.” Int. J. Mol. Sci.https://doi.org/10.3390/IJMS20020449 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  27. Priimagi, A, Cavallo, G, Metrangolo, P, Resnati, G, “The Halogen Bond in the Design of Functional Supramolecular Materials: Recent Advances.” Acc Chem. Res., 46 (11) 2686–2695. https://doi.org/10.1021/AR400103R/ASSET/IMAGES/LARGE/AR-2013-00103R_0009.JPEG (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Leaper, DJ, Schultz, G, Carville, K, Fletcher, J, Swanson, T, Drake, R, “Extending the TIME Concept: What Have We Learned in the Past 10 Years?” Int. Wound J.https://doi.org/10.1111/J.1742-481X.2012.01097.X (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  29. Moulay, S, “Molecular Iodine/Polymer Complexes.” J. Polym. Eng., 33 (5) 389–443. https://doi.org/10.1515/POLYENG-2012-0122/ASSET/GRAPHIC/POLYENG-2012-0122_FIG43.JPG (2013)

    Article  CAS  Google Scholar 

  30. Tyagi, M, Singh, S, Singh, H, “Iodinated Natural Rubber Latex: Preparation, Characterisation and Antibacterial Activity Assessment.” Artif. Cells Blood Substit. Immobil. Biotechnol., 28 (6) 521–533. https://doi.org/10.1080/10731190009139268 (2000)

    Article  CAS  PubMed  Google Scholar 

  31. Jie, L, Ying, D, Yuyu, S, “Antimicrobial Activity and Biocompatibility of Polyurethaneg-Iodine Complexes.” J. Bioact. Compat. Polym., 25 (2) 185–206. https://doi.org/10.1177/0883911509359980 (2010)

    Article  CAS  Google Scholar 

  32. Hassan, I, Keen, A, “Potassium Iodide in Dermatology.” Indian J. Dermatol. Venereol. Leprol., 78 (3) 390. https://doi.org/10.4103/0378-6323.95472 (2012)

    Article  PubMed  Google Scholar 

  33. Makhayeva, DN, Irmukhametova, GS, Khutoryanskiy, VV, “Polymeric Iodophors: Preparation, Properties, and Biomedical Applications.” Rev. J. Chem., 10 (1) 40. https://doi.org/10.1134/S2079978020010033 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chauret, CP, “Sanitization." In: Encyclopedia of Food Microbiology: Second Edition 2014, 360–364. https://doi.org/10.1016/B978-0-12-384730-0.00407-9.

  35. Lepelletier, D, Maillard, JY, Pozzetto, B, Simon, A, “Povidone Iodine: Properties, Mechanisms of Action, and Role in Infection Control and Staphylococcus aureus Decolonization.” Antimicrob. Agents Chemother.https://doi.org/10.1128/AAC.00682-20 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  36. Schreier, H, Erdos, G, Reimer, K, König, B, König, W, Fleischer, W, “Molecular Effects of Povidone-Iodine on Relevant Microorganisms: An Electron-Microscopic and Biochemical Study.” Dermatologyhttps://doi.org/10.1159/000246043 (1997)

    Article  PubMed  Google Scholar 

  37. Cooper, RA, “Iodine Revisited.” Int. Wound J., 4 (2) 124. https://doi.org/10.1111/J.1742-481X.2007.00314.X (2007)

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mcdonnell, G, Russell, AD, “Antiseptics and Disinfectants: Activity, Action, And.” Clin. Microbiol. Rev., 12 (1) 147. https://doi.org/10.1128/CMR.12.1.147 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tigli, RS, Evren, V, “Synthesis and Characterization of Pure Poly(Acrylate) Latexes.” Prog. Org. Coat., 52 (2) 144–150. https://doi.org/10.1016/J.PORGCOAT.2004.10.004 (2005)

    Article  CAS  Google Scholar 

  40. Shukla, SK, Hariharan, S, Rao, TS, “Uranium Bioremediation by Acid Phosphatase Activity of Staphylococcus aureus Biofilms: Can a Foe Turn a Friend?” J. Hazard. Mater., 384 121316. https://doi.org/10.1016/J.JHAZMAT.2019.121316 (2020)

    Article  CAS  PubMed  Google Scholar 

  41. Cunliffe, AJ, Askew, PD, Stephan, I, Iredale, G, Cosemans, P, Simmons, LM, Verran, J, Redfern, J, “How Do We Determine the Efficacy of an Antibacterial Surface? A Review of Standardised Antibacterial Material Testing Methods.” Antibioticshttps://doi.org/10.3390/ANTIBIOTICS10091069 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  42. Smith, K, Hunter, IS, “Efficacy of Common Hospital Biocides with Biofilms of Multi-Drug Resistant Clinical Isolates.” J. Med. Microbiol., 57 (8) 966–973. https://doi.org/10.1099/JMM.0.47668-0 (2008)

    Article  CAS  PubMed  Google Scholar 

  43. Eqbal, MD, Naaz, F, Sharma, K, Gundabala, V, “Microfluidics-Based Generation of Cell Encapsulated Microbeads in the Presence of Electric Fields and Spatio-Temporal Viability Studies.” Colloids Surf. B Biointerfaces,. https://doi.org/10.1016/J.COLSURFB.2021.112065 (2021)

    Article  PubMed  Google Scholar 

  44. Holman, BWB, Diffey, SM, Logan, BG, Mortimer, SI, Hopkins, DL, “Nix Pro Color Sensor Comparison to HunterLab MiniScan for Measuring Lamb Meat Colour and Investigation of Repeat Measures, Illuminant and Standard Observer Effects.” Food Anal. Methods, 14 (4) 697–705. https://doi.org/10.1007/S12161-020-01914-0 (2021)

    Article  Google Scholar 

  45. Osol, A, Pines, CC, “Solubility of Iodine in Glycol-Water Solutions*.” J. Am. Pharm. Assoc. (Scientific ed.), 41 (12) 634–637. https://doi.org/10.1002/JPS.3030411203 (1952)

    Article  CAS  Google Scholar 

  46. Patra, R, Raju, KRCS, Bhaskar, B, Sarkar, D, Chaudhuri, S, Garg, P, Subasri, R, “Biofilm Inhibiting Nanocomposite Coatings—A Promising Alternative to Combat Surgical Site Infections.” J. Coat. Technol. Res., 19 (6) 1697–1711. https://doi.org/10.1007/S11998-022-00642-W/FIGURES/6 (2022)

    Article  CAS  Google Scholar 

  47. Mokrzycki Cardinal Stefan, W, Tatol, M, “Color Difference Delta E-A Survey Colour Difference ∆E-A Survey.”

  48. Novak Babič, M, Gostinčar, C, Gunde-Cimerman, N, "Microorganisms Populating the Water-Related Indoor Biome." Appl. Microbio. Biotechnol., 104 6443–6462. https://doi.org/10.1007/s00253-020-10719-4/Published (2020)

Download references

Acknowledgments

All authors would like to acknowledge IRCC, IIT Bombay, for BIO-AFM (BSBE), Prof. Amit Arora for Hunter Lab color meter (CTARA) and Prof. Jyoti Seth for providing contact angle measurement facilities (PG Lab Facilities, Chemical Engineering).

Funding

H.S. acknowledges financial assistance from the Prime Minister Research Fellowship (PMRF) funding resource, and V.G. acknowledges financial assistance from Science and Engineering Research Board (SERB), Grant # CR/2021/000762.

Author information

Authors and Affiliations

Authors

Contributions

H.S. was responsible for data curation, formal analysis, methodology, writing—original draft and writing—reviewing and editing. M.S.T. contributed to investigation and supervision. V.G. was involved in conceptualization, funding acquisition, investigation and supervision. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Venkat Gundabala.

Ethics declarations

Conflict of interest

The authors declare that they have no relevant financial or nonfinancial interests to disclose and no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1050 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekar, H., Tirumkudulu, M.S. & Gundabala, V. Development of antibacterial waterborne polymeric coating using iodine complex. J Coat Technol Res 21, 773–787 (2024). https://doi.org/10.1007/s11998-023-00856-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-023-00856-6

Keywords

Navigation