Skip to main content

Advertisement

Log in

Enhancing antibacterial and anticorrosion properties of 304 stainless steel surfaces: a multi-modification approach based on DA/PEI/SiO2/AMPs

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

A Correction to this article was published on 22 May 2023

This article has been updated

Abstract

Marine fouling can cause a series of hazards in the marine industrial field, and the traditional antifouling methods do not fulfill the green antifouling requirement. Herein, a novel DA/PEI/SiO2/antibacterial peptide antifouling coating was prepared by a multi-modification approach. Initially, the nanocoatings were prepared by depositing DA, PEI, and SiO2 on the dopamine (DA)-modified 304 stainless steel (SS) surface, and finally, the DA/PEI/SiO2/AMPs composite coatings were prepared by grafting antimicrobial peptides (AMPs). The surfaces of SS before and after modification were characterized by Fourier transform infrared spectrometer (FTIR), X-ray photoelectron spectrometer (XPS), field emission scanning electron microscopy (SEM), contact angle measurement, and 3D optical profilometer. SSN-1 cells were used to evaluate the cytocompatibility of the modified surface. The results revealed that the cells cultured on the modified surface still maintained a good adhesion morphology, demonstrating the superior cytocompatibility of the composite coating. The anti-biofilm and antimicrobial properties of the modified samples were evaluated using Vibrio natriegens. The antibacterial efficiency of SS-DA/PEI/SiO2 surfaces before and after AMPs modification reached 78.39 and 95.90%, and anti-biofilm efficiency of AMPs modified surface achieved 72.87% corresponding to 44.19% of SS-DA/PEI/SiO2. The successful grafting of AMPs improved the antibacterial and anti-biofilm properties of the modified sample surfaces. Electrochemical and stability tests indicated that the modified sample surfaces exhibited excellent corrosion resistance and antifouling stability properties. This research could provide a novel green anti-fouling and anti-corrosion strategy for the marine industry and other related fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Change history

References

  1. Yu, WF, Wang, YX, Gnutt, P, Wanka, R, Krause, LMK, Finlay, JA, Clare, AS, Rosenhahn, A, “Layer-by-layer Deposited Hybrid Polymer Coatings Based on Polysaccharides and Zwitterionic Silanes with Marine Antifouling Properties.” ACS Applied. Bio. Materials, 4 (3) 2385–2397 (2021)

    Article  CAS  Google Scholar 

  2. Xie, CH, Guo, HS, Zhao, WQ, Zhang, L, “Environmentally Friendly Marine Antifouling Coating Based on a Synergistic Strategy.” Langmuir, 36 (9) 2396–2402 (2020)

    Article  CAS  Google Scholar 

  3. He, XY, Tian, F, Bai, XQ, Yuan, CQ, Wang, C, Neville, A, “Biomimetic Lubricant-Infused Titania Nanoparticle Surfaces via Layer-by-Layer Deposition to Control Biofouling.” Appl. Surf. Sci., 515 146064 (2020)

    Article  CAS  Google Scholar 

  4. Su, X, Yang, M, Hao, DZ, Guo, XL, Jiang, L, “Marine Antifouling Coatings with Surface Topographies Triggered by Phase Segregation.” J. Colloid Interface Sci., 598 104–112 (2021)

    Article  CAS  Google Scholar 

  5. Gu, YQ, Yu, LZ, Mou, JG, Wu, DH, Xu, MS, Zhou, PJ, Ren, Y, “Research Strategies to Develop Environmentally Friendly Marine Antifouling Coatings.” Mar. Drugs, 18 (7) 371 (2020)

    Article  CAS  Google Scholar 

  6. Sonak, S, Pangam, P, Giriyan, A, Hawaldar, K, “Implications of the Ban on Organotins for Protection of Global Coastal and Marine Ecology.” J. Environ. Manage., 90 96–108 (2009)

    Article  Google Scholar 

  7. Selim, MS, Shenashen, MA, Hashem, AI, El-Safty, SA, “Linseed Oil-based Alkyd/Cu2O Nanocomposite Coatings for Surface Applications.” New J. Chem., 42 (12) 10048–10058 (2018)

    Article  CAS  Google Scholar 

  8. Cui, JY, Zhou, ZP, Xie, AT, Meng, MJ, Cui, YH, Liu, SW, Lu, J, Zhou, S, Yan, YS, Dong, HJ, “Bio-inspired Fabrication of Superhydrophilic Nanocomposite Membrane Based on Surface Modification of SiO2 Anchored by Polydopamine Towards Effective Oil-water Emulsions Separation.” Sep. Purif. Technol., 209 434–442 (2019)

    Article  CAS  Google Scholar 

  9. Knowles, BR, Wagner, P, Maclaughlin, S, Higgins, MJ, Molino, PJ, “Silica Nanoparticles Functionalized with Zwitterionic Sulfobetaine Siloxane for Application as a Versatile Antifouling Coating System.” ACS Appl. Mater. Interfaces, 9 (22) 18584–18594 (2017)

    Article  CAS  Google Scholar 

  10. Shang, B, Wang, YB, Yang, P, Peng, B, Deng, ZW, “Synthesis of Superhydrophobic Polydopamine-Ag Microbowl/Nanoparticle Array Substrates for Highly Sensitive, Durable and Reproducible Surface-Enhanced Raman Scattering Detection.” Sensor. Actuat. B. Chem., 255 995–1005 (2018)

    Article  CAS  Google Scholar 

  11. Tsai, WB, Chien, CY, Thissen, H, Lai, JY, “Dopamine-Assisted Immobilization of Poly (Ethyleneimine) Based Polymers for Control of Cell-Surface Interactions.” Acta. Biomater., 7 2518–2525 (2011)

    Article  CAS  Google Scholar 

  12. Yang, HC, Liao, KJ, Huang, H, Wu, QY, Wan, LS, Xu, ZK, “Mussel-Inspired Modification of a Polymer Membrane for Ultra-High Water Permeability and Oil-In-Water Emulsion Separation.” J. Mate. Chem. A., 2 10225–10230 (2014)

    Article  CAS  Google Scholar 

  13. Zheng, XY, Li, Q, Tian, J, Zhan, HL, Yu, C, Wang, SJ, Sun, XT, “Novel Strategy of Mussel-Inspired Immobilization of Naringinase with High Activity Using a Polyethylenimine/Dopamine Co-Deposition Method.” ACS Omega, 6 (4) 3267–3277 (2021)

    Article  CAS  Google Scholar 

  14. Asha, AB, Chen, YJ, Zhang, HX, Ghaemi, S, Ishihara, K, Liu, Y, Narain, R, “Rapid Mussel-Inspired Surface Zwitteration for Enhanced Antifouling and Antibacterial Properties.” Langmuir, 35 (5) 1621–1630 (2019)

    Article  CAS  Google Scholar 

  15. Niksefat, N, Jahanshahi, M, Rahimpour, A, “The Effect of SiO2 Nanoparticles on Morphology and Performance of Thin Film Composite Membranes for Forward Osmosis Application.” Desalination, 343 140–146 (2014)

    Article  CAS  Google Scholar 

  16. Zhao, FY, Ji, YL, Weng, XD, Mi, YF, Ye, CC, An, QF, Gao, CJ, “High-Flux Positively Charged Nanocomposite Nano-Filtration Membranes Filled with Poly(dopamine) Modified Multiwall Carbon Nanotubes.” ACS Appl. Mater. Interfaces, 8 (10) 6693–6700 (2016)

    Article  CAS  Google Scholar 

  17. Lv, Y, Du, Y, Qiu, WZ, Xu, ZK, “Nanocomposite Membranes via the Codeposition of Polydopamine/polyethylenimine with Silica Nanoparticles for Enhanced Mechanical Strength and High Water Permeability.” ACS Appl. Mater. Interfaces, 9 (3) 2966–2972 (2017)

    Article  CAS  Google Scholar 

  18. Nurioglu, AG, Esteves, ACC, With, GD, “Non-toxic, Non-Biocide-Release Antifouling Coatings Based on Molecular Structure Design for Marine Applications.” J. Mater. Chem. B., 3 6547–6570 (2015)

    Article  CAS  Google Scholar 

  19. Yeaman, MR, Yount, NY, “Mechanisms of Antimicrobial Peptide Action and Resistance.” Pharmacol. Rev., 55 (1) 27–55 (2003)

    Article  CAS  Google Scholar 

  20. Brogden, KA, “Antimicrobial Peptides: Pore Formers or Metabolic Inhibitors in Bacteria.” Nat. Rev. Microbiol., 3 238–250 (2005)

    Article  CAS  Google Scholar 

  21. Cao, P, Du, CW, He, XY, Zhang, C, Yuan, CQ, “Modification of a Derived Antimicrobial Peptide on Steel Surface for Marine Bacterial Resistance.” Appl. Surf Sci., 510 (13) 145512 (2020)

    Article  CAS  Google Scholar 

  22. Lou, T, Bai, XQ, He, XY, Yang, Y, Yuan, CQ, “Molecular Dynamics Simulation of Peptide Attachment on Al-based Surfaces.” Prog. Org. Coat., 157 106310 (2021)

    Article  CAS  Google Scholar 

  23. Mondal, A, Singha, P, Douglass, M, Estes, L, Garren, M, Griffin, L, Kumar, A, Handa, H, “A Synergistic New Approach Toward Enhanced Antibacterial Efficacy via Antimicrobial Peptide Immobilization on a Nitric Oxide-Releasing Surface.” ACS Appl. Mater. Interfaces, 13 (37) 43892–43903 (2021)

    Article  CAS  Google Scholar 

  24. Zasloff, M, “Magainins, A Class of Antimicrobial Peptides from Xenopus Skin: Isolation, Characterization of Two Active Forms, and Partial cDNA Sequence of a Precursor.” Natl. Acad. Sci. USA, 84 (15) 5449–5453 (1987)

    Article  CAS  Google Scholar 

  25. Glinel, K, Jonas, AM, Jouenne, T, Leprince, J, Galas, L, Huck, WTS, “Antibacterial and Antifouling Polymer Brushes Incorporating Antimicrobial Peptide.” Bioconjug. Chem., 20 (1) 71–77 (2009)

    Article  CAS  Google Scholar 

  26. Matsuzaki, K, Sugishita, K, Harada, M, Fujii, N, Miyajima, K, “Interactions of an Antimicrobial Peptide, Magainin 2, with Outer and Inner Membranes of Gram-negative Bacteria.” Biochim. Biophys. Acta Biomembr., 1327 (1) 119–130 (1997)

    Article  CAS  Google Scholar 

  27. Cao, P, Liu, KW, Liu, XD, Sun, W, Wu, DL, Yuan, CQ, Bai, XQ, Zhang, C, “Antibacterial Properties of Magainin II Peptide onto 304 Stainless Steel Surfaces: A Comparison Study of Two Dopamine Modification Methods.” Colloids Surf. B., 194 111198 (2020)

    Article  CAS  Google Scholar 

  28. Zhang, B, Yan, Q, Yuan, SJ, Zhuang, XD, Zhang, F, “Enhanced Antifouling and Anticorrosion Properties of Stainless Steel by Biomimetic Anchoring PEGDMA-Cross-Linking Polycationic Brushes.” Ind. Eng. Chem. Res., 58 (17) 7107–7119 (2019)

    Article  CAS  Google Scholar 

  29. Kim, S, Gim, T, Kang, SM, “Versatile, Tannic Acid-Mediated Surface PEGylation for Marine Antifouling Applications.” ACS Appl. Mater. Interfaces, 7 (12) 6412–6416 (2015)

    Article  CAS  Google Scholar 

  30. Yang, WJ, Cai, T, Neoh, KG, Kang, ET, Dickinson, GH, Teo, S, Rittschof, D, “Biomimetic Anchors for Antifouling and Antibacterial Polymer Brushes on Stainless Steel.” Langmuir, 27 (11) 7065–7076 (2011)

    Article  CAS  Google Scholar 

  31. Lee, H, Dellatore, SM, Miller, WM, Messersmith, PB, “Mussel-Inspired Surface Chemistry for Multifunctional Coatings.” Science, 318 (5849) 426–430 (2007)

    Article  CAS  Google Scholar 

  32. Zhai, TT, Wang, CH, Gu, FJ, Meng, ZH, Liu, WF, Wang, YZ, “Dopamine/Polyethylenimine-Modified Silica for Enzyme Immobilization and Strengthening of Enzymatic CO2 Conversion.” ACS Sustain. Chem. Eng., 8 (40) 15250–15257 (2020)

    Article  CAS  Google Scholar 

  33. Zhou, L, Lai, YZ, Huang, WX, Huang, SJ, Xu, ZQ, Chen, J, Wu, D, “Biofunctionalization of Microgroove Titanium Surfaces with an Antimicrobial Peptide to Enhance Their Bactericidal Activity and Cytocompatibility.” Colloids Surf. B., 128 552–560 (2015)

    Article  CAS  Google Scholar 

  34. Cheng, W, Zeng, XW, Chen, HZ, Li, ZM, Zeng, WF, Mei, L, Zhao, YL, “Versatile Polydopamine Platforms: Synthesis and Promising Applications for Surface Modification and Advanced Nanomedicine.” ACS Nano, 13 8537–8565 (2019)

    Article  CAS  Google Scholar 

  35. Jena, G, George, RP, Philip, J, “Fabrication of A Robust Graphene Oxide-Nano SiO2-Polydimethylsiloxane Composite Coating on Carbon Steel for Marine Applications.” Prog. Org. Coat., 161 106462 (2021)

    Article  CAS  Google Scholar 

  36. Carbonaro, M, Nucara, A, “Secondary Structure of Food Proteins by Fourier Transform Spectroscopy in the Mid-Infrared Region.” Amino Acids, 38 (3) 679–690 (2010)

    Article  CAS  Google Scholar 

  37. Cao, P, Liu, D, Zhang, YB, Xiao, F, Yuan, CQ, Liang, F, Liu, XD, Zhang, C, “Dopamine-Assisted Sustainable Antimicrobial Peptide Coating with Antifouling and Anticorrosion Properties.” Appl. Surf. Sci., 589 153019 (2022)

    Article  CAS  Google Scholar 

  38. LaVoie, MJ, Ostaszewski, BL, Weihofen, A, Schlossmacher, MG, Selkoe, DJ, “Dopamine Covalently Modifies and Functionally Inactivates Parkin.” Nat. Med., 11 1214–1221 (2005)

    Article  CAS  Google Scholar 

  39. Tian, Y, Cao, YW, Wang, Y, Yang, WL, Feng, JC, “Realizing Ultrahigh Modulus and High Strength of Macroscopic Graphene Oxide Papers Through Crosslinking of Mussel-Inspired Polymers.” Adv. Mater., 25 (21) 2980–2983 (2013)

    Article  CAS  Google Scholar 

  40. Deng, YJ, Xia, LX, Song, GL, Zhao, Y, Zhang, YM, Xu, YQ, Zheng, DJ, “Development of a Curcumin-Based Antifouling and Anticorrosion Sustainable Polybenzoxazine Resin Composite Coating.” Compos. B. Eng., 225 109263 (2021)

    Article  CAS  Google Scholar 

  41. Kong, XX, Kawai, T, Abe, J, Iyoda, T, “Amphiphilic Polymer Brushes Grown from the Silicon Surface by Atom Transfer Radical Polymerization.” Macromolecules, 34 (6) 1837–1844 (2001)

    Article  CAS  Google Scholar 

  42. Wirde, M, Gelius, U, Nyholm, L, “Self-Assembled Monolayers of Cystamine and Cysteamine on Gold Studied by XPS and Voltammetry.” Langmuir, 15 (19) 6370–6378 (1999)

    Article  CAS  Google Scholar 

  43. Shi, HY, Xue, LX, Gao, A, Fu, YY, Zhou, QB, Zhu, LJ, “Fouling-Resistant and Adhesion-Resistant Surface Modification of Dual Layer PVDF Hollow Fiber Membrane by Dopamine and Quaternary Polyethyleneimine.” J. Membr. Sci., 498 39–47 (2016)

    Article  CAS  Google Scholar 

  44. Yoo, J, Birke, A, Kim, J, Jang, Y, Song, SY, Ryu, S, Kim, BS, Kim, BG, Barz, M, Char, K, “Cooperative Catechol-Functionalized Polypept(o)ide Brushes and Ag Na-noparticles for Combination of Protein Resistance and Antimicrobial Activity on Metal Oxide Surfaces.” Biomacromolecules, 19 (5) 1602–1613 (2018)

    Article  CAS  Google Scholar 

  45. Cao, CN, “On the Impedance Plane Displays for Irreversible Electrode Reactions Based on the Stability Conditions of the Steady-State-I. One State Variable Besides Electrode Potential.” Electrochim. Acta, 35 831–836 (1990)

    Article  CAS  Google Scholar 

  46. Wei, H, Ding, D, Wei, S, Guo, Z, “Anticorrosive Conductive Polyurethane Multiwalled Carbon Nanotube Nanocomposites.” J. Mater. Chem. A., 1 10805–10813 (2013)

    Article  CAS  Google Scholar 

  47. Chen, C, Qiu, S, Cui, M, Qin, S, Yan, G, Zhao, H, Wang, L, Xue, Q, “Achieving High Performance Corrosion and Wear Resistant Epoxy Coatings via Incorporation of Noncovalent Functionalized Graphene.” Carbon, 114 356–366 (2017)

    Article  CAS  Google Scholar 

  48. Sun, W, Wang, L, Wu, T, Wang, M, Yang, Z, Pan, Y, Liu, G, “Inhibiting the Corrosion-Promotion Activity of Graphene.” Chem. Mater., 27 2367–2373 (2015)

    Article  CAS  Google Scholar 

  49. Mansfeld, F, Jeanjaquet, SL, Kendig, MW, “An Electrochemical Impedance Spectroscopy Study of Reactions at the Metal/Coating Interface.” Corros. Sci., 26 (9) 735–742 (1986)

    Article  CAS  Google Scholar 

  50. Cui, M, Ren, S, Qin, S, Xue, Q, Zhao, H, Wang, L, “Noncovalent Functionalized Hexagonal Boron Nitride Nanoplatelets to Improve Corrosion and Wear Resistance of Epoxy Coatings.” RSC Adv., 7 44043–44053 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (No. 51905468 and 32002420), the Natural Science Foundation of Jiangsu Province (No. BK20190916), the Jiangsu Agriculture Science and Technology Innovation Found (CX(21)3162), ‘Blue Project’ of Yangzhou University, the Yangzhou City-Yangzhou University Cooperation Foundation (No. YZU201801) and Yangzhou University Graduate Student Research and Practice Innovation Program Funding Project (SJCX21_1559).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pan Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 450 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Wang, H., Dong, X. et al. Enhancing antibacterial and anticorrosion properties of 304 stainless steel surfaces: a multi-modification approach based on DA/PEI/SiO2/AMPs. J Coat Technol Res 20, 979–994 (2023). https://doi.org/10.1007/s11998-022-00718-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-022-00718-7

Keywords

Navigation