Skip to main content

Advertisement

Log in

Graphene-based polymer coatings for preventing marine corrosion: a review

  • Review Article
  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

In recent years, many breakthroughs in research on graphene as a corrosion-resistant coating for metal have been witnessed due to its excellent properties like chemical stability, mechanical strength, permeability, etc. The present review discusses graphene and its composite as an anticorrosive coating for marine applications. The economic and environmental losses caused by the corrosion in day-to-day life are large, and coatings are one of the preventive measures to reduce these losses. The corrosion gets accelerated when some significant factors like salinity, pH, water velocity, temperature, and dissolved oxygen content also come into picture. The excellent physical and chemical properties for graphene like high strength electrical conductivity, large surface area, etc., make it a potential candidate for a number of applications. The different techniques for the synthesis of graphene and its derivatives like graphene oxide and reduced graphene oxide have been also briefed in this review. The pure graphene coatings have shown excellent anticorrosive properties. However, defects in pure graphene coating have a substantial impact compared to multilayering for anticorrosive behavior. Graphene-based composites are more durable and reliable than pure graphene coating. The various techniques for the synthesis of graphene-based polymer coatings are solution mixing, melt mixing, and in situ polymerization. In the marine environment, graphene should be dispersed uniformly parallel to the metallic surface to provide excellent erosion corrosion properties. However, cathodic protection is a crucial issue in organic coatings, and zinc-rich graphene coatings are effective in case of defects in the coating. Other functional properties of graphene-based polymeric coatings like antifouling, hydrophobicity, better mechanical and wear properties, UV protection, and electrical conductivity give an edge to these coatings in marine conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Source: Scopus, accessed 20 October 2022)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shifler, DA, “Understanding Material Interactions in Marine Environments to Promote Extended Structural Life.” Corros. Sci., 47 (10) 2335–2352. https://doi.org/10.1016/j.corsci.2004.09.027 (2005)

    Article  CAS  Google Scholar 

  2. Bowman, E, et al. “International Measures of Prevention, Application, and Economics of Corrosion Technologies Study.” NACE Int., 216 2–3 (2016)

    Google Scholar 

  3. Selim, MS, et al. “Recent Progress in Marine Foul-release Polymeric Nanocomposite Coatings.” Prog. Mater. Sci., 87 1–32. https://doi.org/10.1016/j.pmatsci.2017.02.001 (2017)

    Article  CAS  Google Scholar 

  4. Bhoj, Y, Tharmavaram, M, Rawtani, D, “A Comprehensive Approach to Antifouling Strategies in Desalination, Marine Environment, and Wastewater Treatment.” Chem. Phys. Impact, 2 108. https://doi.org/10.1016/j.chphi.2020.100008 (2021)

    Article  Google Scholar 

  5. Yang, WJ, Neoh, KG, Kang, ET, Teo, SLM, Rittschof, D, “Polymer Brush Coatings for Combating Marine Biofouling.” Prog. Polym. Sci., 39 (5) 1017–1042. https://doi.org/10.1016/j.progpolymsci.2014.02.002 (2014)

    Article  CAS  Google Scholar 

  6. Pedeferri, P, “General Principles of Corrosion.” In: General Principles of Corrosion, p. 4. (2018)

  7. Chandler, KA, “Marine Environment.” In: Marine and Offshore Corrosion, pp. 38–49 (1985)

  8. Sørensen, PA, Kiil, S, Dam-Johansen, K, Weinell, CE, “Anticorrosive Coatings: A Review.” J. Coat. Technol. Res., 6 (2) 135–176. https://doi.org/10.1007/s11998-008-9144-2 (2009)

    Article  CAS  Google Scholar 

  9. Radhamani, AV, Lau, HC, Ramakrishna, S, “Nanocomposite Coatings on Steel for Enhancing the Corrosion Resistance: A Review.” J. Compos. Mater., 54 (5) 681–701. https://doi.org/10.1177/0021998319857807 (2020)

    Article  CAS  Google Scholar 

  10. Wang, X, Li, J, Zhang, J, Sun, Z, Yu, L, “Polyaniline as Marine Antifouling and Corrosion-Prevention Agent.” Synth. Met., 102 1377–1380 (1999)

    Article  CAS  Google Scholar 

  11. Sharma, N, Sharma, S, “Anticorrosive Coating of Polymer Composites: A Review.” Mater. Today Proc., 44 4498–4502. https://doi.org/10.1016/j.matpr.2020.10.726 (2020)

    Article  CAS  Google Scholar 

  12. Allen, MJ, Tung, VC, Kaner, RB, “Honeycomb Carbon: A Review of Graphene.” Chem. Rev., 110 132–145 (2010)

    Article  CAS  Google Scholar 

  13. Geim, AK, Novoselov, KS, “The Rise of Graphene.” Nat. Mater., 6 183–191 (2007)

  14. Georgakilas, V, Perman, JA, Tucek, J, Zboril, R, “Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures.” Chem. Rev.,. https://doi.org/10.1021/cr500304f (2014)

    Article  Google Scholar 

  15. Cui, G, Bi, Z, Zhang, R, Liu, J, Yu, X, Li, Z, “A Comprehensive Review on Graphene-Based Anti-Corrosive Coatings.” Chem. Eng. J., 373 104–121. https://doi.org/10.1016/j.cej.2019.05.034 (2019)

    Article  CAS  Google Scholar 

  16. Abd El-Lateef, HM, Abbasov, VM, Aliyeva, LI, Ismayilov, TA, “Corrosion Protection of Steel Pipelines Against CO2 Corrosion-A Review.” Chem. J., 2 (2) 52–63 (2012)

    CAS  Google Scholar 

  17. Zheng, Y, Brown, B, Nešić, S, “Electrochemical Study and Modeling of H2S Corrosion of Mild Steel.” Corrosion, 70 (4) 351–365. https://doi.org/10.5006/0937 (2014)

    Article  CAS  Google Scholar 

  18. Sun, C, et al. “Synergistic Effect of O2, H2S and SO2 Impurities on the Corrosion Behavior of X65 Steel in Water-Saturated Supercritical CO2 System.” Corros. Sci., 107 193–203. https://doi.org/10.1016/j.corsci.2016.02.032 (2016)

    Article  CAS  Google Scholar 

  19. Zou, Y, Wang, J, Zheng, YY, “Electrochemical Techniques for Determining Corrosion Rate of Rusted Steel in Seawater.” Corros. Sci., 53 (1) 208–216. https://doi.org/10.1016/j.corsci.2010.09.011 (2011)

    Article  CAS  Google Scholar 

  20. Wen, G, Bai, P, Tian, Y, “A Review of Graphene-Based Materials for Marine Corrosion Protection.” J. Bio-Tribo-Corros.https://doi.org/10.1007/s40735-020-00456-6 (2021)

    Article  Google Scholar 

  21. Funke, W, “Organic Coatings in Corrosion Protection.” Surf. Coat., 2 107–135. https://doi.org/10.1007/978-94-009-1351-6_4 (1988)

    Article  Google Scholar 

  22. Sahu, SC, et al. “A Facile Electrochemical Approach for Development of Highly Corrosion Protective Coatings Using Graphene Nanosheets.” Electrochem. Commun., 32 22–26. https://doi.org/10.1016/j.elecom.2013.03.032 (2013)

    Article  CAS  Google Scholar 

  23. Adler, TA, Aylor, D, Bray, A, “Effects of Metallurgical Variables on the Corrosion of Stainless Steels.” Corros. Petrochem. Ind.https://doi.org/10.31399/asm.tb.cpi2.t55030062 (2020)

    Article  Google Scholar 

  24. Cai, YK, Zhao, Y, Zhang, ZK, Ma, XB, Cheng, B, Atmospheric and Marine Corrosion: Influential Environmental Factors and Models. (2018)

  25. Melchers, RE, “Effect on Marine Immersion Corrosion of Carbon Content of Low Alloy Steels.” Corros. Sci., 45 (11) 2609–2625. https://doi.org/10.1016/S0010-938X(03)00068-4 (2003)

    Article  CAS  Google Scholar 

  26. Turner, MED, “Corrosion Engineering and Corrosion Science.” Mater. Perform., 19 (10) 51–52. https://doi.org/10.5006/0010-9312-19.6.199 (1980)

    Article  Google Scholar 

  27. Chaves, IA, Melchers, RE, “Failure Prediction of Mild-Steel Welds Due to Climate Change Influenced Marine Corrosion.” The 28th International Ocean and Polar Engineering Conference. (2018)

  28. Melchers, RE, “Mathematical Modelling of the Diffusion Controlled Phase in Marine Immersion Corrosion of Mild Steel.” Corros. Sci., 45 (5) 923–940. https://doi.org/10.1016/S0010-938X(02)00208-1 (2003)

    Article  CAS  Google Scholar 

  29. Novoselov, KS, et al. “Electric Field in Atomically Thin Carbon Films.” Science, 306 (5696) 666–669. https://doi.org/10.1126/science.1102896 (2004)

    Article  CAS  Google Scholar 

  30. Frank, IW, Tanenbaum, DM, “Mechanical Properties of Suspended Graphene Sheets.” J. Vac. Sci. Technol., 25 2558–2561. https://doi.org/10.1116/1.2789446 (2007)

    Article  CAS  Google Scholar 

  31. Min, K, Aluru, NR, Min, K, Aluru, NR, “Mechanical Properties of Graphene Under Shear Deformation.” Appl. Phys. Lett., 98 013113. https://doi.org/10.1063/1.3534787 (2011)

    Article  CAS  Google Scholar 

  32. Lee, C, Wei, X, Kysar, JW, Hone, J, “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene.” Science, 321 385–388. https://doi.org/10.1126/science.1157996 (2008)

    Article  CAS  Google Scholar 

  33. Balandin, AA, “Thermal Properties of Graphene and Nanostructured Carbon Materials.” Nat. Mater., 10 (8) 569–581. https://doi.org/10.1038/nmat3064 (2011)

    Article  CAS  Google Scholar 

  34. Bolotin, KI, et al. “Ultrahigh Electron Mobility in Suspended Graphene.” Solid State Commun., 146 (9–10) 351–355. https://doi.org/10.1016/j.ssc.2008.02.024 (2008)

    Article  CAS  Google Scholar 

  35. Geim, AK, “Nobel Lecture: Random Walk to Graphene.” Rev. Modern Phys., 83 851–862. https://doi.org/10.1103/RevModPhys.83.851 (2011)

    Article  CAS  Google Scholar 

  36. Li, X, et al. “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils.” Science, 324 1312–1314. https://doi.org/10.1126/science.1171245 (2009)

    Article  CAS  Google Scholar 

  37. Stankovich, S, et al. “Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide.” Carbon N. Y., 45 (7) 1558–1565. https://doi.org/10.1016/j.carbon.2007.02.034 (2007)

    Article  CAS  Google Scholar 

  38. Wang, G, et al., “JPC;C081128192-Synthesis-Characterization-GNsheets.pdf,” pp. 8192–8195, (2008)

  39. Chen, W, Yan, L, Bangal, PR, “JPC1011419885-NaHSO3-GO.pdf,” pp. 19885–19890, (2010)

  40. Chua, CK, Pumera, M, “Chemical Reduction of Graphene Oxide: A Synthetic Chemistry Viewpoint.” Chem. Soc. Rev., 43 (1) 291–312. https://doi.org/10.1039/c3cs60303b (2014)

    Article  CAS  Google Scholar 

  41. Tour, JM, “Top-Down Versus Bottom-Up Fabrication of Graphene-Based Electronics.” Chem. Mater., 26 (1) 163–171. https://doi.org/10.1021/cm402179h (2014)

    Article  CAS  Google Scholar 

  42. Zhu, Y, et al. “Graphene and Graphene Oxide: Synthesis, Properties, and Applications.” Adv. Mater., 22 (35) 3906–3924. https://doi.org/10.1002/adma.201001068 (2010)

    Article  CAS  Google Scholar 

  43. Hummers, WS, Offeman, RE, “Preparation of Graphitic Oxide.” J. Am. Chem. Soc., 208 1937 (1957)

    Google Scholar 

  44. Teijido, R, Ruiz-Rubio, L, Echaide, AG, Vilas-Vilela, JL, Lanceros-Mendez, S, Zhang, Q, “State of the Art and Current Trends on Layered Inorganic-Polymer Nanocomposite Coatings for Anticorrosion and Multi-Functional Applications.” Prog. Org. Coat., 163 106684. https://doi.org/10.1016/j.porgcoat.2021.106684 (2022)

    Article  CAS  Google Scholar 

  45. Paredes, JI, Villar-Rodil, S, Martínez-Alonso, A, Tascón, JMD, “Graphene Oxide Dispersions in Organic Solvents.” Langmuir, 24 (19) 10560–10564. https://doi.org/10.1021/la801744a (2008)

    Article  CAS  Google Scholar 

  46. Mkhoyan, KA, et al. “Atomic and Electronic Structure of Graphene-Oxide.” Nano Lett., 9 (3) 1058–1063. https://doi.org/10.1021/nl8034256 (2009)

    Article  CAS  Google Scholar 

  47. Allahbakhsh, A, Sharif, F, Mazinani, S, “The Influence of Oxygen-Containing Functional Groups on the Surface Behavior and Roughness Characteristics of Graphene Oxide.” Nano, 8 (4) 1–8. https://doi.org/10.1142/S1793292013500458 (2013)

    Article  CAS  Google Scholar 

  48. Inagaki, M, Kang, F, “Graphene Derivatives: Graphane, Fluorographene, Graphene Oxide, Graphyne and Graphdiyne.” J. Mater. Chem. A, 2 13193–13206. https://doi.org/10.1039/c4ta01183j (2014)

  49. Sengupta, I, Chakraborty, S, Talukdar, M, Pal, SK, Chakraborty, S, “Thermal Reduction of Graphene Oxide: How Temperature Influences Purity.” J. Mater. Res., 33 (23) 4113–4122. https://doi.org/10.1557/jmr.2018.338 (2018)

    Article  CAS  Google Scholar 

  50. Chung, C, Kim, Y, Shin, D, Ryoo, S, Hong, BHEE, Min, D, “Graphene Oxide.” (2012)

  51. Cao, Y, et al. “Combination of TNF-α and Graphene Oxide-Loaded BEZ235 to Enhance Apoptosis of PIK3CA Mutant Colorectal Cancer Cells.” J. Mater. Chem. B, 1 (41) 5602–5610. https://doi.org/10.1039/c3tb20764a (2013)

    Article  CAS  Google Scholar 

  52. Yoo, BM, Shin, HJ, Yoon, HW, Park, HB, “Graphene and Graphene Oxide and Their Uses in Barrier Polymers.” J. Appl. Polym. Sci., 131 (1) 1–23. https://doi.org/10.1002/app.39628 (2014)

    Article  CAS  Google Scholar 

  53. Brodie, BC, “On the Atomic Weight of Graphite.” Philos. Trans. R. Soc. B Biol. Sci., 303 1–62. https://doi.org/10.1098/rstb.1983.0080 (1983)

    Article  Google Scholar 

  54. Terrones, M, et al. “Interphases in Graphene Polymer-Based Nanocomposites: Achievements and Challenges.” Adv. Mater., 23 (44) 5302–5310. https://doi.org/10.1002/adma.201102036 (2011)

    Article  CAS  Google Scholar 

  55. Poh, HL, Šaněk, F, Ambrosi, A, Zhao, G, Sofer, Z, Pumera, M, “Graphenes Prepared by Staudenmaier, Hofmann and Hummers Methods with Consequent Thermal Exfoliation Exhibit Very Different Electrochemical Properties.” Nanoscale, 4 (11) 3515–3522. https://doi.org/10.1039/c2nr30490b (2012)

    Article  CAS  Google Scholar 

  56. Kovtyukhova, NI, Ollivier, PJ, Martin, BR, Mallouk, TE, Buzaneva, EV, Gorchinskiy, AD, “Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Sized Graphite Oxide Sheets and Polycations.” Chem. Mater., 11 (3) 771–778. https://doi.org/10.1021/cm981085u (1999)

    Article  CAS  Google Scholar 

  57. Moon, IK, Lee, J, Ruoff, RS, Lee, H, “Reduced Graphene Oxide by Chemical Graphitization.” Nat. Commun., 1 (6) 1–6. https://doi.org/10.1038/ncomms1067 (2010)

    Article  CAS  Google Scholar 

  58. Pei, S, Cheng, HM, “The Reduction of Graphene Oxide.” Carbon N. Y., 50 (9) 3210–3228. https://doi.org/10.1016/j.carbon.2011.11.010 (2012)

    Article  CAS  Google Scholar 

  59. Chen, S, et al. “Oxidation Resistance of Graphene-Coated Cu and Cu/Ni Alloy.” ACS Nano, 5 (2) 1321–1327. https://doi.org/10.1021/nn103028d (2011)

    Article  CAS  Google Scholar 

  60. Prasai, D, Tuberquia, JC, Harl, RR, Jennings, GK, Bolotin, KI, “Graphene: Corrosion-Inhibiting Coating.” ACS Nano, 6 (2) 1102–1108. https://doi.org/10.1021/nn203507y (2012)

    Article  CAS  Google Scholar 

  61. Böhm, S, “Graphene Against Corrosion.” Nat. Nanotechnol., 9 (10) 741–742. https://doi.org/10.1038/nnano.2014.220 (2014)

    Article  CAS  Google Scholar 

  62. Raman, RKS, Tiwari, A, “Graphene: The Thinnest Known Coating for Corrosion Protection.” JOM, 66 (4) 637–642. https://doi.org/10.1007/s11837-014-0921-3 (2014)

    Article  CAS  Google Scholar 

  63. Ye, X, Lin, Z, Zhang, H, Zhu, H, Liu, Z, Zhong, M, “Protecting Carbon Steel from Corrosion by Laser In Situ Grown Graphene Films.” Carbon N. Y., 94 326–334. https://doi.org/10.1016/j.carbon.2015.06.080 (2015)

    Article  CAS  Google Scholar 

  64. Wang, B, Cunning, BV, Park, SY, Huang, M, Kim, JY, Ruoff, RS, “Graphene Coatings as Barrier Layers to Prevent the Water-Induced Corrosion of Silicate Glass.” ACS Nano, 10 (11) 9794–9800. https://doi.org/10.1021/acsnano.6b04363 (2016)

    Article  CAS  Google Scholar 

  65. Zhu, M, et al. “Low-Temperature in Situ Growth of Graphene on Metallic Substrates and Its Application in Anticorrosion.” ACS Appl. Mater. Interfaces, 8 (1) 502–510. https://doi.org/10.1021/acsami.5b09453 (2016)

    Article  CAS  Google Scholar 

  66. Huang, WH, Lin, CH, Lin, BS, Sun, CL, “Low-Temperature CVD Graphene Nanostructures on Cu and Their Corrosion Properties.” Materials (Basel)https://doi.org/10.3390/ma11101989 (2018)

    Article  Google Scholar 

  67. Schriver, M, Regan, W, Gannett, WJ, Zaniewski, AM, Crommie, MF, Zettl, A, “Graphene as a Long-Term Metal Oxidation Barrier: Worse than Nothing.” ACS Nano, 7 (7) 5763–5768. https://doi.org/10.1021/nn4014356 (2013)

    Article  CAS  Google Scholar 

  68. Zhou, F, Li, Z, Shenoy, GJ, Li, L, Liu, H, “Enhanced Room-Temperature Corrosion of Copper in the Presence of Graphene.” ACS Nano, 7 (8) 6939–6947. https://doi.org/10.1021/nn402150t (2013)

    Article  CAS  Google Scholar 

  69. Wlasny, I, et al. “Role of Graphene Defects in Corrosion of Graphene-Coated Cu(111) Surface.” Appl. Phys. Lett.https://doi.org/10.1063/1.4795861 (2013)

    Article  Google Scholar 

  70. Dong, Y, Liu, Q, Zhou, Q, “Corrosion Behavior of Cu During Graphene Growth by CVD.” Corros. Sci., 89 214–219. https://doi.org/10.1016/j.corsci.2014.08.026 (2014)

    Article  CAS  Google Scholar 

  71. Stoot, AC, Camilli, L, Spiegelhauer, SA, Yu, F, Bøggild, P, “Multilayer Graphene for Long-Term Corrosion Protection of Stainless Steel Bipolar Plates for Polymer Electrolyte Membrane Fuel Cell.” J. Power Sources, 293 846–851. https://doi.org/10.1016/j.jpowsour.2015.06.009 (2015)

    Article  CAS  Google Scholar 

  72. Ren, YJ, Anisur, MR, Qiu, W, He, JJ, Al-Saadi, S, Raman, RKS, “Degradation of Graphene Coated Copper in Simulated Proton Exchange Membrane Fuel Cell Environment: Electrochemical Impedance Spectroscopy Study.” J. Power Sources, 362 366–372. https://doi.org/10.1016/j.jpowsour.2017.07.041 (2017)

    Article  CAS  Google Scholar 

  73. Ren, S, Cui, M, Li, W, Pu, J, Xue, Q, Wang, L, “N-doping of Graphene: Toward Long-term Corrosion Protection of Cu.” J. Mater. Chem. A, 6 24136–24148. https://doi.org/10.1039/C8TA05421E (2018)

  74. H. Uǧuz et al., “ce pte d M us pt.” J. Phys. Energy, 2 (1) 0–31 (2020)

  75. Chang, CH, et al. “Novel Anticorrosion Coatings Prepared from Polyaniline/Graphene Composites.” Carbon N. Y., 50 (14) 5044–5051. https://doi.org/10.1016/j.carbon.2012.06.043 (2012)

    Article  CAS  Google Scholar 

  76. Li, Y, et al. “Self-aligned Graphene as Anticorrosive Barrier in Waterborne Polyurethane Composite Coatings.” J. Mater. Chem. A, 2 (34) 14139–14145. https://doi.org/10.1039/c4ta02262a (2014)

    Article  CAS  Google Scholar 

  77. Röding, M, Gaska, K, Kádár, R, Lorén, N, “Computational Screening of Diffusive Transport in Nanoplatelet-Filled Composites: Use of Graphene to Enhance Polymer Barrier Properties.” ACS Appl. Nano Mater., 1 (1) 160–167. https://doi.org/10.1021/acsanm.7b00067 (2018)

    Article  CAS  Google Scholar 

  78. Wei, J, Vo, T, Inam, F, “Epoxy/Graphene Nanocomposites - Processing and Properties: A Review.” RSC Adv., 5 (90) 73510–73524. https://doi.org/10.1039/c5ra13897c (2015)

    Article  CAS  Google Scholar 

  79. Cui, Y, Kundalwal, SI, Kumar, S, “Gas Barrier Performance of Graphene/Polymer Nanocomposites.” Carbon N. Y., 98 313–333. https://doi.org/10.1016/j.carbon.2015.11.018 (2016)

    Article  CAS  Google Scholar 

  80. Kim, H, Miura, Y, MacOsko, CW, “Graphene/Polyurethane Nanocomposites for Improved Gas Barrier and Electrical Conductivity.” Chem. Mater., 22 (11) 3441–3450. https://doi.org/10.1021/cm100477v (2010)

    Article  CAS  Google Scholar 

  81. Putz, KW, Compton, OC, Palmeri, MJ, Nguyen, SBT, Brinson, LC, “High-nanofiller-Content Graphene Oxide-Polymer Nanocomposites via Vacuum-Assisted Self-Assembly.” Adv. Funct. Mater., 20 (19) 3322–3329. https://doi.org/10.1002/adfm.201000723 (2010)

    Article  CAS  Google Scholar 

  82. Bortz, DR, Heras, EG, Martin-Gullon, I, “Impressive Fatigue Life and Fracture Toughness Improvements in Graphene Oxide/Epoxy Composites.” Macromolecules, 45 (1) 238–245 (2012)

  83. Layek, RK, Das, AK, Park, MU, Kim, NH, Lee, JH, “Layer-Structured Graphene Oxide/Polyvinyl Alcohol Nanocomposites: Dramatic Enhancement of Hydrogen Gas Barrier Properties.” J. Mater. Chem. A, 2 (31) 12158–12161. https://doi.org/10.1039/c4ta02346c (2014)

    Article  CAS  Google Scholar 

  84. Paul, DR, Robeson, LM, “Polymer Nanotechnology: Nanocomposites.” Polymer (Guildf), 49 (15) 3187–3204. https://doi.org/10.1016/j.polymer.2008.04.017 (2008)

    Article  CAS  Google Scholar 

  85. Kim, H, Abdala, AA, MacOsko, CW, “Graphene/polymer Nanocomposites.” Macromolecules, 43 (16) 6515–6530. https://doi.org/10.1021/ma100572e (2010)

    Article  CAS  Google Scholar 

  86. Potts, JR, Dreyer, DR, Bielawski, CW, Ruoff, RS, “Graphene-Based Polymer Nanocomposites.” Polymer (Guildf), 52 (1) 5–25. https://doi.org/10.1016/j.polymer.2010.11.042 (2011)

    Article  CAS  Google Scholar 

  87. Kuilla, T, Bhadra, S, Yao, D, Kim, NH, Bose, S, Lee, JH, “Recent Advances in Graphene Based Polymer Composites.” Prog. Polym. Sci., 35 (11) 1350–1375. https://doi.org/10.1016/j.progpolymsci.2010.07.005 (2010)

    Article  CAS  Google Scholar 

  88. Yousefi, N, et al. “Simultaneous In situ Reduction, Self-alignment and Covalent Bonding in Graphene Oxide/Epoxy Composites.” Carbon N. Y., 59 406–417. https://doi.org/10.1016/j.carbon.2013.03.034 (2013)

    Article  CAS  Google Scholar 

  89. Ni, Y, et al. “Superior Mechanical Properties of Epoxy Composites Reinforced by 3D Interconnected Graphene Skeleton.” ACS Appl. Mater. Interfaces, 7 (21) 11583–11591. https://doi.org/10.1021/acsami.5b02552 (2015)

    Article  CAS  Google Scholar 

  90. Cheng, J, Chen, S, Zhang, F, Shen, B, Lu, X, Pan, J, “Corrosion- and Wear-Resistant Composite Film of Graphene and Mussel Adhesive Proteins on Carbon Steel.” Corros. Sci., 164 108351. https://doi.org/10.1016/j.corsci.2019.108351 (2020)

    Article  CAS  Google Scholar 

  91. Liu, S, Gu, L, Zhao, H, Chen, J, Yu, H, “Corrosion Resistance of Graphene-Reinforced Waterborne Epoxy Coatings.” J. Mater. Sci. Technol., 32 (5) 425–431. https://doi.org/10.1016/j.jmst.2015.12.017 (2016)

    Article  CAS  Google Scholar 

  92. Chen, C, et al. “Achieving High Performance Corrosion and Wear Resistant Epoxy Coatings via Incorporation of Noncovalent Functionalized Graphene.” Carbon N. Y., 114 356–366. https://doi.org/10.1016/j.carbon.2016.12.044 (2017)

    Article  CAS  Google Scholar 

  93. Cui, M, Ren, S, Pu, J, Wang, Y, Zhao, H, Wang, L, “Poly(o-phenylenediamine) Modified Graphene Toward the Reinforcement in Corrosion Protection of Epoxy Coatings.” Corros. Sci., 159 108131. https://doi.org/10.1016/j.corsci.2019.108131 (2019)

    Article  CAS  Google Scholar 

  94. Qiu, S, Li, W, Zheng, W, Zhao, H, Wang, L, “Synergistic Effect of Polypyrrole-Intercalated Graphene for Enhanced Corrosion Protection of Aqueous Coating in 3.5% nacl Solution.” ACS Appl. Mater. Interfaces, 9 (39) 34294–34304. https://doi.org/10.1021/acsami.7b08325 (2017)

    Article  CAS  Google Scholar 

  95. Ye, Y, et al. “Superior Corrosion Resistance and Self-Healable Epoxy Coating Pigmented with Silanzied Trianiline-Intercalated Graphene.” Carbon N. Y., 142 164–176. https://doi.org/10.1016/j.carbon.2018.10.050 (2019)

    Article  CAS  Google Scholar 

  96. Cui, Y, Kundalwal, SI, Kumar, S, “Gas Barrier Performance of Graphene/Polymer Nanocomposites.” Carbon N. Y., 98 313–333. https://doi.org/10.1016/j.carbon.2015.11.018 (2016)

    Article  CAS  Google Scholar 

  97. Jiao, W, et al. “Improving the Gas Barrier Properties of Fe3O4/Graphite Nanoplatelet Reinforced Nanocomposites by a Low Magnetic Field Induced Alignment.” Compos. Sci. Technol., 99 124–130. https://doi.org/10.1016/j.compscitech.2014.05.022 (2014)

    Article  CAS  Google Scholar 

  98. Li, X, Bandyopadhyay, P, Guo, M, Kim, NH, Lee, JH, “Enhanced Gas Barrier and Anticorrosion Performance of Boric Acid Induced Cross-linked Poly(vinyl alcohol-co-ethylene)/Graphene Oxide Film.” Carbon N. Y., 133 150–161. https://doi.org/10.1016/j.carbon.2018.03.036 (2018)

    Article  CAS  Google Scholar 

  99. Tamilarasan, TR, Sanjith, U, Shankar, MS, Rajagopal, G, “Effect of Reduced Graphene Oxide (rGO) on Corrosion and Erosion-Corrosion Behaviour of Electroless Ni-P Coatings.” Wear, 390 385–391. https://doi.org/10.1016/j.wear.2017.09.004 (2017)

    Article  CAS  Google Scholar 

  100. Rana, ARK, Islam, MA, Farhat, Z, “Effect of Graphene Nanoplatelets (GNPs) Addition on Erosion-Corrosion Resistance of Electroless Ni–P Coatings.” J. Bio-Tribo-Corros.https://doi.org/10.1007/s40735-019-0304-y (2020)

    Article  Google Scholar 

  101. Sun, W, et al. “Inhibiting the Corrosion-Promotion Activity of Graphene.” Chem. Mater., 27 (7) 2367–2373. https://doi.org/10.1021/cm5043099 (2015)

    Article  CAS  Google Scholar 

  102. Ramezanzadeh, B, Moghadam, MHM, Shohani, N, Mahdavian, M, “Effects of Highly Crystalline and Conductive Polyaniline/Graphene Oxide Composites on the Corrosion Protection Performance of a Zinc-Rich Epoxy Coating.” Chem. Eng. J., 320 363–375. https://doi.org/10.1016/j.cej.2017.03.061 (2017)

    Article  CAS  Google Scholar 

  103. Ding, R, Wang, X, Jiang, J, Gui, T, Li, W, “Study on Evolution of Coating State and Role of Graphene in Graphene-Modified Low-Zinc Waterborne Epoxy Anticorrosion Coating by Electrochemical Impedance Spectroscopy.” J. Mater. Eng. Perform., 26 (7) 3319–3335. https://doi.org/10.1007/s11665-017-2790-8 (2017)

    Article  CAS  Google Scholar 

  104. Ding, R, Zheng, Y, Yu, H, Li, W, Wang, X, Gui, T, “Study of Water Permeation Dynamics and Anti-Corrosion Mechanism of Graphene/Zinc Coatings.” J. Alloys Compd., 748 481–495. https://doi.org/10.1016/j.jallcom.2018.03.160 (2018)

    Article  CAS  Google Scholar 

  105. Ding, R, et al. “The Diffusion-Dynamical and Electrochemical Effect Mechanism of Oriented Magnetic Graphene on Zinc-Rich Coatings and the Electrodynamics and Quantum Mechanics Mechanism of Electron Conduction in Graphene Zinc-Rich Coatings.” J. Alloys Compd., 784 756–768. https://doi.org/10.1016/j.jallcom.2019.01.070 (2019)

    Article  CAS  Google Scholar 

  106. Motamedi, M, Ramezanzadeh, M, Ramezanzadeh, B, Saadatmandi, S, “Enhancement of the Active/Passive Anti-Corrosion Properties of Epoxy Coating via Inclusion of Histamine/Zinc Modified/Reduced Graphene Oxide Nanosheets.” Appl. Surf. Sci., 488 77–91. https://doi.org/10.1016/j.apsusc.2019.05.180 (2019)

    Article  CAS  Google Scholar 

  107. Taheri, NN, Ramezanzadeh, B, Mahdavian, M, “Application of Layer-by-layer Assembled Graphene Oxide Nanosheets/Polyaniline/Zinc Cations for Construction of an Effective Epoxy Coating Anti-Corrosion System.” J. Alloys Compd., 800 532–549. https://doi.org/10.1016/j.jallcom.2019.06.103 (2019)

    Article  CAS  Google Scholar 

  108. Zhu, Q, et al. “Synergistic Effect of Polypyrrole Functionalized Graphene Oxide and Zinc Phosphate for Enhanced Anticorrosion Performance of Epoxy Coatings.” Compos. Part A Appl. Sci. Manuf., 130 2020. https://doi.org/10.1016/j.compositesa.2019.105752 (2019)

    Article  CAS  Google Scholar 

  109. Ramezanzadeh, M, Bahlakeh, G, Ramezanzadeh, B, “Green Synthesis of Reduced Graphene Oxide Nanosheets Decorated with Zinc-Centered Metal-Organic Film for Epoxy-Ester Composite Coating Reinforcement: DFT-D Modeling and Experimental Explorations.” J. Taiwan Inst. Chem. Eng., 114 311–330. https://doi.org/10.1016/j.jtice.2020.09.003 (2020)

    Article  CAS  Google Scholar 

  110. Bai, W, Ma, Y, Meng, M, Li, Y, “The Influence of Graphene on the Cathodic Protection Performance of Zinc-Rich Epoxy Coatings.” Prog. Org. Coat., 161 106. https://doi.org/10.1016/j.porgcoat.2021.106456 (2021)

    Article  CAS  Google Scholar 

  111. Yu, YH, Lin, YY, Lin, CH, Chan, CC, Huang, YC, “High-performance Polystyrene/Graphene-Based Nanocomposites with Excellent Anti-corrosion Properties.” Polym. Chem., 5 (2) 535 (2014)

    Article  CAS  Google Scholar 

  112. Fayyad, EM, Sadasivuni, KK, Ponnamma, D, Al-Maadeed, MAA, “Oleic Acid-grafted Chitosan/Graphene Oxide Composite Coating for Corrosion Protection of Carbon Steel.” Carbohydr. Polym., 151 871–878. https://doi.org/10.1016/j.carbpol.2016.06.001 (2016)

    Article  CAS  Google Scholar 

  113. Sheng, X, Cai, W, Zhong, L, Xie, D, Zhang, X, “Synthesis of Functionalized Graphene/Polyaniline Nanocomposites with Effective Synergistic Reinforcement on Anticorrosion.” Ind. Eng. Chem. Res., 55 (31) 8576–8585. https://doi.org/10.1021/acs.iecr.6b01975 (2016)

    Article  CAS  Google Scholar 

  114. Li, J, Cui, J, Yang, J, Li, Y, Qiu, H, Yang, J, “Reinforcement of Graphene and Its Derivatives on the Anticorrosive Properties of Waterborne Polyurethane Coatings.” Compos. Sci. Technol., 129 30–37. https://doi.org/10.1016/j.compscitech.2016.04.017 (2016)

    Article  CAS  Google Scholar 

  115. Qi, K, Sun, Y, Duan, H, Guo, X, “A Corrosion-Protective Coating Based on a Solution-Processable Polymer-Grafted Graphene Oxide Nanocomposite.” Corros. Sci., 98 500–506. https://doi.org/10.1016/j.corsci.2015.05.056 (2015)

    Article  CAS  Google Scholar 

  116. Yang, Z, Sun, W, Wang, L, Li, S, Zhu, T, Liu, G, “Liquid-Phase Exfoliated Fluorographene as a Two Dimensional Coating Filler for Enhanced Corrosion Protection Performance.” Corros. Sci., 103 312–318. https://doi.org/10.1016/j.corsci.2015.10.039 (2016)

    Article  CAS  Google Scholar 

  117. Jafari, Y, Ghoreishi, SM, Shabani-Nooshabadi, M, “Electrochemical Deposition and Characterization of Polyaniline-Graphene Nanocomposite Films and Its Corrosion Protection Properties.” J. Polym. Res.https://doi.org/10.1007/s10965-016-0983-8 (2016)

    Article  Google Scholar 

  118. Zhu, K, Li, X, Wang, H, Li, J, Fei, G, “Electrochemical and Anti-corrosion Behaviors of Water Dispersible Graphene/Acrylic Modified Alkyd Resin Latex Composites Coated Carbon Steel.” J. Appl. Polym. Sci., 134 (11) 1–12. https://doi.org/10.1002/app.44445 (2017)

    Article  CAS  Google Scholar 

  119. Pourhashem, S, Vaezi, MR, Rashidi, A, “Investigating the Effect of SiO2-Graphene Oxide Hybrid as Inorganic Nanofiller on Corrosion Protection Properties of Epoxy Coatings.” Surf. Coat. Technol., 311 282–294. https://doi.org/10.1016/j.surfcoat.2017.01.013 (2017)

    Article  CAS  Google Scholar 

  120. Zheng, H, Shao, Y, Wang, Y, Meng, G, Liu, B, “Reinforcing the Corrosion Protection Property of Epoxy Coating by Using Graphene Oxide–Poly(urea–formaldehyde) Composites.” Corros. Sci., 123 267–277. https://doi.org/10.1016/j.corsci.2017.04.019 (2017)

    Article  CAS  Google Scholar 

  121. Hikku, GS, Jeyasubramanian, K, Venugopal, A, Ghosh, R, “Corrosion Resistance Behaviour of Graphene/Polyvinyl Alcohol Nanocomposite Coating for Aluminium-2219 Alloy.” J. Alloys Compd., 716 259–269. https://doi.org/10.1016/j.jallcom.2017.04.324 (2017)

    Article  CAS  Google Scholar 

  122. Hayatdavoudi, H, Rahsepar, M, “A Mechanistic Study of the Enhanced Cathodic Protection Performance of Graphene-Reinforced Zinc Rich Nanocomposite Coating for Corrosion Protection of Carbon Steel Substrate.” J. Alloys Compd., 727 1148–1156. https://doi.org/10.1016/j.jallcom.2017.08.250 (2017)

    Article  CAS  Google Scholar 

  123. Pourhashem, S, Vaezi, MR, Rashidi, A, Bagherzadeh, MR, “Exploring Corrosion Protection Properties of Solvent Based Epoxy-Graphene Oxide Nanocomposite Coatings on Mild Steel.” Corros. Sci., 115 78–92. https://doi.org/10.1016/j.corsci.2016.11.008 (2017)

    Article  CAS  Google Scholar 

  124. Harfouche, N, Gospodinova, N, Nessark, B, Perrin, FX, “Electrodeposition of Composite Films of Reduced Graphene Oxide/Polyaniline in Neutral Aqueous Solution on Inert and Oxidizable Metal.” J. Electroanal. Chem., 786 135–144. https://doi.org/10.1016/j.jelechem.2017.01.030 (2017)

    Article  CAS  Google Scholar 

  125. Tong, Y, Bohm, S, Song, M, “The Capability of Graphene on Improving the Electrical Conductivity and Anti-Corrosion Properties of Polyurethane Coatings.” Appl. Surf. Sci., 424 72–81. https://doi.org/10.1016/j.apsusc.2017.02.081 (2017)

    Article  CAS  Google Scholar 

  126. Nayak, SR, Mohana, KNS, “Corrosion Protection Performance of Functionalized Graphene Oxide Nanocomposite Coating on Mild Steel.” Surf. Interfaces, 11 63–73. https://doi.org/10.1016/j.surfin.2018.03.002 (2018)

    Article  CAS  Google Scholar 

  127. Kim, H, Lee, H, Lim, HR, Cho, HB, Choa, YH, “Electrically Conductive and Anti-Corrosive Coating on Copper Foil Assisted By Polymer-Nanocomposites Embedded with Graphene.” Appl. Surf. Sci., 476 123–127. https://doi.org/10.1016/j.apsusc.2019.01.066 (2019)

    Article  CAS  Google Scholar 

  128. Ziat, Y, Hammi, M, Zarhri, Z, Laghlimi, C, “Epoxy Coating Modified with Graphene: A Promising Composite Against Corrosion Behavior of Copper Surface in Marine Media.” J. Alloys Compd., 820 153380. https://doi.org/10.1016/j.jallcom.2019.153380 (2020)

    Article  CAS  Google Scholar 

  129. Li, H, et al. “The Synergistic Effect of Polyvinyl Alcohol and Graphene Oxide on the Corrosion Resistance of Waterborne Coatings.” Prog. Org. Coat., 160 106526. https://doi.org/10.1016/j.porgcoat.2021.106526 (2021)

    Article  CAS  Google Scholar 

  130. Liu, S, et al. “A Facile Approach to Fabricating Graphene/Waterborne Epoxy Coatings with Dual Functionalities of Barrier and Corrosion Inhibitor.” J. Mater. Sci. Technol., 112 263–276. https://doi.org/10.1016/j.jmst.2021.07.061 (2021)

    Article  Google Scholar 

  131. Araujo, AF, Ferreira, MVF, Felisberto, MDV, Sicupira, DC, Santos, A, “Progress in Organic Coatings Corrosion Resistance of a Superelastic NiTi Alloy Coated with Graphene–Based Coatings.” Prog. Org. Coat., 165 106727. https://doi.org/10.1016/j.porgcoat.2022.106727 (2022)

    Article  CAS  Google Scholar 

  132. Liu, S, et al. “A Facile Approach to Fabricating Graphene/Waterborne Epoxy Coatings with Dual Functionalities of Barrier and Corrosion Inhibitor.” J. Mater. Sci. Technol., 112 263–276. https://doi.org/10.1016/j.jmst.2021.07.061 (2022)

    Article  Google Scholar 

  133. Zhao, Z, Zhou, M, Zhao, W, Hu, J, Fu, H, “Anti-corrosion Epoxy / Modified Graphene Oxide / Glass Fiber Composite Coating with Dual Physical Barrier Network.” Prog. Org. Coat., 167 1068. https://doi.org/10.1016/j.porgcoat.2022.106823 (2022)

    Article  CAS  Google Scholar 

  134. Liu, Z, et al. “Integrated Dual-Functional ORMOSIL Coatings with AgNPs@rGO Nanocomposite for Corrosion Resistance and Antifouling Applications.” ACS Sustain. Chem. Eng., 8 (17) 6786–6797. https://doi.org/10.1021/acssuschemeng.0c01294 (2020)

    Article  CAS  Google Scholar 

  135. Jin, H, Tian, L, Bing, W, Zhao, J, Ren, L, “Toward the Application of Graphene for Combating Marine Biofouling.” Adv. Sustain. Syst., 5 (1) 1–16. https://doi.org/10.1002/adsu.202000076 (2021)

    Article  CAS  Google Scholar 

  136. Jena, G, Sofia, S, Anandkumar, B, Vanithakumari, SC, George, RP, Philip, J, “Graphene Oxide/Polyvinylpyrrolidone Composite Coating on 316L SS with Superior Antibacterial and Anti-Biofouling Properties.” Prog. Org. Coat., 158 106356. https://doi.org/10.1016/j.porgcoat.2021.106356 (2021)

    Article  CAS  Google Scholar 

  137. Selim, MS, Fatthallah, NA, Higazy, SA, Hao, Z, Mo, PJ, “A Comparative Study Between Two Novel Silicone/Graphene-Based Nanostructured Surfaces for Maritime Antifouling.” J. Colloid Interface Sci., 606 367–383. https://doi.org/10.1016/j.jcis.2021.08.026 (2022)

    Article  CAS  Google Scholar 

  138. Selim, MS, Azzam, AM, Higazy, SA, El-safty, SA, Shenashen, MA, “Progress in Organic Coatings Novel Graphene-Based Ternary Nanocomposite Coatings as Ecofriendly Antifouling Brush Surfaces.” Prog. Org. Coat., 167 1068. https://doi.org/10.1016/j.porgcoat.2022.106803 (2022)

    Article  CAS  Google Scholar 

  139. Tseng, IH, Liao, YF, Chiang, JC, Tsai, MH, “Transparent Polyimide/Graphene Oxide Nanocomposite with Improved Moisture Barrier Property.” Mater. Chem. Phys., 136 (1) 247–253. https://doi.org/10.1016/j.matchemphys.2012.06.061 (2012)

    Article  CAS  Google Scholar 

  140. Tissera, ND, Wijesena, RN, Perera, JR, De Silva, KMN, Amaratunge, GAJ, “Hydrophobic Cotton Textile Surfaces Using an Amphiphilic Graphene Oxide (GO) Coating.” Appl. Surf. Sci., 324 455–463. https://doi.org/10.1016/j.apsusc.2014.10.148 (2015)

    Article  CAS  Google Scholar 

  141. Shokrieh, MM, Hosseinkhani, MR, Naimi-Jamal, MR, Tourani, H, “Nanoindentation and Nanoscratch Investigations on Graphene-Based Nanocomposites.” Polym. Test., 32 (1) 45–51. https://doi.org/10.1016/j.polymertesting.2012.09.001 (2013)

    Article  CAS  Google Scholar 

  142. Sharmila, TKB, Antony, JV, Jayakrishnan, MP, Beegum, PMS, Thachil, ET, “Mechanical, Thermal and Dielectric Properties of Hybrid Composites of Epoxy and Reduced Graphene Oxide/Iron Oxide.” Mater. Des., 90 66–75. https://doi.org/10.1016/j.matdes.2015.10.055 (2016)

    Article  CAS  Google Scholar 

  143. Salom, C, Prolongo, MG, Toribio, A, Martínez-Martínez, AJ, de Cárcer, IA, Prolongo, SG, “Mechanical Properties and Adhesive Behavior of Epoxy-Graphene Nanocomposites.” Int. J. Adhes. Adhes., 84 119–125. https://doi.org/10.1016/j.ijadhadh.2017.12.004 (2018)

    Article  CAS  Google Scholar 

  144. Haghdadeh, P, Ghaffari, M, Ramezanzadeh, B, Bahlakeh, G, Saeb, MR, “The Role of Functionalized Graphene Oxide on the Mechanical and Anti-Corrosion Properties of Polyurethane Coating.” J. Taiwan Inst. Chem. Eng., 86 199–212. https://doi.org/10.1016/j.jtice.2018.02.009 (2018)

    Article  CAS  Google Scholar 

  145. Chakraborty, G, Valapa, RB, Pugazhenthi, G, Katiyar, V, “Investigating the Properties of Poly (lactic acid)/exfoliated Graphene Based Nanocomposites Fabricated by Versatile Coating Approach.” Int. J. Biol. Macromol., 113 (2017) 1080–1091. https://doi.org/10.1016/j.ijbiomac.2018.03.037 (2018)

    Article  CAS  Google Scholar 

  146. Hasani, M, Mahdavian, M, Yari, H, Ramezanzadeh, B, “Versatile Protection of Exterior Coatings by the Aid of Graphene Oxide Nano-Sheets; Comparison with Conventional UV Absorbers.” Prog. Org. Coat., 116 90–101. https://doi.org/10.1016/j.porgcoat.2017.11.020 (2018)

    Article  CAS  Google Scholar 

  147. Lu, T, Solis-Ramos, E, Yi, Y, Kumosa, M, “UV Degradation Model for Polymers and Polymer Matrix Composites.” Polym. Degrad. Stab., 154 203–210. https://doi.org/10.1016/j.polymdegradstab.2018.06.004 (2018)

    Article  CAS  Google Scholar 

  148. Dong, B, Yuan, Y, Luo, J, Dong, L, Liu, R, Liu, X, “Acryloyl-Group Functionalized Graphene for Enhancing Thermal and Mechanical Properties of Acrylated Epoxidized Soybean Oil UV-Curable Based Coatings.” Prog. Org. Coat., 118 57–65. https://doi.org/10.1016/j.porgcoat.2018.01.020 (2018)

    Article  CAS  Google Scholar 

  149. Othman, NH, Ismail, MC, Mustapha, M, Sallih, N, Kee, KE, Jaal, RA, “Graphene-Based Polymer Nanocomposites as Barrier Coatings for Corrosion Protection.” Prog. Org. Coat., 135 82–99. https://doi.org/10.1016/j.porgcoat.2019.05.030 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are highly thankful to the Department of Mechanical Engineering, Dr. BR Ambedkar National Institute of Technology Jalandhar for providing the facilities for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit Sharma.

Ethics declarations

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to legal or ethical reasons. The data will be made available on request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Sharma, S. Graphene-based polymer coatings for preventing marine corrosion: a review. J Coat Technol Res 20, 413–432 (2023). https://doi.org/10.1007/s11998-022-00730-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-022-00730-x

Keywords

Navigation