Skip to main content
Log in

Use of caffeine-containing MIL-100 (Fe) metal organic framework as a high-performance smart anticorrosion coating to protect stainless steel in 3.5 wt% NaCl solution

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

In this study, caffeine-loaded MIL-100 (Fe), caffeine@MIL-100 (Fe), was used as a smart corrosion-inhibiting coating to protect 308L-16 stainless steel (308L-16 SS). For this purpose, a thin film of the smart anticorrosion caffeine@MIL-100 (Fe) coating was deposited on an 308L-16 SS surface using a decanoic acid self-assembled monolayer. A significant encapsulation efficiency for caffeine loading in the MIL-100 (Fe) metal organic framework was obtained as 17.8%. The experimental data indicated that the caffeine@MIL-100 (Fe) coating would release the caffeine very rapidly as the solution became acidified around the corrosion sites and formed a protective layer to prevent from penetrating solution into the substrate. The EIS results and the Tafel plots showed that the proposed smart coating has an excellent performance to protect 308L-16 SS from corrosion in saline media. Based on the results, decreasing the solution pH would cause the MIL-100 (Fe) framework to decompose and subsequently release caffeine at the 308L-16 SS surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gurrappa, I, Yashwanth, IVS, “The Importance of Corrosion and the Necessity of Applying Intelligent Coatings for Its Control.” In: Intelligent Coatings for Corrosion Control, pp 17–58. Elsevier Inc. (2015)

  2. Xiang, T, Zheng, S, Zhang, M, et al. “Bioinspired Slippery Zinc Phosphate Coating for Sustainable Corrosion Protection.” ACS Sustain. Chem. Eng., 6 10960–10968. https://doi.org/10.1021/acssuschemeng.8b02345 (2018)

    Article  CAS  Google Scholar 

  3. Armelin, E, Alemán, C, Iribarren, JI, “Anticorrosion Performances of Epoxy Coatings Modified with Polyaniline: A Comparison Between the Emeraldine Base and Salt Forms.” Prog. Org. Coat., 65 88–93. https://doi.org/10.1016/j.porgcoat.2008.10.001 (2009)

    Article  CAS  Google Scholar 

  4. Ünal, HI, Zor, S, Erten, U, Gökergil, HM, “Effect of Ni-Co Alloy Coating on Corrosion Behavior of 0.8% C Steel.” Prot. Met. Phys. Chem. Surf., 51 600–606. https://doi.org/10.1134/S2070205115040322 (2015)

    Article  CAS  Google Scholar 

  5. Ding, R, Li, W, Wang, X, et al. “A Brief Review of Corrosion Protective Films and Coatings Based on Graphene and Graphene Oxide.” J. Alloys Compd., 764 1039–1055. https://doi.org/10.1016/j.jallcom.2018.06.133 (2018)

    Article  CAS  Google Scholar 

  6. Sheng, X, Ting, YP, Pehkonen, SO, “Evaluation of an Organic Corrosion Inhibitor on Abiotic Corrosion and Microbiologically Influenced Corrosion of Mild Steel.” Ind. Eng. Chem. Res., 46 7117–7125. https://doi.org/10.1021/ie070669f (2007)

    Article  CAS  Google Scholar 

  7. Cui, J, Yang, Y, Li, X, et al. “Toward a Slow-Release Borate Inhibitor to Control Mild Steel Corrosion in Simulated Recirculating Water.” ACS Appl. Mater. Interfaces, 10 4183–4197. https://doi.org/10.1021/acsami.7b15507 (2018)

    Article  CAS  Google Scholar 

  8. Betova, I, Bojinov, M, Laitinen, T, et al. “The Transpassive Dissolution Mechanism of Highly Alloyed Stainless Steels I. Experimental Results and Modelling Procedure.” Corros. Sci., 44 2675–2697. https://doi.org/10.1016/S0010-938X(02)00073-2 (2002)

    Article  CAS  Google Scholar 

  9. Motalebi, A, Nasr-Esfahani, M, Ali, R, Pourriahi, M, “Improvement of Corrosion Performance of 316L Stainless Steel via PVTMS/Henna Thin Film.” Prog. Nat. Sci. Mater. Int., 22 392–400. https://doi.org/10.1016/j.pnsc.2012.10.006 (2012)

    Article  Google Scholar 

  10. Lin, X, Peng, Q, Han, Y, et al. “Effect of Thermal Ageing and Dissolved Gas on Corrosion of 308L Stainless Steel Weld Metal in Simulated PWR Primary Water.” J. Mater. Sci. Technol., 96 308–324. https://doi.org/10.1016/j.jmst.2021.05.026 (2022)

    Article  Google Scholar 

  11. Ma, C, Han, EH, Peng, Q, et al. “Effect of Polishing Process on Corrosion Behavior of 308L Stainless Steel in High Temperature Water.” Appl. Surf. Sci., 442 423–436. https://doi.org/10.1016/j.apsusc.2017.12.190 (2018)

    Article  CAS  Google Scholar 

  12. Huang, GW, Xiao, HM, Fu, SY, “Electrical Switch for Smart pH Self-adjusting System Based on Silver Nanowire/Polyaniline Nanocomposite Film.” ACS Nano, 9 3234–3242. https://doi.org/10.1021/acsnano.5b00348 (2015)

    Article  CAS  Google Scholar 

  13. Dai, M, Picot, OT, Verjans, JMN, et al. “Humidity-Responsive Bilayer Actuators Based on a Liquid-Crystalline Polymer Network.” ACS Appl. Mater. Interfaces, 5 4945–4950. https://doi.org/10.1021/am400681z (2013)

    Article  CAS  Google Scholar 

  14. Kameda, M, Tezuka, N, Hangai, T, et al. “Adsorptive Pressure-Sensitive Coatings on Porous Anodized Aluminium.” Meas. Sci. Technol., 15 489–500. https://doi.org/10.1088/0957-0233/15/3/001 (2004)

    Article  CAS  Google Scholar 

  15. Cao, Z, Bian, Q, Chen, Y, et al. “Light-Responsive Janus-Particle-Based Coatings for Cell Capture and Release.” ACS Macro Lett., 6 1124–1128. https://doi.org/10.1021/acsmacrolett.7b00714 (2017)

    Article  CAS  Google Scholar 

  16. Wang, BL, Heng, L, Jiang, L, “Temperature-Responsive Anisotropic Slippery Surface for Smart Control of the Droplet Motion.” ACS Appl. Mater. Interfaces, 10 7442–7450. https://doi.org/10.1021/acsami.7b16818 (2018)

    Article  CAS  Google Scholar 

  17. Volpi, E, Foiadelli, C, Trasatti, S, Koleva, DA, “Development of Smart Corrosion Inhibitors for Reinforced Concrete Structures Exposed to a Microbial Environment.” Ind. Eng. Chem. Res., 56 5778–5794. https://doi.org/10.1021/acs.iecr.7b00127 (2017)

    Article  CAS  Google Scholar 

  18. Fu, J, Chen, T, Wang, M, et al. “Acid and Alkaline Dual Stimuli-Responsive Mechanized Hollow Mesoporous Silica Nanoparticles as Smart Nanocontainers for Intelligent Anti-corrosion Coatings.” ACS Nano, 7 11397–11408. https://doi.org/10.1021/nn4053233 (2013)

    Article  CAS  Google Scholar 

  19. Claes, B, Boudewijns, T, Muchez, L, et al. “Smart Metal-Organic Framework Coatings: Triggered Antibiofilm Compound Release.” ACS Appl. Mater. Interfaces, 9 4440–4449. https://doi.org/10.1021/acsami.6b14152 (2017)

    Article  CAS  Google Scholar 

  20. Campagnol, N, Van Assche, TRC, Li, M, et al. “On the Electrochemical Deposition of Metal-Organic Frameworks.” J. Mater. Chem. A, 4 3914–3925. https://doi.org/10.1039/c5ta10782b (2016)

    Article  CAS  Google Scholar 

  21. Li, H, Wang, K, Sun, Y, et al. “Recent Advances in Gas Storage and Separation Using Metal–Organic Frameworks.” Mater. Today, 21 108–121. https://doi.org/10.1016/j.mattod.2017.07.006 (2018)

    Article  CAS  Google Scholar 

  22. Kadioglu, O, Keskin, S, “Efficient Separation of Helium from Methane Using MOF Membranes.” Sep. Purif. Technol., 191 192–199. https://doi.org/10.1016/j.seppur.2017.09.031 (2018)

    Article  CAS  Google Scholar 

  23. Chen, X, Tong, R, Shi, Z, et al. “MOF Nanoparticles with Encapsulated Autophagy Inhibitor in Controlled Drug Delivery System for Antitumor.” ACS Appl. Mater. Interfaces, 10 2328–2337. https://doi.org/10.1021/acsami.7b16522 (2018)

    Article  CAS  Google Scholar 

  24. Guo, Z, Xu, H, Su, S, et al. “A Robust Near Infrared Luminescent Ytterbium Metal-Organic Framework for Sensing of Small Molecules.” Chem. Commun., 47 5551–5553. https://doi.org/10.1039/c1cc10897b (2011)

    Article  CAS  Google Scholar 

  25. Kang, YS, Lu, Y, Chen, K, et al. “Metal–Organic Frameworks with Catalytic Centers: From Synthesis to Catalytic Application.” Coord. Chem. Rev., 378 262–280. https://doi.org/10.1016/j.ccr.2018.02.009 (2019)

    Article  CAS  Google Scholar 

  26. Liu, W, Yan, Z, Zhang, Z, et al. “Bioactive and Anti-corrosive Bio-MOF-1 Coating on Magnesium Alloy for Bone Repair Application.” J. Alloys Compd., 788 705–711. https://doi.org/10.1016/j.jallcom.2019.02.281 (2019)

    Article  CAS  Google Scholar 

  27. Zhang, M, Ma, L, Wang, L, et al. “Insights into the Use of Metal-Organic Framework as High-Performance Anti-corrosion Coatings.” ACS Appl. Mater. Interfaces, 10 2259–2263. https://doi.org/10.1021/acsami.7b18713 (2018)

    Article  CAS  Google Scholar 

  28. Zacher, D, Shekhah, O, Wöll, C, Fischer, RA, “Thin Films of Metal–Organic Frameworks.” Chem. Soc. Rev., 38 1418–1429. https://doi.org/10.1039/b805038b (2009)

    Article  CAS  Google Scholar 

  29. Shustak, G, Domb, AJ, Mandler, D, “Preparation and Characterization of n-Alkanoic Acid Self-assembled Monolayers Adsorbed on 316L Stainless Steel.” Langmuir, 20 7499–7506. https://doi.org/10.1021/la036470z (2004)

    Article  CAS  Google Scholar 

  30. Raman, A, Gawalt, ES, “Self-assembled Monolayers of Alkanoic Acids on the Native Oxide Surface of SS316L by Solution Deposition.” Langmuir, 23 2284–2288. https://doi.org/10.1021/la063089g (2007)

    Article  CAS  Google Scholar 

  31. Li, W, Ren, B, Chen, Y, et al. “Excellent Efficacy of MOF Films for Bronze Artwork Conservation: The Key Role of HKUST-1 Film Nanocontainers in Selectively Positioning and Protecting Inhibitors.” ACS Appl. Mater. Interfaces, 10 37529–37534. https://doi.org/10.1021/acsami.8b13602 (2018)

    Article  CAS  Google Scholar 

  32. Tian, H, Li, W, Liu, A, et al. “Controlled Delivery of Multi-substituted Triazole by Metal-Organic Framework for Efficient Inhibition of Mild Steel Corrosion in Neutral Chloride Solution.” Corros. Sci., 131 1–16. https://doi.org/10.1016/j.corsci.2017.11.010 (2018)

    Article  CAS  Google Scholar 

  33. Zhang, F, Shi, J, Jin, Y, et al. “Facile Synthesis of MIL-100(Fe) Under HF-Free Conditions and Its Application in the Acetalization of Aldehydes with Diols.” Chem. Eng. J., 259 183–190. https://doi.org/10.1016/j.cej.2014.07.119 (2015)

    Article  CAS  Google Scholar 

  34. Guesh, K, Caiuby, CAD, Mayoral, Á, et al. “Sustainable Preparation of MIL-100(Fe) and Its Photocatalytic Behavior in the Degradation of Methyl Orange in Water.” Cryst. Growth Des., 17 1806–1813. https://doi.org/10.1021/acs.cgd.6b01776 (2017)

    Article  CAS  Google Scholar 

  35. Strzempek, W, Menaszek, E, Gil, B, “Fe-MIL-100 as Drug Delivery System for Asthma and Chronic Obstructive Pulmonary Disease Treatment and Diagnosis.” Microporous Mesoporous Mater., 280 264–270. https://doi.org/10.1016/j.micromeso.2019.02.018 (2019)

    Article  CAS  Google Scholar 

  36. Lee, JS, Jhung, SH, Yoon, JW, et al. “Adsorption of Methane on Porous Metal Carboxylates.” J. Ind. Eng. Chem., 15 674–676. https://doi.org/10.1016/j.jiec.2009.09.043 (2009)

    Article  CAS  Google Scholar 

  37. Mei, L, Wu, Y, Zhou, X, et al. “Adsorption Performance of MIL-100(Fe) for Separation of Olefin–Paraffin Mixtures.” J. Taiwan Inst. Chem. Eng., 70 74–78. https://doi.org/10.1016/j.jtice.2016.10.047 (2017)

    Article  CAS  Google Scholar 

  38. Chen, X, Zhang, Y, Zhao, Y, et al. “Encapsulating Pt Nanoparticles through Transforming Fe3O4 into MIL-100(Fe) for Well-Defined Fe3O4@Pt@MIL-100(Fe) Core-Shell Heterostructures with Promoting Catalytic Activity.” Inorg. Chem., 58 12433–12440. https://doi.org/10.1021/acs.inorgchem.9b02114 (2019)

    Article  CAS  Google Scholar 

  39. Mileo, PGM, Ho Cho, K, Park, J, et al. “Unraveling the Water Adsorption Mechanism in the Mesoporous MIL-100(Fe) Metal-Organic Framework.” J. Phys. Chem. C, 123 23014–23025. https://doi.org/10.1021/acs.jpcc.9b06228 (2019)

    Article  CAS  Google Scholar 

  40. De Souza, FS, Gonçalves, RS, Spinelli, A, “Assessment of Caffeine Adsorption Onto Mild Steel Surface as an Eco-friendly Corrosion Inhibitor.” J. Braz. Chem. Soc., 25 81–90. https://doi.org/10.5935/0103-5053.20130270 (2014)

    Article  CAS  Google Scholar 

  41. De Souza, FS, Giacomelli, C, Gonçalves, RS, Spinelli, A, “Adsorption Behavior of Caffeine as a Green Corrosion Inhibitor for Copper.” Mater. Sci. Eng. C, 32 2436–2444. https://doi.org/10.1016/j.msec.2012.07.019 (2012)

    Article  CAS  Google Scholar 

  42. Simon, MA, Anggraeni, E, Soetaredjo, FE, et al. “Hydrothermal Synthesize of HF-Free MIL-100 (Fe) for Isoniazid-Drug Delivery.” Sci. Rep., 9 1–11. https://doi.org/10.1038/s41598-019-53436-3 (2019)

    Article  CAS  Google Scholar 

  43. Duan, S, Li, J, Liu, X, et al. “HF-Free Synthesis of Nanoscale Metal–Organic Framework NMIL-100 (Fe) as an Efficient Dye Adsorbent.” ACS Sustain. Chem. Eng., 4 3368–3378. https://doi.org/10.1021/acssuschemeng.6b00434 (2016)

    Article  CAS  Google Scholar 

  44. De Taeye, J, Zeegers-Huyskens, T, “Infrared Spectrum of Caffeine and Its Hydrochloride Dihydrate.” Spectrosc. Lett., 19 299–310. https://doi.org/10.1080/00387018608069240 (1986)

    Article  Google Scholar 

  45. Lv, H, Zhao, H, Cao, T, et al. “Efficient Degradation of High Concentration Azo-Dye Wastewater by Heterogeneous Fenton Process with Iron-Based Metal-Organic Framework.” J. Mol. Catal. A Chem., 400 81–89. https://doi.org/10.1016/j.molcata.2015.02.007 (2015)

    Article  CAS  Google Scholar 

  46. Lowell, S, Shields, JE, Thomas, MA, et al., Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. Springer, Berlin. . https://doi.org/10.1007/978-1-4020-2303-3 (2006)

    Book  Google Scholar 

  47. Zheng, H, Zhang, Y, Liu, L, et al. “One-pot Synthesis of Metal-Organic Frameworks with Encapsulated Target Molecules and Their Applications for Controlled Drug Delivery.” J. Am. Chem. Soc., 138 962–968. https://doi.org/10.1021/jacs.5b11720 (2016)

    Article  CAS  Google Scholar 

  48. Cunha, D, Ben Yahia, M, Hall, S, et al. “Rationale of Drug Encapsulation and Release from Biocompatible Porous Metal-Organic Frameworks.” Chem. Mater., 25 2767–2776. https://doi.org/10.1021/cm400798p (2013)

    Article  CAS  Google Scholar 

  49. Tukur, H, Yonghao, L, “A Review on the Behavior of 308L Cladding Material and Their Corrosion in Nuclear Power Plants.” Int. J. Electrochem. Sci., 15 1005–1021. https://doi.org/10.20964/2020.01.67 (2020)

    Article  CAS  Google Scholar 

  50. Génin, JMR, Ruby, C, Géhin, A, Refait, P, “Synthesis of Green Rusts by Oxidation of Fe(OH)2, Their Products of Oxidation and Reduction of Ferric Oxyhydroxides; Eh-pH Pourbaix Diagrams.” Comptes Rendus - Geosci., 338 433–446. https://doi.org/10.1016/j.crte.2006.04.004 (2006)

    Article  CAS  Google Scholar 

  51. Estrada-Villegas, GM, González-Pérez, G, Bucio, E, “Adsorption and Release of Caffeine from Smart PVDF Polyampholyte Membrane.” Iran Polym. J. (English Ed.), 28 639–647. https://doi.org/10.1007/s13726-019-00730-6 (2019)

    Article  CAS  Google Scholar 

  52. Jadhav, SA, “Self-Assembled Monolayers (SAMs) of Carboxylic Acids: An Overview.” Cent. Eur. J. Chem., 9 369–378. https://doi.org/10.2478/s11532-011-0024-8 (2011)

    Article  CAS  Google Scholar 

  53. Biemmi, E, Scherb, C, Bein, T, “Oriented Growth of the Metal Organic Framework Cu3(BTC)2(H2O)3·xH2O Tunable with Functionalized Self-Assembled Monolayers.” J. Am. Chem. Soc., 129 8054–8055. https://doi.org/10.1021/ja0701208 (2007)

    Article  CAS  Google Scholar 

  54. Mohammadpour, Z, Zare, HR, “Structural Effect of Different Carbon Nanomaterials on the Corrosion Protection of Ni-W Alloy Coatings in Saline Media.” New J. Chem., 42 5425–5432. https://doi.org/10.1039/c8nj00030a (2018)

    Article  CAS  Google Scholar 

  55. Mohammadpour, Z, Zare, HR, “The Effect of Graphene Oxide Nanosheets (GONSs) and Graphene Oxide Quantum Dots (GOQDs) on Corrosion Resistance Enhancement of Ni–Fe Nanocomposite Coatings.” JOM, 72 4495–4504. https://doi.org/10.1007/s11837-020-04244-y (2020)

    Article  Google Scholar 

  56. Zhou, Y, Ma, Y, Sun, Y, et al. “Robust Superhydrophobic Surface Based on Multiple Hybrid Coatings for Application in Corrosion Protection.” ACS Appl. Mater. Interfaces, 11 6512–6526. https://doi.org/10.1021/acsami.8b19663 (2019)

    Article  CAS  Google Scholar 

  57. Daufin, G, Pagetti, J, Labbe, JP, Michel, F, “Pitting Initiation on Stainless Steels: Electrochemical and Micrographic Aspects.” Corrosion, 41 533–539. https://doi.org/10.5006/1.3583024 (1985)

    Article  CAS  Google Scholar 

  58. Suleiman, MI, Ragault, I, Newman, RC, “The Pitting of Stainless Steel Under a Rust Membrane at Very Low Potentials.” Corros. Sci., 36 479–483. https://doi.org/10.1016/0010-938X(94)90038-8 (1994)

    Article  CAS  Google Scholar 

  59. Pardo, A, Otero, E, Merino, MC, et al. “Influence of pH and Chloride Concentration on the Pitting and Crevice Corrosion Behavior of High-Alloy Stainless Steels.” Corrosion, 56 411–418. https://doi.org/10.5006/1.3280545 (2000)

    Article  CAS  Google Scholar 

  60. Mohammadpour, Z, Zare, HR, “A Comparative Study on the Effect of MWCNT as Reinforcement on the Corrosion Parameters of Different Ni–W/MWCNTS Nanocomposite Coatings in Various Corrosive Media.” Met. Mater. Int., 24 761–772. https://doi.org/10.1007/s12540-018-0060-4 (2018)

    Article  CAS  Google Scholar 

  61. Abreu, CM, Cristóbal, MJ, Losada, R, et al. “Long-Term Behaviour of AISI 304L Passive Layer in Chloride Containing Medium.” Electrochimica Acta, 51 1881–1890. https://doi.org/10.1016/j.electacta.2005.06.040 (2006)

    Article  CAS  Google Scholar 

  62. da Trindade, LG, Gonçalves, RS, “Evidence of Caffeine Adsorption on a Low-Carbon Steel Surface in Ethanol.” Corros. Sci., 51 1578–1583. https://doi.org/10.1016/j.corsci.2009.03.038 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid R. Zare.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10099 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhavan-Bahabadi, Z., Zare, H.R. & Mohammadpour, Z. Use of caffeine-containing MIL-100 (Fe) metal organic framework as a high-performance smart anticorrosion coating to protect stainless steel in 3.5 wt% NaCl solution. J Coat Technol Res 20, 883–898 (2023). https://doi.org/10.1007/s11998-022-00709-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-022-00709-8

Keywords

Navigation