Skip to main content
Log in

Superhydrophobic route of fabricating antireflective, self-cleaning, and durable coatings for solar cell applications

  • Review Article
  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

The multifaceted applications of superhydrophobic surfaces arising out of their unique surface architecture have gained significant attention in the solar photovoltaic industry as it addresses the challenges in light conversion efficiency at an industrial scale due to the soiling of surfaces. Inspired by the self-cleaning properties of the lotus leaf, this review proposes the use of superhydrophobic surfaces as an effective solution for soiling mitigation in solar cell applications. The review examines various factors influencing dust settlement and evaluates existing soiling mitigation techniques. As most literature reports the insufficiency of theoretical wetting models with the controversies around its assumptions, the importance of modified models over the theoretical models is compared and highlighted. The foundations of superhydrophobic coatings including transmittance, porosity, and refractive index of coatings, thickness and surface roughness in addition to the commonly reported surface tension and surface free energy aid to focus on feasible fabrication techniques and provide improved efficiency of solar cells. Finally, the review presents a classification of durability tests to highlight the importance of durable coatings bridging the gap between the fabrication and application of superhydrophobic coatings for solar cells on an industrial scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Reproduced with permission from references (11,12,13,14,15,)–(16)

Fig. 6
Fig. 7
Fig. 8
Fig. 9

Reproduced with permission from reference (49)

Fig. 10
Fig. 11
Fig. 12

Reproduced with permission from reference (58)

Fig. 13

Reproduced with permission from reference (50)

Fig. 14
Fig. 15

Reproduced with permission from reference (67)

Fig. 16

Reproduced with permission from reference (34)

Fig. 17
Fig. 18

Reproduced with permission from reference (68)

Fig. 19

Reproduced with permission from reference (69)

Fig. 20

Reproduced with permission from reference (25)

Fig. 21

Reproduced with permission from reference (71)

Fig. 22

Reproduced with permission from reference (71)

Fig. 23

Reproduced with permission from reference (76)

Fig. 24

Reproduced with permission from reference (24)

Fig. 25

Reproduced with permission from reference (23)

Fig. 26
Fig. 27

Reproduced with permission from reference (72)

Fig. 28

Reproduced with permission from reference (72)

Fig. 29
Fig. 30

Reproduced with permission from reference (89)

Fig. 31

Reproduced with permission from reference (67)

Fig. 32

Similar content being viewed by others

References

  1. “Electricity Generation in India.” International Renewable Energy Agency; https://www.irena.org/solar [Accessed on 25 March 2023]

  2. “Global Country Rankings for Solar Electricity Generation.” International Renewable Energy Agency; https://www.irena.org/solar [Accessed on 25 March, 2023].

  3. IEEE Photovoltaic Specialists Conference 40 2014 Denver C, Institute of Electrical and Electronics Engineers, IEEE Electron Devices Society, IEEE Photovoltaic Specialists Conference 40 2014.06.08-13 Denver Colo, PVSC 40 2014.06.08-13 Denver Colo. IEEE 40th Photovoltaic Specialists Conference (PVSC), 2014 Colorado Convention Center, Denver, Colorado, 8-13 June 2014

  4. Schill C, Brachmann S, Heck M, Weiss KA, Koehl M. “Impact of Heavy Soiling on the Power Output of PV Modules.” Reliability of Photovoltaic Cells, Modules, Components, and Systems IV, SPIE; 2011, Vol 8112, p. 811207. https://doi.org/10.1117/12.893721

  5. Hacke P, Terwilliger K, Glick S, et al. “Test-to-Failure of Crystalline Silicon Modules.” Conference Record of the IEEE Photovoltaic Specialists Conference, pp. 244-250, 2010. https://doi.org/10.1109/PVSC.2010.5614472

  6. Rong, J, Fu, J, Zhang, Z, et al. “Development and Evaluation of a Watermelon-Harvesting Robot Prototype: Vision System and End-Effector.” Agronomyhttps://doi.org/10.3390/agronomy12112836 (2022)

    Article  Google Scholar 

  7. Wang, P, Xie, J, Ni, L, et al. “Reducing the Effect of Dust Deposition on the Generating Efficiency of Solar PV Modules by Super-Hydrophobic Films.” Sol. Energy, 169 277–283. https://doi.org/10.1016/j.solener.2017.12.052 (2018)

    Article  Google Scholar 

  8. Wang, P, Wang, H, Li, J, Ni, L, Wang, L, Xie, J, “A Superhydrophobic Film of Photovoltaic Modules and Self-cleaning Performance.” Sol. Energy, 226 92–99. https://doi.org/10.1016/j.solener.2021.08.018 (2021)

    Article  CAS  Google Scholar 

  9. Parvate S, Dixit P, Chattopadhyay S. Superhydrophobic Surfaces: Insights from Theory and Experiment. 2020.

  10. Huang, ZS, Shen, C, Fan, L, et al. “Experimental Investigation of the Anti-soiling Performances of Different Wettability of Transparent Coatings: Superhydrophilic, Hydrophilic, Hydrophobic and Superhydrophobic Coatings.” Sol. Energy Mater. Sol. Cellshttps://doi.org/10.1016/j.solmat.2021.111053 (2021)

    Article  Google Scholar 

  11. Dust Deposition. https://environmenthalfcentury.princeton.edu/research/2021/regular-panel-cleaning-and-air-quality-improvements-increase-solar-output.

  12. Bird Droppings. https://www.solarquotes.com.au/blog/solar-panel-cleaning/.

  13. Manual Cleaning. https://ratedpower.com/blog/soiling-losses/.

  14. Salt Deposition on Solar Panels.https://corrosion.org/Events/Corrosion+Awareness+Day/_/Polina%20VOLOVITCH%20CAD%202020.pdf. Photo: Courtesy of Daniel Lincot.

  15. Robotic Cleaning. https://forum.huawei.com/enterprise/en/solution-of-equipment-maintenance-of-pv-modules/thread/1008155-100027.

  16. https://economictimes.indiatimes.com/small-biz/productline/power-generation/solar-panel-repair-common-problems-and-how-repair-services-can-help-solve-them/articleshow/69233115.cms?from=mdr.

  17. Shirtcliffe, NJ, McHale, G, Atherton, S, Newton, MI, “An Introduction to Superhydrophobicity.” Adv. Colloid Interface Sci., 161 (1–2) 124–138. https://doi.org/10.1016/j.cis.2009.11.001 (2010)

    Article  CAS  Google Scholar 

  18. Kliuev, M, Wiessner, M, Büttner, H, Maradia, U, Wegener, K, “Super-hydrophobic and Super-hydrophilic Effect by Means of EDM Surface Structuring of γ-TiAl.” Proc. CIRP., 95 393–398. https://doi.org/10.1016/j.procir.2020.02.332 (2020)

    Article  Google Scholar 

  19. Kumikov, VK, Khokonov, KB, “On the Measurement of Surface Free Energy and Surface Tension of Solid Metals.” J. Appl. Phys., 54 (3) 1346–1350. https://doi.org/10.1063/1.332209 (1983)

    Article  CAS  Google Scholar 

  20. Orowan, E, “Surface Energy and Surface Tension in Solids and Liquids.” In: Proc. Math Phys. Eng. Sci., Vol. 316, 473–491 (1970). https://doi.org/10.1098/rspa.1970.0091

  21. Ip, SW, Toguri, JM, “The Equivalency of Surface Tension, Energy and Surface Free Energy Surface.” J. Mater. Sci., 29 688–692 (1994)

    Article  CAS  Google Scholar 

  22. Li, L, Li, B, Dong, J, Zhang, J, “Roles of Silanes and Silicones in Forming Superhydrophobic and Superoleophobic Materials.” J. Mater. Chem. A, 4 (36) 13677–13725. https://doi.org/10.1039/c6ta05441b (2016)

    Article  CAS  Google Scholar 

  23. Liang, Z, Zhou, Z, Zhao, L, Dong, B, Wang, S, “Fabrication of Transparent, Durable and Self-cleaning Superhydrophobic Coatings for Solar Cells.” New J. Chem., 44 (34) 14481–14489. https://doi.org/10.1039/d0nj01402h (2020)

    Article  CAS  Google Scholar 

  24. Zheng, J, Yang, J, Cao, W, Huang, Y, Zhou, Z, Huang, YX, “Fabrication of Transparent Wear-Resistant Superhydrophobic SiO2 Film via Phase Separation and Chemical Vapor Deposition Methods.” Ceram. Int., 48 (21) 32143–32151. https://doi.org/10.1016/j.ceramint.2022.07.154 (2022)

    Article  CAS  Google Scholar 

  25. Li, W, Tan, X, Zhu, J, et al. “Broadband Antireflective and Superhydrophobic Coatings for Solar Cells.” Mater. Today Energy., 12 348–355. https://doi.org/10.1016/j.mtener.2019.03.006 (2019)

    Article  Google Scholar 

  26. Nosonovsky, M, “Multiscale Roughness and Stability of Superhydrophobic Biomimetic Interfaces.” Langmuir, 23 (6) 3157–3161. https://doi.org/10.1021/la062301d (2007)

    Article  CAS  Google Scholar 

  27. Gao, Z, Ma, M, Zhai, X, Zhang, M, Zang, D, Wang, C, “Improvement of Chemical Stability and Durability of Superhydrophobic Wood Surface via a Film of TiO2 Coated CaCO3 Micro-/Nano-composite Particles.” RSC Adv., 5 (79) 63978–63984. https://doi.org/10.1039/c5ra04000k (2015)

    Article  CAS  Google Scholar 

  28. Zheng, S, Li, C, Fu, Q, et al. “Fabrication of Self-Cleaning Superhydrophobic Surface on Aluminum Alloys with Excellent Corrosion Resistance.” Surf. Coat. Technol., 276 341–348. https://doi.org/10.1016/j.surfcoat.2015.07.002 (2015)

    Article  CAS  Google Scholar 

  29. Latthe, SS, Sudhagar, P, Devadoss, A, et al. “A Mechanically Bendable Superhydrophobic Steel Surface with Its Self-cleaning and Corrosion-resistant Properties.” J. Mater. Chem. A, 3 14263–14271. https://doi.org/10.1039/C5TA02604K (2015)

    Article  CAS  Google Scholar 

  30. Zhang, Q, Wang, Y, Wang, Y, Al-Enizi, AM, Elzatahry, AA, Zheng, G, “Myriophyllum-like Hierarchical TiN@Ni3N Nanowire Arrays for Bifunctional Water Splitting Catalysts.” J. Mater. Chem. A, 4 (15) 5713–5718. https://doi.org/10.1039/c6ta00356g (2016)

    Article  CAS  Google Scholar 

  31. Org, WE, Mo, C, Zheng, Y, Wang, F, Mo, Q, Electrochemical Science A Simple Process for Fabricating Organic/TiO2 Super-Hydrophobic and Anti-Corrosion Coating. Vol 10, 2015. www.electrochemsci.org

  32. She, X, Wu, J, Xu, H, et al. “Enhancing Charge Density and Steering Charge Unidirectional Flow in 2D Non-Metallic Semiconductor-CNTs-Metal Coupled Photocatalyst for Solar Energy Conversion.” Appl. Catal. B., 202 112–117. https://doi.org/10.1016/j.apcatb.2016.09.013 (2017)

    Article  CAS  Google Scholar 

  33. Zhao, L, Liu, Q, Gao, R, Wang, J, Yang, W, Liu, L, “One-step Method for the Fabrication of Superhydrophobic Surface on Magnesium Alloy and Its Corrosion Protection, Antifouling Performance.” Corros. Sci., 80 177–183. https://doi.org/10.1016/j.corsci.2013.11.026 (2014)

    Article  CAS  Google Scholar 

  34. Luo, M, Sun, X, Zheng, Y, et al. “Non-fluorinated Superhydrophobic Film with High Transparency for Photovoltaic Glass Covers.” Appl. Surf. Sci.,. https://doi.org/10.1016/j.apsusc.2022.155299 (2023)

    Article  Google Scholar 

  35. Chundi, N, Kesavan, G, Ramasamy, E, Mallick, S, Kottantharayil, A, Sakthivel, S, “Ambient Condition Curable, Highly Weather Stable Anti-Soiling Coating for Photovoltaic Application.” Sol. Energy Mater. Sol. Cells, https://doi.org/10.1016/j.solmat.2021.111203 (2021)

    Article  Google Scholar 

  36. Milionis, A, Loth, E, Bayer, IS, “Recent Advances in the Mechanical Durability of Superhydrophobic Materials.” Adv. Colloid Interface Sci., 229 57–79. https://doi.org/10.1016/j.cis.2015.12.007 (2016)

    Article  CAS  Google Scholar 

  37. Rehmer A, Kemnitz E, “Characterization of Nanoscopic Calcium Fluoride Films.” In: Nanostructured Thin Films IX. Vol 9929. SPIE; (2016), 99290F. https://doi.org/10.1117/12.2236842

  38. Wu, Y, Tan, X, Wang, Y, Tao, F, Yu, M, Chen, X, “Nonfluorinated, Transparent, and Antireflective Hydrophobic Coating with Self-cleaning Function.” Colloids Surf. Ahttps://doi.org/10.1016/j.colsurfa.2021.127919 (2022)

    Article  Google Scholar 

  39. Kim, JH, Choi, YJ, Lee, J, Lee, SG, “Highly Transparent Antireflection Coatings on Fullerene-Free Organic Solar Cells Using Polymeric Nanoparticles.” Thin Solid Filmshttps://doi.org/10.1016/j.tsf.2021.139043 (2022)

    Article  Google Scholar 

  40. Thin-Film Optical Filters.

  41. Ferrari, M, Cirisano, F, “High Transmittance and Highly Amphiphobic Coatings for Environmental Protection of Solar Panels.” Adv. Colloid Interface Sci.https://doi.org/10.1016/j.cis.2020.102309 (2020)

    Article  Google Scholar 

  42. Guillemot F, Brunet-Bruneau A, Bourgeat-Lami E, Gacoin T, Barthel E, Boilot JP, “Latex-Templated Porous Silica Films for Antireflective Applications.” In: Photonics for Solar Energy Systems III. Vol 7725. SPIE; (2010), 77250G. https://doi.org/10.1117/12.853514

  43. Chen, L, Li, Z, Zhang, P, Tian, P, Yuan, J, Zheng, W, “Effect of PAA on the Structure and Transmittance of Hollow Spherical SiO2 Film Prepared by Sol-Gel Method.” Ceram. Int., 49 (4) 6805–6810. https://doi.org/10.1016/j.ceramint.2022.11.089 (2023)

    Article  CAS  Google Scholar 

  44. Zhi, J, Zhang, LZ, “Durable Superhydrophobic Surface with Highly Antireflective and Self-cleaning Properties for the Glass Covers of Solar Cells.” Appl. Surf. Sci., 454 239–248. https://doi.org/10.1016/j.apsusc.2018.05.139 (2018)

    Article  CAS  Google Scholar 

  45. Yancey, SE, Zhong, W, Heflin, JR, Ritter, AL, “The Influence of Void Space on Antireflection Coatings of Silica Nanoparticle Self-assembled Films.” J. Appl. Phys.,. https://doi.org/10.1063/1.2171784 (2006)

    Article  Google Scholar 

  46. Nakajima, A, Hashimoto, K, Watanabe, T, Takai, K, Yamauchi, G, Fujishima, A, “Transparent Superhydrophobic Thin Films with Self-Cleaning Properties.” Langmuir., 16 (17) 7044–7047. https://doi.org/10.1021/la000155k (2000)

    Article  CAS  Google Scholar 

  47. Zhang, Y, Dong, B, Wang, S, Zhao, L, Wan, L, Wang, E, “Mechanically Robust, Thermally Stable, Highly Transparent Superhydrophobic Coating with Low-Temperature Sol-Gel Process.” RSC Adv., 7 (75) 47357–47365. https://doi.org/10.1039/c7ra08578h (2017)

    Article  CAS  Google Scholar 

  48. Hooda, A, Goyat, MS, Pandey, JK, Kumar, A, Gupta, R, “A Review on Fundamentals, Constraints and Fabrication Techniques of Superhydrophobic Coatings.” Prog. Org. Coat.https://doi.org/10.1016/j.porgcoat.2020.105557 (2020)

    Article  Google Scholar 

  49. Sharma, V, Goyat, MS, Hooda, A, et al. “Recent Progress in Nano-oxides and CNTs Based Corrosion Resistant Superhydrophobic Coatings: A Critical Review.” Prog. Org. Coat.https://doi.org/10.1016/j.porgcoat.2019.105512 (2020)

    Article  Google Scholar 

  50. Wang, B, Zhang, Y, Shi, L, Li, J, Guo, Z, “Advances in the Theory of Superhydrophobic Surfaces.” J. Mater. Chem., 22 (38) 20112–20127. https://doi.org/10.1039/c2jm32780e (2012)

    Article  CAS  Google Scholar 

  51. Plawsky, JL, Ojha, M, Chatterjee, A, Wayner, PC, “Review of the Effects of Surface Topography, Surface Chemistry, and Fluid Physics on Evaporation at the Contact Line.” Chem. Eng. Commun., 196 (5) 658–696. https://doi.org/10.1080/00986440802569679 (2009)

    Article  CAS  Google Scholar 

  52. Brady, VSSR, Ross, AP, Ross, GL, et al. Ind. Eng. Chem. Anal. Ed., 10 (2) 610 (1944)

    Google Scholar 

  53. Gao, L, McCarthy, TJ, “How Wenzel and Cassie Were Wrong.” Langmuir, 23 (7) 3762–3765. https://doi.org/10.1021/la062634a (2007)

    Article  CAS  Google Scholar 

  54. McHale, G, “Cassie and Wenzel: Were they Really So Wrong?” Langmuir, 23 (15) 8200–8205. https://doi.org/10.1021/la7011167 (2007)

    Article  Google Scholar 

  55. Costa, MN, Veigas, B, Jacob, JM, et al. “A Low Cost, Safe, Disposable, Rapid and Self-Sustainable Paper-Based Platform for Diagnostic Testing: Lab-on-Paper.” Nanotechnologyhttps://doi.org/10.1088/0957-4484/25/9/094006 (2014)

    Article  Google Scholar 

  56. Wang, J, Chen, H, Sui, T, Li, A, Chen, D, “Investigation on Hydrophobicity of Lotus Leaf: Experiment and Theory.” Plant Sci., 176 (5) 687–695. https://doi.org/10.1016/j.plantsci.2009.02.013 (2009)

    Article  CAS  Google Scholar 

  57. Patankar, NA, “Mimicking the Lotus Effect: Influence of Double Roughness Structures and Slender Pillars.” Langmuir, 20 (19) 8209–8213. https://doi.org/10.1021/la048629t (2004)

    Article  CAS  Google Scholar 

  58. Zhang, H, Li, W, Cui, D, Hu, Z, Xu, L, “Design of Lotus-Simulating Surfaces: Thermodynamic Analysis Based on a New Methodology.” Colloids Surf. A, 413 314–327. https://doi.org/10.1016/j.colsurfa.2012.01.036 (2012)

    Article  CAS  Google Scholar 

  59. How Long is the Coast of Britain? Statistical self-similarity and fractional dimension.

  60. Zhang, Y, Chen, Y, Shi, L, Li, J, Guo, Z, “Recent Progress of Double-Structural and Functional Materials with Special Wettability.” J. Mater. Chem., 22 (3) 799–815. https://doi.org/10.1039/c1jm14327a (2012)

    Article  CAS  Google Scholar 

  61. Chen, X, Weibel, JA, Garimella, SV, “Water and Ethanol Droplet Wetting Transition During Evaporation on Omniphobic Surfaces.” Sci. Rep.https://doi.org/10.1038/srep17110 (2015)

    Article  Google Scholar 

  62. Barman, J, Majumder, SK, Roy, PK, Khare, K, “Tunable Superoleophobicity via Harnessing the Surface Chemistry of UV Responsive Titania Coatings.” RSC Adv., 8 (24) 13253–13258. https://doi.org/10.1039/c8ra01458b (2018)

    Article  CAS  Google Scholar 

  63. Grigoryev, A, Tokarev, I, Kornev, KG, Luzinov, I, Minko, S, “Superomniphobic Magnetic Microtextures with Remote Wetting Control.” J. Am. Chem. Soc., 134 (31) 12916–12919. https://doi.org/10.1021/ja305348n (2012)

    Article  CAS  Google Scholar 

  64. Tian, X, Jokinen, V, Li, J, Sainio, J, Ras, RHA, “Unusual Dual Superlyophobic Surfaces in Oil-Water Systems: The Design Principles.” Adv. Mater., 28 (48) 10652–10658. https://doi.org/10.1002/adma.201602714 (2016)

    Article  CAS  Google Scholar 

  65. Mishra A, Bhatt N, Bajpai AK, “Nanostructured Superhydrophobic Coatings for Solar Panel Applications.” In: Nanomaterials-Based Coatings: Fundamentals and Applications, pp. 397–424. https://doi.org/10.1016/B978-0-12-815884-5.00012-0 (2019)

  66. Raut, HK, Ganesh, VA, Nair, AS, Ramakrishna, S, “Anti-reflective Coatings: A Critical, In-depth Review.” Energy Environ. Sci., 4 (10) 3779–3804. https://doi.org/10.1039/c1ee01297e (2011)

    Article  CAS  Google Scholar 

  67. Wang, P, Yan, X, Zeng, J, Luo, C, Wang, C, “Anti-Reflective Superhydrophobic Coatings with Excellent Durable and Self-cleaning Properties for Solar Cells.” Appl. Surf. Sci.https://doi.org/10.1016/j.apsusc.2022.154408 (2022)

    Article  Google Scholar 

  68. Mustafa, HAM, Jameel, DA, “Modeling and the Main Stages of Spin Coating Process: A Review.” J. Appl. Sci. Technol. Trends, 2 (03) 91–95. https://doi.org/10.38094/jastt203109 (2021)

    Article  Google Scholar 

  69. Huovinen, E, Takkunen, L, Korpela, T, Suvanto, M, Pakkanen, TT, Pakkanen, TA, “Mechanically Robust Superhydrophobic Polymer Surfaces Based on Protective Micropillars.” Langmuir, 30 (5) 1435–1443. https://doi.org/10.1021/la404248d (2014)

    Article  CAS  Google Scholar 

  70. Routledge, TJ, Lidzey, DG, Buckley, AR, “Ultrasonic Spray Coating as an Approach for Large-area Polymer OLEDs: The Influence of Thin Film Processing and Surface Roughness on Electrical Performance.” AIP Adv.,. https://doi.org/10.1063/1.5082791 (2019)

    Article  Google Scholar 

  71. Manna, S, Naskar, MK, Medda, SK, “Mesoporous Silica-based Abrasion Resistant Antireflective (AR)-cum-Hydrophobic Coatings on Textured Solar Cover Glasses by a Spray Coating Technique.” Mater. Adv., 3 (7) 3208–3217. https://doi.org/10.1039/d1ma01141c (2022)

    Article  CAS  Google Scholar 

  72. Salehi, H, Eshaghi, A, Rezazadeh, M, Zabolian, H, “Antireflective and Anti-dust Modified Silica Based Thin Film on Solar Cell Cover Glass.” J. Alloys Compd.https://doi.org/10.1016/j.jallcom.2021.162228 (2022)

    Article  Google Scholar 

  73. Polizos, G, Jang, GG, Smith, DB, et al. “Transparent Superhydrophobic Surfaces Using a Spray Coating Process.” Sol. Energy Mater. Sol. Cells, 176 405–410. https://doi.org/10.1016/j.solmat.2017.10.029 (2018)

    Article  CAS  Google Scholar 

  74. Choy, K, Chemical Vapour Deposition of Coatings. www.elsevier.com/locate/pmatsci

  75. Biswas, A, Bayer, IS, Biris, AS, Wang, T, Dervishi, E, Faupel, F, “Advances in Top-down and Bottom-up Surface Nanofabrication: Techniques, Applications & Future Prospects.” Adv. Colloid Interface Sci., 170 (1–2) 2–27. https://doi.org/10.1016/j.cis.2011.11.001 (2012)

    Article  CAS  Google Scholar 

  76. Zaytseva, O, Neumann, G, “Carbon Nanomaterials: Production, Impact on Plant Development, Agricultural and Environmental Applications.” Chem. Biol. Technol. Agric.https://doi.org/10.1186/s40538-016-0070-8 (2016)

    Article  Google Scholar 

  77. Zhuang, A, Liao, R, Dixon, SC, et al. “Transparent Superhydrophobic PTFE Films via One-step Aerosol Assisted Chemical Vapor Deposition.” RSC Adv., 7 (47) 29275–29283. https://doi.org/10.1039/c7ra04116k (2017)

    Article  CAS  Google Scholar 

  78. Kuhr, M, Bauer, S, Rothhaar, U, Wolff, D, “Coatings on Plastics with the PICVD Technology.” Thin Solid Films, 442 107–116. https://doi.org/10.1016/S0040-6090(03)00956-8 (2003)

    Article  CAS  Google Scholar 

  79. Regmi, G, Velumani, S, “Radio Frequency (RF) Sputtered ZrO2-ZnO-TiO2 Coating: An Example of Multifunctional Benefits for Thin Film Solar Cells on the Flexible Substrate.” Solar Energy, 249 301–311. https://doi.org/10.1016/j.solener.2022.11.044 (2023)

    Article  CAS  Google Scholar 

  80. Ma, C, Wang, L, Fan, X, Liu, J, “Broadband Antireflection and Hydrophobic CaF2 Film Prepared with Magnetron Sputtering.” Appl. Surf. Sci.https://doi.org/10.1016/j.apsusc.2021.149924 (2021)

    Article  Google Scholar 

  81. Baidya, A, Das, SK, Ras, RHA, Pradeep, T, “Fabrication of a Waterborne Durable Superhydrophobic Material Functioning in Air and Under Oil.” Adv. Mater. Interfaceshttps://doi.org/10.1002/admi.201701523 (2018)

    Article  Google Scholar 

  82. Siddiqui, AR, Li, W, Wang, F, Ou, J, Amirfazli, A, “One-step Fabrication of Transparent Superhydrophobic Surface.” Appl. Surf. Sci.https://doi.org/10.1016/j.apsusc.2020.148534 (2021)

    Article  Google Scholar 

  83. Cao, C, Yi, B, Zhang, J, et al. “Sprayable Superhydrophobic Coating with High Processibility and Rapid Damage-Healing Nature.” Chem. Eng. J.https://doi.org/10.1016/j.cej.2020.124834 (2020)

    Article  Google Scholar 

  84. Sutha, S, Suresh, S, Raj, B, Ravi, KR, “Transparent Alumina Based Superhydrophobic Self–cleaning Coatings for Solar Cell Cover Glass Applications.” Sol. Energy Mater. Solar Cells., 165 128–137. https://doi.org/10.1016/j.solmat.2017.02.027 (2017)

    Article  CAS  Google Scholar 

  85. Ashraf, M, Champagne, P, Campagne, C, Perwuelz, A, Dumont, F, Leriche, A, “Study the Multi Self-cleaning Characteristics of ZnO Nanorods Functionalized Polyester Fabric.” J. Ind. Text., 45 (6) 1440–1456. https://doi.org/10.1177/1528083714562086 (2016)

    Article  CAS  Google Scholar 

  86. Ahmad, AA, Al-Bataineh, QM, Alsaad, AM, Samara, TO, Al-izzy, KA, “Optical Properties of Hydrophobic ZnO Nano-Structure based on Antireflective Coatings of ZnO/TiO2/SiO2 Thin Films.” Physica B Condens. Matterhttps://doi.org/10.1016/j.physb.2020.412263 (2020)

    Article  Google Scholar 

  87. Nallathambi, G, Ramachandran, T, Rajendran, V, Palanivelu, R, “Effect of Silica Nanoparticles and BTCA on Physical Properties of Cotton Fabrics.” Mater. Res., 14 (4) 552–559. https://doi.org/10.1590/S1516-14392011005000086 (2011)

    Article  CAS  Google Scholar 

  88. Lakshmi, RV, Bera, P, Anandan, C, Basu, BJ, “Effect of the Size of Silica Nanoparticles on Wettability and Surface Chemistry of Sol-Gel Superhydrophobic and Oleophobic Nanocomposite Coatings.” Appl. Surf. Sci., 320 780–786. https://doi.org/10.1016/j.apsusc.2014.09.150 (2014)

    Article  CAS  Google Scholar 

  89. Luo, X, Hu, W, Cao, M, Ren, H, Feng, J, Wei, M, “An Environmentally Friendly Approach for the Fabrication of Conductive Superhydrophobic Coatings with Sandwich-like Structures.” Polymers (Basel)https://doi.org/10.3390/polym10040378 (2018)

    Article  Google Scholar 

  90. Isbilir K, Lisco F, Womack G, Abbas A, Walls JM. Testing of an Anti-Soiling Coating for PV Module Cover Glass. (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Ponraj.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathya, R.A., Ponraj, C. Superhydrophobic route of fabricating antireflective, self-cleaning, and durable coatings for solar cell applications. J Coat Technol Res 21, 1–30 (2024). https://doi.org/10.1007/s11998-023-00843-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-023-00843-x

Keywords

Navigation