Skip to main content
Log in

Preparation of hydrophilic modified ZIF-8 and its application in the preparation of nanocomposite matrix reverse osmosis membrane with improved permeation performance

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Metal–organic frameworks (MOFs) are widely employed in designing nanocomposite membranes owing to their excellent performance and diversity. However, their inherent hydrophobicity limits their application in nanocomposite membranes. In order to improve the hydrophilicity of zeolitic imidazolate framework-8 (ZIF-8), tannic acid (TA) was utilized to etch-modify it, resulting in a TA-ZIF-8 nanostructure with a hydrophilic shell. TA-ZIF-8 was subsequently introduced into the aqueous phase and used to prepare a nanocomposite matrix reverse osmosis membrane through interfacial polymerization (IP). The prepared nanocomposite reverse osmosis membrane had a surface with good hydrophilicity and a pure water flux increased to 55.28 L m−2 h−1 (approximately 1.74 times). Additionally, the introduction of TA-ZIF-8 significantly enhanced the electronegativity of the membrane surface, and the nanoparticles were compatible with the polyamide layer, leading to a salt rejection rate of up to 99.5% for a NaCl solution with a concentration of 32000 ppm. These results indicate great potential for applying hydrophilically modified ZIF-8 to reverse osmosis membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Loo, SL, Fane, AG, Krantz, WB, et al. “Emergency water supply: a review of potential technologies and selection criteria.” Water Res., 46 (10) 3125–3151 (2012)

    Article  CAS  PubMed  Google Scholar 

  2. Chen, YD, Sun, RZ, Yan, WT, et al. “Antibacterial polyvinyl alcohol nanofiltration membrane incorporated with Cu(OH)2 nanowires for dye/salt wastewater treatment.” Sci. Total Environ., 817 152897 (2022)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Kim, SJ, Ko, SH, Kang, KH, et al. “Direct seawater desalination by ion concentration polarization.” Nat. Nanotechnol., 5 (4) 297–301 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Khawaji, AD, Kutubkhanah, IK, Wie, J-M, “Advances in seawater desalination technologies.” Desalination, 221 (1–3) 47–69 (2008)

    Article  CAS  Google Scholar 

  5. Kim, YM, Kim, SJ, Kim, YS, et al. “Overview of systems engineering approaches for a large-scale seawater desalination plant with a reverse osmosis network.” Desalination, 238 (1–3) 312–332 (2009)

    Article  CAS  Google Scholar 

  6. Van Der Bruggen, B, Vandecasteele, C, “Distillation vs. membrane filtration: overview of process evolutions in seawater desalination.” Desalination, 143 (3) 207–218 (2002)

    Article  Google Scholar 

  7. Kang, GD, Cao, YM, “Development of antifouling reverse osmosis membranes for water treatment: A review.” Water Res., 46 (3) 584–600 (2012)

    Article  CAS  PubMed  Google Scholar 

  8. Kucera, J, ‘Reverse Osmosis: Design, Processes, and Applications for Engineers. Scrivener Publishing, London (2015)

    Book  Google Scholar 

  9. Park, HB, Kamcev, J, Robeson, LM, et al. “Maximizing the right stuff: The trade-off between membrane permeability and selectivity.” Science, 356 6343 (2017)

    Article  Google Scholar 

  10. Jeong, B-H, Hoek, EMV, Yan, Y, et al. “Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes.” J. Membr. Sci., 294 (1–2) 1–7 (2007)

    Article  CAS  Google Scholar 

  11. Kim, ES, Hwang, G, El-Din, MG, et al. “Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment.” J. Membr. Sci., 394 37–48 (2012)

    Article  Google Scholar 

  12. Zarrabi, H, Yekavalangi, ME, Vatanpour, V, et al. “Improvement in desalination performance of thin film nanocomposite nanofiltration membrane using amine-functionalized multiwalled carbon nanotube.” Desalination, 394 83–90 (2016)

    Article  CAS  Google Scholar 

  13. Lind, ML, Ghosh, AK, Jawor, A, et al. “Influence of zeolite crystal size on zeolite-polyamide thin film nanocomposite membranes.” Langmuir, 25 (17) 10139–10145 (2009)

    Article  CAS  PubMed  Google Scholar 

  14. Van, GC, Verbeke, R, Hermans, S, et al. “Controlled positioning of MOFs in interfacially polymerized thin-film nanocomposites.” J. Mater. Chem. A, 4 (42) 16368–16376 (2016)

    Article  Google Scholar 

  15. Liao, Z, Fang, X, Xie, J, et al. “Hydrophilic hollow nanocube-functionalized thin film nanocomposite membrane with enhanced nanofiltration performance.” ACS Appl. Mater. Interfaces, 11 (5) 5344–5352 (2019)

    Article  CAS  PubMed  Google Scholar 

  16. Zhou, HC, Long, JR, Yaghi, OM, “Introduction to metal-organic frameworks.” Chem. Rev., 112 (2) 673–674 (2012)

    Article  CAS  PubMed  Google Scholar 

  17. Cay-durgun, P, Line, ML, “Nanoporous materials in polymeric membranes for desalination.” Curr. Opin. Chem. Eng., 20 19–27 (2018)

    Article  Google Scholar 

  18. Lee, Y-J, Chang, Y-J, Lee, D-J, et al. “Water stable metal-organic framework as adsorbent from aqueous solution: A mini-review.” J. Taiwan Inst. Chem. Eng., 93 176–183 (2018)

    Article  CAS  Google Scholar 

  19. Tian, F, Cerro, AM, Mosier, AM, et al. “Surface and stability characterization of a nanoporous ZIF-8 thin film.” J. Phys. Chem. C, 118 (26) 14449–14456 (2014)

    Article  CAS  Google Scholar 

  20. Duan, JT, Pan, YC, Pacheco, F, et al. “High-performance polyamide thin-film-nanocomposite reverse osmosis membranes containing hydrophobic zeolitic imidazolate framework-8.” J. Membr. Sci., 476 303–310 (2015)

    Article  CAS  Google Scholar 

  21. Zhu, J, Qin, L, Uliana, A, et al. “Elevated performance of thin film nanocomposite membranes enabled by modified hydrophilic MOFs for nanofiltration.” ACS Appl. Mater. Interfaces, 9 (2) 1975–1986 (2017)

    Article  CAS  PubMed  Google Scholar 

  22. Liao, Z, Zhu, J, Li, X, et al. “Regulating composition and structure of nanofillers in thin film nanocomposite (TFN) membranes for enhanced separation performance: A critical review.” Sep. Purif. Technol., 266 52 (2021)

    Article  Google Scholar 

  23. Li, M-P, Zhang, X, Zhang, H, et al. “Hydrophilic yolk-shell ZIF-8 modified polyamide thin-film nanocomposite membrane with improved permeability and selectivity.” Sep. Purif. Technol., 247 52 (2020)

    Article  Google Scholar 

  24. Lee, TH, Oh, JY, Hong, S-P, et al. “ZIF-8 particle size effects on reverse osmosis performance of polyamide thin-film nanocomposite membranes: Importance of particle deposition.” J. Membr. Sci., 570 23–33 (2019)

    Article  Google Scholar 

  25. Li, Y, Wee, LH, Martens, JA, et al. “Interfacial synthesis of ZIF-8 membranes with improved nanofiltration performance.” J. Membr. Sci., 523 561–566 (2017)

    Article  CAS  Google Scholar 

  26. Fan, L, Ma, Y, Su, Y, et al. “Green coating by coordination of tannic acid and iron ions for antioxidant nanofiltration membranes.” RSC Adv., 5 (130) 107777–107784 (2015)

    Article  ADS  CAS  Google Scholar 

  27. Zhang, Y, Su, Y, Peng, J, et al. “Composite nanofiltration membranes prepared by interfacial polymerization with natural material tannic acid and trimesoyl chloride.” J. Membr. Sci., 429 235–242 (2013)

    Article  CAS  Google Scholar 

  28. Wang, L, Gu, KH, Yang, CY, et al. “Effect of hydrophilic modified ZIF-8 on properties of polyamide nanofiltration membrane.” J. TIANGONG Univ., 40 (04) 18–23 (2021)

    Google Scholar 

  29. Tayefeh, A, Poursalehi, R, Wiesner, M, et al. “XPS study of size effects of Fe3O4 nanoparticles on crosslinking degree of magnetic TFN membrane.” Polym. Testing, 73 232–241 (2019)

    Article  CAS  Google Scholar 

  30. Yang, Y, Li, X, Shen, L, et al. “A durable thin-film nanofibrous composite nanofiltration membrane prepared by interfacial polymerization on a double-layer nanofibrous scaffold.” RSC Adv., 7 (29) 18001–18013 (2017)

    Article  ADS  CAS  Google Scholar 

  31. Wang, J-J, Yang, H-C, WU, M-B, et al. “Nanofiltration membranes with cellulose nanocrystals as an interlayer for unprecedented performance.” J. Mater. Chem. A, 5 (31) 16289–16295 (2017)

    Article  CAS  Google Scholar 

  32. Liu, L, Xie, X, Qi, S, et al. “Thin film nanocomposite reverse osmosis membrane incorporated with UiO-66 nanoparticles for enhanced boron removal.” J. Membr. Sci., 580 101–109 (2019)

    Article  CAS  Google Scholar 

  33. GüLçIN, İ, Huyut, Z, ElmastaŞ, M, “Radical scavenging and antioxidant activity of tannic acid.” Arab. J. Chem., 3 (1) 43–53 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Major Research and Development Program of China (Grant No.2021YFB3801103)

Funding

Major Scientific and Tec National Major Research and Development Program of China,Grant No.2021YFB3801103,Yuwen Lai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, Y., He, J., Li, Y. et al. Preparation of hydrophilic modified ZIF-8 and its application in the preparation of nanocomposite matrix reverse osmosis membrane with improved permeation performance. J Coat Technol Res 21, 683–692 (2024). https://doi.org/10.1007/s11998-023-00848-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-023-00848-6

Keywords

Navigation