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Abstract We use deep learning (DL) algorithms for
the phenomenological classification of Saffman-Taylor-
instability-driven spontaneous pattern formation at the
liquidmeniscus in the fluid splitting in a gravure printing
press. The DL algorithms are applied to high-speed
video recordings of the fluid splitting process between
the rotating gravure cylinder and the co-moving planar
target substrate. Depending on rotation velocity or

printing velocity and gravure raster of the engraved
printing cylinder, a variety of transient liquid wetting
patterns, e.g., a raster of separate drops, viscous fingers,
or more complex, branched liquid bridges appear in the
printing nip.We discuss how these patterns are classified
with DL methods, and how this could serve the identi-
fication of different hydrodynamic flow regimes in the
nip, e.g., point or lamella splitting.

Keywords Gravure printing, Artificial intelligence,
Hydrodynamic pattern formation, Viscous fingering,
Pattern recognition
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Introduction

Printing, as a solvent-based surface technology, is one
of the backbones of contemporary, highly productive,
and cost-efficient mass production of packaging.1

Typically, liquid wetting patterns are deposited on
the substrate, ranging in size from plain liquid films to
high-resolution ink patterns shaped on the 20-lm scale.
Liquid films have a thickness in the 1-lm range,
typically. The deposited liquid is subsequently solidi-
fied and dried. Printing is not restricted to graphical art
applications. Rather, layers of functional inks also
protect the substrate from water imbibition and pen-
etration, ultraviolet radiation, and microorganisms.
Plain surfaces can be furnished with an appealing
design, customer information, and branding features.
Recent research on printing technology fosters the
minimization of energy usage and consumption of
valuable resources. At the same time, paper and plastic
foils are equipped with additional functions, trans-
forming it to an economical and ecological superior
packaging alternative for nutrition, medicals, and
sensitive technical goods. Substrates can be endowed
with adhesives, laminated to multilayer stacks, and
equipped with printed electronics add-ons, as seen in
the books by Klauk2, 3 and Nisato et al.4 Moreover, by
its economical use of materials, printing technology
and printed products are an indispensable part of
material recycling concepts, and help to close the reuse
cycle of valuable natural and synthetic materials.

However, transfer and splitting of the printing fluid
in a large-area printing unit, either operating according
to the gravure, flexographic, or offset lithographic
principle, is hydrodynamically unstable.5 The ink
splitting process in the nip between cylinder and
substrate tends to superimpose a ribbing pattern to
the printing layout. This is due to the viscous fingering
instability, which occurs when a less viscous fluid, e.g.,
air, supplants a more viscous one, e.g., ink, from a
cavity. Saffman and Taylor6 studied this phenomenon
in a Hele-Shaw cell, where air or a fluid of small
viscosity supplanted a more viscous fluid from a
shallow cuvette. When the meniscus moved between
the bottom and top plate, see Fig. 1, it developed
finger-like structures. This left a branched network of
liquid bridges in the cuvette which decorated the top
and bottom plates all the way along its walls.

The same phenomenon occurs in a portion of liquid
located in the wedge between a rotating printing
cylinder and a substrate plate on which the cylinder
is rolling with some velocity. Air and liquid fingers of
characteristic width are spontaneously created. They
leave a stripy ink pattern on the surfaces, rather than a
liquid layer of constant thickness, which would be the
desired result in coating and printing applications. The
technical problem is even worse, as the finger forma-
tion triggers secondary pattern formation effects:8

dewetting of the ink from the surface in case of a
finite wetting angle, Marangoni drag driven by the

evaporation of volatile ink components. These effects
amplify the finger pattern and may create even new,
more complex patterns which persist on the printout
after ink solidification and drying. All this is subsumed
as the ‘ribbing defect’ in the graphic industry. The
initial length scale of the pattern is on the order of
100 lm, and is usually selected by the primary Saff-
man-Taylor instability. As a matter of fact, the prob-
lem is controlled using rastering methods when
printing text and images. The human eye cannot
resolve the ribbing pattern. However, in functional
printing or glossy finishing applications dense and very
smooth layers are mandatory. Here, the problem of
ribbing is evident.

There have been numerous studies on the viscous
fingering phenomenon in past decades for the rotating
cylinder geometry. Gaskell et al.9 studied the ink
splitting in gravure roll coating. A linear stability
analysis of the liquid meniscus at the onset of finger
formation goes back to Carvalho and Scriven.10

Figure 2 shows a schematic of the gravure cylinder
setup, indicating the two different ink splitting regimes
of point and lamella splitting which have been identi-
fied by Hübner,11 creating characteristic dot and finger
patterns, respectively. Systematic measurements of the
instability and its phenomenology for the particular
problem of ultrathin liquid films have been done by
Bornemann et al.12 and by Kitsomboonloha et al.13 All
this has contributed to our fundamental understanding
of the instability. However, the full phenomenology of
pattern formation in the gravure press is much richer
and still offers surprising features. Evidently, stochastic
aspects cannot be ignored, showing that the pattern
details are seeded by noise. One is tempted to suspect a
complex sequence of critical bifurcations which are
characteristic for complex, nonlinear interacting sys-
tems. It appears promising to apply the hierarchical
complexity concepts of Glansdorff and Prigogine14 to

Ink

Outlet

Parallel plates

Air
Inlet

Interface

Fig. 1: Hele-Shaw cuvette. A higher viscous liquid, here
ink, is replaced by a lower viscous fluid, here air. The
interface between ink and air is unstable and air fingers are
formed. Modified from Vicsek7
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pattern formation. Furthermore, we would also like to
refer to the phenomenological study of Sahimi15 on
viscous finger phenomena in porous media, and on the
dynamic-system view of Casademunt.16 In a former
study on flexographic printing,17 we obtained evidence
that the nonlinear liquid–structure interaction in the
nip does indeed have a substantial impact on scaling
properties of the pattern structure. Elastic deformation
of the printing cylinder, nonlinear rheology of complex
printing inks as well as possible cavitation of gas
bubbles offer plenty of possibilities to implement
models with delicate nonlinear dynamics and pattern
formation mechanisms in the printing nip. In this
scheme, the printing process could be considered as a
self-stabilizing dynamical system, with technically use-
ful process windows which correspond to stable dynam-
ical fixed points in parameter space, and with Hopf
bifurcations defining the onset of pattern evolution.
This could be achieved in a systematical manner as
described by Cross and Hohenberg.18 Such models
could also explain further pattern formation regimes
apart from point and lamella splitting, which are
distinct in their symmetry and local correlation. How-
ever, to the knowledge of the authors, no such
approach has ever been successfully elaborated, nor
have adequate order parameters been identified.
Recent printing experiments which studied viscous
fingering at velocities of up to several m/s instead of
cm/s offered encouraging results which, however, are
still waiting for a proper understanding.

Novel insight was gained by the unique experiments
of Schäfer et al.19,20 who was able to prepare a large set
of high-speed video recordings of the microscopic,
highly dynamic liquid–air interface in the nip of a
rapidly rotating gravure printing press. The parameter

space of possible machine settings and printing cylin-
der gravure patterns was deliberately narrowed down
to settings which appeared interesting with respect to
pattern formation. The videos show the vigorous
dynamics of liquid bridges and filaments forming out
of the expanding liquid meniscus between the wetted
rotating cylinder and the co-moving tangent planar
surface. A surprising variety of distinct phenomena was
found, with partly simple, but also with multiply
branched liquid bridges. Some of them inherited their
length scale from the gravure pattern of the cylinder,
whereas others appeared to be quite independent.
Most details of these liquid patterns were transient, i.e.,
they were extincted by capillary leveling and relaxation
when the substrate had left the nip. For this reason, the
full variety of structures could not be recognized in the
finished, dried printouts any more. However, within
the phase of fluid splitting, meniscus dynamics appar-
ently was in a steady-state situation, and continuously
generated the characteristic patterns as long as the
process was kept running. The future task here is to
fathom the parameter space for a map of distinguish-
able dynamic regimes. There is broad consent that all
this is principally related with the viscous finger
instability observed by Saffman and Taylor6 in their
famous cuvette experiment of the retracting liquid
meniscus. However, a complex dynamic system such as
the printing nip obviously involves a much more
sophisticated spontaneous pattern formation physics.

Based on the video data set of Schäfer,21 we applied
deep learning (DL) concepts for assigning the patterns
to different classes. Our goal was to implement a tool
which is capable to identify and to distinguish the
distinct regimes of pattern formation by scale, auto-
correlation, and symmetry. DL-enhanced hydrody-

(a)

(b)

Diverging side
of nip

Converging side

Substrate

Gravure cell

Gravure cylinder

of nipNip

Fig. 2: Point and lamella splitting in the gravure printing nip. In the point splitting regime (a), there is no interaction of the
gravure cells and each gravure cell deposits its printing fluid content onto the substrate. In the lamella splitting regime (b), a
closed meniscus of printing ink forms and the liquid–air interface at the diverging side of the nip may become unstable due
to viscous fingering and leads to a ribbing pattern on the substrate
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namical models including instabilities are presently
fostered by Brunton et al.22 Typical applications of
such models are related to the exploitation of mineral
oil reservoirs, see Magzymov et al.23 where viscous
fingering instabilities at the subterrestrial oil–water
interface are an important limiting factor for the yield
of the oil sources.15

In this article, we are focusing more on the
variability of the patterns and to recognize their
particular features. DL methods are particularly useful
to filter out long-ranged correlations from a huge and
noisy set of image data. As a further benefit, the DL
algorithms also exploit time correlations in subsequent
frames of the video records of the patterns. This is
important here, because the hydrodynamics of the nip
is in a steady-state condition, but the individual
recorded patterns are transient. The aim is to establish
a method to complete the map of pattern formation
regimes beyond Hübner’s11 categories of point and
lamella splitting. It appears that the interesting features
can be observed in the parameter range close to the
transition between these two cases. The long-term aim
is to fit this map in a framework of pattern formation
order parameters, and to make it accessible to the tools
of modal stability analysis and bifurcation theory.

As our initial effort, we trained a recurrent neural
network (RNN) and a 3-dimensional convolutional
neural network (3D-CNN) with selected videos where
the type of pattern could be unambiguously identified.
We then studied so-called class activation maps
(CAMs) of the 3D-CNN, a graphical illustration of
structure features which were most relevant for the
class assignment by the neural network (NN). As
already mentioned we focused on the well-established
phenomenology of the transition between pattern
formation phenomena of a gravure printing press
known as point and lamella splitting.

In ‘‘Experimental’’ section, we explain the experi-
mental gravure printing setup of Schäfer20 and his
video recordings of the finger instability. ‘‘Data anal-
ysis’’ section shows how we prepared the video data,
and how the DL algorithms have been applied. The
results of the DL assessment are shown in ‘‘Results’’
section.

Experimental

A large number of high-speed video recordings of the
printing nip from Schäfer21 served as a data set for this
study. Schäfer built a unique, optically accessible
rotogravure printing machine which he used to analyze
highly dynamic fluid splitting phenomena and transient
pattern formation in situ for the first time. Below we
briefly present Schäfer’s experimental setup. This is
crucial in order to understand the distinct pattern
formation occurring in the resulting high-speed video
data set.

Experimental setup with high-speed camera

The experimental setup from Schäfer mainly consisted
of a modified laboratory sheet-fed rotogravure printing
machine, a high-power white light emitting diode
(LED) light source, a beam splitter for confocal light
input, and a high-speed camera Photron Fastcam SA-4,
see Fig. 3. The core of the modified machine was an
optically accessible substrate carrier, which replaced
the standard opaque substrate carrier. Schäfer used a
printing cylinder with 120 electromechanically en-
graved quadratic test fields (13 mm x 13 mm) with
different raster frequencies (40–140 lines/cm) and
tonal values (5–100 %) at a constant raster angle of
45o. This enabled him to study the impact of the
underlying gravure raster pattern and transfer volume
on transient pattern formation in the printing nip.
Additionally, the printing velocity (0.5–1.5 m/s) was
varied in the experiments. Ethanol was used as the
printing fluid. Printing trials with 185 different param-
eter combinations of raster frequency, tonal value, and
printing velocity were performed three times each,
resulting in 555 high-speed video recordings. A sim-
plified sketch of the setup as well as an exemplary
video snapshot with annotations is presented in Fig. 4.
For more details of the experimental setup see Schäfer
et al.19

Variety of observed patterns

Schäfer’s high-speed video recordings revealed a
remarkable variability of dynamic liquid bridge and
wetting patterns, see Figs. 4 and 5. The video record-
ings display the rolling line where the printing cylinder
is in direct contact with the substrate. In the case of
lamella splitting, this line was enclosed in a fluid seam,
a few millimeter in width, extending along the whole
height of the engraved test field on both sides of that
line. The quadratic test field is the region of interest
(ROI) in the videos. The fluid menisci on the

Beam splitter

Substrate
carrier

Gravure
cylinder

High-power white LED

High-
speed

camera

Fig. 3: Experimental high-speed imaging setup of Schäfer
for the in situ analysis of fluid splitting in gravure printing.
The yellow double-arrow marks the diameter of the used
gravure cylinder which is 220 mm
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converging and on the diverging side had clear optical
contrast by the light refraction at the liquid–air
interface. While the meniscus situated on the converg-
ing side of the nip (‘converging meniscus’) was an
almost straight border and oriented parallel to the
cylinder axis, the meniscus on the diverging side
(‘diverging meniscus’) showed characteristic corruga-
tion into more or less periodic finger-like structures
with periods that were typically in the range of a few
100 lm. The finger frequency was especially dependent
on the raster frequency and independent from the
printing velocity and the mean gravure cell volume.20

Analogous to the finger phenomenon at the retracting
meniscus in the Hele-Shaw cuvette experiments of
Saffman and Taylor, the fingers were the effect of air
intrusions penetrating into the nip. In certain cases,

extended branched dendrite-like patterns evolved, and
even complex, disconnected structures were observed.
As the air intrusions were always topologically inter-
connected, the tips of the air fingers were apparently in
a steady pressure equilibrium with the air outside. For
this reason, we can exclude gas bubble cavitation as the
origin of any air volume in the seam. The liquid phase,
however, was only occasionally connected. Rather,
isolated, mostly corrugated, and irregularly shaped
liquid structures were detaching from the liquid seam,
also drop-like structures. Each such structure was the
footprint of liquid bridges between the substrate and
the gravure cylinder surface.24 In certain cases, the
liquid structures (e.g., drops and fingers) coincided
with the gravure raster of the printing cylinder, but
there were also regimes with a larger drop and finger

(a)

High-speed
camera

Substrate

Nip

Gravure cylinder

y

y

Finger
instabilities

Diverging

Converging

ROI
Test field /

Fluid seam

R
ol

lin
g 

Li
ne

10 mm

meniscus

meniscus

x

z

z x

(b)

Fig. 4: Simplified sketch of Schäfer’s high-speed imaging setup (a) and exemplary high-speed video snapshot from the
Schäfer video data set with annotations (b). The snapshot was enhanced in contrast and brightness for better visibility. In
the case of lamella splitting, the rolling line is enclosed in a fluid seam. The converging meniscus is stable whereas the
diverging meniscus becomes instable and forms finger instabilities of different kinds of shapes and sizes depending on the
chosen printing parameters. The quadratic engraved test field in the middle of the snapshot is the region of interest (ROI)
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size than the gravure pattern, and periodic finger
patterns of an integer multiple width of the gravure
raster appeared. A frequent lock-in of the finger width
at three or four times the raster width was observed
even when the printing velocity was changed, and was
apparent to the bare eye. In particular, extended finger
patterns were either aligned with or, alternatively,
inclined against the printing direction, and more
correlated with the skew axes of the gravure raster.
Thus, the transient patterns showed a considerable

variety of regimes in meniscus dynamics, which we
consider to deserve a phenomenological classification.

Accordingly, a complementary, extended-scale view
on the classification should be useful which considers
the spatial correlation of these patterns, revealing point
symmetries in the autocorrelation function and in the
spectral Fourier transform. We have already studied
the pattern formation with 1D Fourier methods
in reference (25). However, there are more options
to detect hidden periodicities in a stochastic 2D

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

5 mm 5 mm 5 mm

5 mm 5 mm 5 mm

5 mm 5 mm 5 mm

Fig. 5: Nine exemplary snapshots from the Schäfer video data set, cropped to the ROI. The snapshots were all taken from
the same moment of the fluid splitting process and were enhanced in contrast and brightness for better visibility. A variety
of patterns, from finger-like liquid bridges to dot-like patterns can be observed. Only an experienced observer can
distinguish between several predefined pattern classes: Lamella splitting regime (LSR) (a-e), mixed regime (MR) (f), and
point splitting regime (PSR) (g-i). A list of the videos used for exemplary snapshots in this paper can be found in Table 5 in
Appendix
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pattern. Folding such functions with representations of
2D crystallographic, i.e., of the planar uniform discon-
tinuous groups,26 extracts the particular weights of
these symmetries from the patterns. These weights and
their variation with printing parameters could serve as
order parameters of symmetry breaking transitions,
and help to identify specific regimes of pattern forma-
tion. NNs could be efficient in recognizing such
symmetries in the highly stochastic image data, and
one might also train them by use of the respective
representation functions.

Data analysis

Fundamentals of DL

Artificial intelligence (AI) is one of today’s worldwide
major topics of interest. Self-driving cars, face recog-
nition, and predictive maintenance are just some
familiar examples for applications of AI in industry.
A subdomain of AI is machine learning (ML).
According to Zhou, ML ‘is the technique that improves
system performance by learning from experience via
computational methods [...] and the main task of ML is
to develop learning algorithms that build models from
data’.27 ML problems can be divided into three classes:
supervised learning, unsupervised learning, and rein-
forcement learning. In supervised learning which is for
example used for regression or classification tasks,
labeled data is needed on which the ML model is
trained. For example, to classify certain classes of iris
flowers according to the length and width of their
sepals and petals as given in the famous iris data set,28

the class or the so-called label needs to be known to
train the ML model. In contrast, unsupervised learning
does not need labeled data. For example, clustering
tasks can be performed using unsupervised learning.
Reinforcement learning cannot be considered as
supervised or unsupervised, since it does not include
labels but it involves taking feedback from the envi-
ronment.

DL is a subdomain of ML. We speak of DL, when
deep neural networks (DNNs) are used to, e.g., cluster
or classify the data. DNNs are NNs with many layers of
neurons and they try to mimic the behavior of
biological NNs, e.g., the human brain. In this study,
we use DL for the classification of videos showing
different classes of hydrodynamic pattern formation.
There are many well-known architectures for DNNs
which are available from online repositories. For image
classification, convolutional neural networks (CNNs)
are commonly used. They incorporate so-called con-
volutional layers in their architecture which detect and
enhance certain features of the input image, e.g., edges,
horizontal lines, circles, or much more complex shapes.
The extracted features are fed to subsequent NN-
layers. In the case of pretrained CNNs, the convolu-
tional layers have already been trained on well-known

public data sets like ImageNet.29 There is a difference
between DNNs used for image classification and those
used for video classification. Since videos are a
chronological sequence of single images, DNNs de-
signed for video classification take the temporal
relationship between the images into account.

A DL model needs to be trained before it can be
used for the intended purpose, e.g., for image classi-
fication. The training duration is specified by the
number of training epochs. One training epoch
describes one cycle in the process diagram in Fig. 6.
First, the DL model receives input data. Then, the
model makes predictions and the predictions are
compared with the labels of the input data. According
to the chosen loss function (e.g., crossentropy loss), a
loss value is calculated and according to the chosen
optimizer (e.g., Adam), the weights of the DL model
are updated. The updated DL model again makes
predictions and the next training epoch starts.

In order to effectively train a DL model, a large
enough data set is needed, the so-called training data
set. In addition, a test data set, and possible, also a
validation data set for hyperparameter tuning are
needed. Hyperparameters describe the parameters that
can be changed during the training process, e.g.,
number of epochs and learning rate. The test data set
is used to evaluate whether the DL model was able to
generalize or if it rather learned the data by heart. The
latter is called overfitting which leads to a poor
performance of the DL model on unseen data even
though it performed well on the training data set.
Should overfitting occur, e.g., hyperparameters or even
the architecture of the DL model have to be adjusted
iteratively. This iteration process yields a final trained
DL model. The performance of this final DL model is
tested on the test data set which has not been involved
in the iteration process. A validation data set is only
necessary if the model’s hyperparameters have been
tuned iteratively. To avoid overfitting, several tech-
niques are generally used. One is called data augmen-
tation which is used to increase the variety of the data
set. Examples for data augmentation are rotation,
translation, or mirroring of the images from the data

Labels

Input data

Training cycle

Model Loss

Loss value

Optimizer

Weight

Predictions

updates

function

Fig. 6: Training of DL models. Modified from Avendi33
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set before feeding it to the DL model. Another
common technique to avoid overfitting is data set
balancing. An image data set is called unbalanced if
there is a large discrepancy between the number of
images for every class. To obtain a balanced data set,
e.g., some images of over-represented classes can be
ignored from the data set or a so-called cost-sensitive
training can be performed. Figure 6 shows the general
concept of training DL models. In the case of cost-
sensitive training, the loss function is weighted accord-
ing to the representation of the classes. The weights are
higher for under-represented classes. The performance
of DNNs can be assessed using different approaches,
for example:

1. Confusion matrix
2. Accuracy
3. CAMs

A confusion matrix shows true positive (TP), true
negative (TN), false positive (FP), and false negative
(FN) predictions in a matrix. Table 1 shows a confusion
matrix for a binary classification problem.30 Often, it is
also interesting to know with which confidence a DL
model has predicted a class. A prediction results from
the class probability for each of the two classes in case
of a binary classification problem. The class which is
attributed to the higher probability is the predicted
class. As an example assume that an image of a dog
was classified with a class probability of 95 % as a dog
and with a class probability of only 5 % as a cat. Thus,
the model’s prediction is ‘dog’ with the DL model
being very sure about its prediction. If the class
probabilities were 55 % for dog and 45 % for cat,
the prediction would also be ‘dog’ but the model would
be rather unsure about its prediction. Based on the TP,
TN, FP, and FN values, the so-called accuracy can be
calculated [equation (1)]:31

Accuracy ¼ TP þ TN

TP þ FP þ FN þ TN
: ð1Þ

The accuracy of a DL model can be calculated for the
training, the validation and the test data set. We refer
to training accuracy, validation accuracy, and test
accuracy. The higher the accuracy, the better the
performance of a DL model at least in the case of a
balanced data set, i.e., when there is a similar number
of samples for each class. CAMs are heat maps that

reveal the areas of an input image that were most
important for the classification decision of the DL
model.32 The warmer the color, the more important is
the area for the classification decision. If applicable,
the heat maps can be overlaid with the original image.
For further reading on ML and DL, we suggest the
textbooks from Zhou,27 Joshi,31 and Rebala et al.,30

from which much of the information in this subsection
is taken.

Computer vision workflow

Aim

The aim of our computer vision workflow was to train
and test DL models on the video data set from
Schäfer,21 which comprises 555 qualitatively labeled,
in situ high-speed videos of fluid splitting in gravure
printing. The goal for the DL models was to learn to
classify three different regimes of pattern formation:

1. Lamella splitting regime (LSR)
2. Point splitting regime (PSR)
3. Mixed regime (MR)

According to the metadata of the video data set and
personal communication with Schäfer, 345 videos are
labeled with ‘1,’ which stands for videos showing the
evolution of transient finger-like patterns in the print-
ing nip (i.e., LSR), see Fig. 5a–5e. 138 videos are
labeled with ‘0,’ which describes dot-like pattern
formation (i.e., PSR), see Fig. 5g–5i. The PSR includes
dot-like pattern formation with only a partial transfer
of fluid (Fig. 5h) or no pattern formation due to
insufficiently transferred ink volume from the gravure
cells (Fig. 5i). The rest of the data set, 72 videos, is
labeled with ‘0.5,’ meaning that the videos show mixed
pattern formation of finger-like and dot-like patterns
(i.e., MR), see Fig. 5f.

Computer vision framework

As a programming language for our computer vision
workflow, we used Python 3.8.6 as well as several
Python libraries for image processing, deep learning,
and other tasks. All used libraries are depicted in
Table 2. As a source code editor, Microsoft Visual
Studio Code version 1.52.0 was used. Training and
testing of all DL models were performed on a desktop
computer with installed Microsoft Windows 10 Pro
Version 1909 using an Intel Core i5-4460 3.2 GHz
central processing unit (CPU) and 16 GB of DDR3-
RAM. However, the possibility of parallel computing
on a graphics processing unit (GPU) was implemented
in the source code for further use. The complete source
code used for this research as well as further research
data can be downloaded from https://doi.org/10.48328/
tudatalib-938.

Table 1: Confusion matrix for a binary classification
problem

Model prediction

Positive Negative

True label Positive TP FN
Negative FP TN

Modified from Rebala et al.30
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DL data set creation

The high-speed videos from the Schäfer data set are
provided in a raw image data format (MRAW) plus
their metadata files (CIH). MRAW and CIH are native
data formats from Photron high-speed cameras (Pho-
tron Deutschland GmbH, Reutlingen, Germany). The
videos were recorded in grayscale at a bit depth of
12 bit and have a resolution of 512 px x 768 px at
49.6 lm/px. The length of the videos varies depending
on the printing velocity. It is important to note that the
videos recorded at different printing velocities do not
start at the same exact moment of the printing process.
The Python library pyMRAW was used for importing
the grayscale videos and saving them as single RGB
images in a PNG data format with a bit depth of 8 bit
for each channel and lossless compression. However,
we needed to alter the library pyMRAW before using
it so that 12 bit videos could be imported. The original
library supports only 8 and 16 bit data formats. A
conversion from grayscale to RGB was necessary since
our DL models expected RGB input images. The
conversion to RGB was performed by tripling the 8 bit
grayscale information of every pixel and copying it to
the three color channels of the desired RGB image.
We decided to train our DL models only on a fraction
of frames from each video. In our code, we created a
list of 16 evenly spaced frames within each video. Only
the middle eight frames of the list were exported, since
the middle part of the videos was found to contain the
most relevant frames for the analysis of pattern
formation phenomena. The first and last four frames
contained a lot of black areas and only partially
showed the test field. The export of eight frames per
video lead to a total amount of 4,440 images that
served as our DL data set.

Training of DL models

We used two different architectures of DL models,
suitable for video classification: First, a RNN architec-

ture (Fig. 7a) based on a pretrained ‘ResNet-18’
model34 with a subsequent RNN and second, a 3D-
CNN architecture (Fig. 7b) based on a pretrained
‘ResNet 3D 18’ model.35 Our implementation of deep
learning for video classification was based on the book
from Avendi33 and code snippets from the associated
online GitHub repository.36

From our DL data set consisting of eight consecu-
tively numbered frames per video (numbers 1–8), one
to eight frames centered around the middle of the list
were used for the training and testing of our DL
models, see Fig. 8. For the majority of this work and if
the number of frames is not further mentioned, four
frames per video were used, i.e., frames with the
numbers 3, 4, 5, and 6. Due to the fact that videos
recorded at different printing velocities do not start at
the exact same moment within the printing process, the
ROI is not located at the same place in extracted
frames of a video recorded at 0.5 m/s (Fig. 8a) and at
1.5 m/s (Fig. 8b). In a separate analysis, we investi-

Table 2: List of used Python version, package manager, and Python libraries

Name Version Description

Python 3.8.6 Python distribution
pip 20.3.1 Package manager
PyTorch 1.7.0 Library for ML/DL
torchvision 0.8.1 Library for computer vision
CUDA 10.2 Library that enables parallel computing on GPUs
pyMRAW 0.30 Library for reading videos in a raw data format
NumPy 1.19.2 Library for scientific computing
Matplotlib 3.3.2 Library for data visualization
pillow 8.0.1 Library for image processing
opencv-python 4.4.0.46 Library for image processing
scikit-learn 0.23.2 Library for ML
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Fig. 7: RNN and 3D-CNN architectures as used in this work.
The RNN architecture (a) is based on a pretrained ‘ResNet-
18’ model34 and a subsequent RNN and the 3D-CNN
architecture (b) is based on a pretrained ‘ResNet 3D 18’
model.35 Modified from Avendi33
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gated the influence of the number of frames on the DL
model’s accuracy. We compared the training results for
1, 2, 4, 6, and 8 frames per video. Before feeding the
frames to the DL models, they were cropped from their
original size of 512 px x 768 px to 512 px x 512 px and
then resized to 224 px x 224 px or 448 px x 448 px. For
each printing parameter combination, three videos
were available. Two of the videos (67 %) were used for
training and one video (33 %) for testing of our DL
models. We did not change hyperparameters and
therefore performed our study without a validation
data set. Each model was trained for 20 epochs. For the
best performing model, data augmentation and data set
balancing were additionally implemented. As is stan-
dard practice, data augmentation was performed only
on the training data set and not on the test data set by
applying a random translation and a random perspec-
tive transformation per frame and per training epoch.
Data set balancing was implemented via cost-sensitive
training. We distinguished between 3-class-models and
2-class-models. 3-class-models were trained and tested
on frames of videos of all three classes: LSR, PSR, and
MR. For 3-class-models, 370 videos were used for
training and 185 for testing. Thus, the data set used for
3-class-models comprised 2,220 frames (1,480 for
training, 740 for testing). 2-class-models were trained
and tested only on frames of videos showing LSR or
PSR. Thus, 322 videos were used for training and 161
for testing, which resulted in 1,932 frames in total
(1,288 for training and 644 for testing).

Assessment of trained DL models

We compared the accuracy on the test data set, i.e., the
test accuracy, as well as the training duration of the DL
models as our main performance metrics. For identi-
fying what types of errors the DL models made during
classification, we took a look at confusion matrices as
well as class probabilities. To get a deeper insight into
the decision-making process of the trained DL models,
we implemented the possibility to derive CAMs for the
3D-CNN architecture models.

Results

Test accuracies and training duration

We trained six different DL models over 20 training
epochs on the training data set and compared the test
accuracies of all trained DL models. All models
achieved test accuracies of more than 94 %, see
Table 3. Model #2 was found to be the best performing
3-class-model with a test accuracy of 99.5 %. We
observed that for a resolution of 224 px x 224 px the
3D-CNN architecture achieved higher test accuracies
than the RNN architecture. For the same architecture
and resolution, the 2-class-models performed better
than the 3-class-models and also had a shorter training
duration. For the RNN architecture, an increase in
resolution lead to higher test accuracies of 2- and 3-
class-models, respectively. Concerning the training
duration, the RNN architecture models trained on

(a)

(b)
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4 frames  (default)

Fig. 8: Exemplary extracted and quadratically cropped frames from a high-speed video recorded at 0.5 m/s (a) and 1.5 m/s
(b). The ROI is marked in red. The images were enhanced in contrast and brightness for better visibility and the scaling bar
is the same for all images. The complete DL data set comprised eight frames per video. Per default, four frames per video
were used for training and testing, but for a separate analysis, the influence of the number of frames on the test accuracy
was investigated
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lower resolution frames of 224 px x 224 px (models #3
and #4) required the least amount of training time,
about 1 h, whereas the 3D-CNN architecture models
and the RNN architecture models with higher resolu-
tion (models #1, #2, #5 and #6) had about three times
longer training durations.

The test accuracy plotted against the training epoch
for all 2-class- and 3-class-models as well as for an
optimized model #2 is depicted in Fig. 9. The 2-class-
models curves (Fig. 9a) are more closely spaced in

comparison to the 3-class-model curves (Fig. 9b).
Additionally, we applied data set balancing and data
augmentation for model #2. We found that the imple-
mentation of data set balancing did not exceed the
previous best test accuracy (99.5 %) (Table 3). In fact,
data augmentation slightly decreased the test accuracy
to 97.8 %. However, the test accuracy curve for model
#2 with data augmentation showed a rising trend, see
Fig. 9c.
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Fig. 9: Test accuracy of all 2-class- (a) and 3-class-models (b) as well as model #2 with optimizations (c) over 20 training
epochs

Table 3: Test accuracies for all DL models after 20 training epochs

Model Architecture Resolution of input image Type of model Test accuracy (%) Training duration

#1 3D-CNN 224 px x 224 px 2-class 100.0 2:57 h:m
#2 3D-CNN 224 px x 224 px 3-class 99.5 3:26 h:m
#3 RNN 224 px x 224 px 2-class 99.4 0:53 h:m
#4 RNN 224 px x 224 px 3-class 94.6 1:00 h:m
#5 RNN 448 px x 448 px 2-class 100.0 2:55 h:m
#6 RNN 448 px x 448 px 3-class 95.7 3:20 h:m

Four frames per video were used
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We also investigated the effect of increasing the
number of frames per video for training and testing of
model #2, see Table 4. Four frames were used as the
default number throughout this study. Training of
model #2 with default frame number took about 3.5
hours and yielded a test accuracy of 99.5 %. By
reducing the number of frames per video down to
one, the training duration of model #2 decreased to
roughly a third compared to the default value. How-
ever, the test accuracy was also decreased by around
2 % to 97.3 %, leading to more confusions especially
concerning the MR videos, compare Fig. 16 in Appen-
dix. When doubling the number of frames per video to
eight frames, the training duration also doubled but the
test accuracy roughly stayed the same. This could be
associated with the fact that the additional frames did
not contribute relevant information about the printed
patterns, since only a small fraction of the test field was
visible in the additional frames, see Fig. 8. However,
increasing the number of frames per video from one to
four improved the classification accuracy specifically
for the MR class. This indicates that time correlations
in the transient patterns were important for the MR
classification, whereas there was almost no effect for
the LSR and PSR class recognition.

Confusion matrices

Confusion matrices for the test data set for all trained
DL models can be found in Fig. 10. The confusion
matrices reveal that the 3-class-models, model #2, #4,
and #6, (Fig. 10a) never confused the LSR and PSR,
apart from one exception: model #4 misclassified one
PSR video as LSR, see Fig. 11a. Therefore, the 3-class-
models had implemented the characteristics of PSR
and LSR very well, with only one wrong event among
more than 150 classifications. All other misclassifica-
tions that occurred for the 3-class-models, 17 in total,
involved the MR class. Consequently, the MR evoked
by far the greatest amount of confusions. The number

of confusions for one model can be calculated by
adding together the entries that are not on the main
diagonal of its confusion matrix. The confusion matri-
ces for the 2-class-models (Fig. 10b) illustrate that only
one confusion happened in total, namely model #3
misclassified a LSR video as PSR, see Fig. 11b. A list of
all confusions can be found in Table 6 in Appendix as
well as confusion matrices for model #2 for different
numbers of frames per video, see Fig. 16.

Class probabilities

We investigated the class probabilities for models #1
and #2 and plotted them as boxplots in Fig. 12. Model
#1 is a 2-class-model which was trained only on PSR
and LSR videos and reached a test accuracy of
100.0 %. When observing the class probabilities, it
became clear that model #1 was very decided of its
classification. For example, LSR videos were assigned
a class probability for PSR of around 0 % and a class
probability for LSR of around 100 %. The same
applied to videos labeled as PSR in an analogous
manner. In contrast, for videos labeled as MR, model
#1 was rather indecisive. This behavior was expected,
since model #1 was not trained on MR videos. For
videos labeled as MR, the class probabilities for PSR
and LSR each ranged from 0 to 100 %, although the
median class probability for PSR was around 10 % and
for LSR 90 %. In other words, model #1 tended to
classify a MR video as LSR. For model #2, a 3-class-
model with 99.5 % test accuracy, class probabilities are
also displayed in Fig. 12. LSR videos were assigned a
class probability for PSR and MR of around 0 % and
for LSR of around 100 % with only a few outliers. The
same behavior applied to PSR videos in an analogous
manner. Thus, model #2 was very confident about its
classification decisions concerning videos labeled as
LSR or PSR. However, for MR videos, the model was
less confident, since there were more outliers and
larger box sizes in the boxplot, but it was still more

Table 4: Test accuracies for different optimizations and numbers of frames after 20 training epochs for model #2 (3D-
CNN, 224 px x 224 px, 3-class-model)

Number of frames per video Optimization Test accuracy (%) Training duration

1 None 97.3 1:16 h:m
2 None 97.8 1:51 h:m
4 None 99.5 3:26 h:m
4 Data augmentation 97.8 3:25 h:m
4 Data set balancing 99.5 3:24 h:m
6 None 99.5 5:17 h:m
8 None 98.9 6:47 h:m

Data augmentation and data set balancing were implemented only for the default number of four frames per video
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confident than model #1. Model #2 assigned a MR
video the median class probabilities for PSR and LSR
of around 0 % and for MR of around 100 %. Addi-
tional boxplots for the class probabilities of models #3,
#4, #5, and #6 can be found in Appendix in Figs. 17 and
18.

CAMs for 3D-CNN architecture models

CAMs of three exemplary videos applied to all four
main layers of model #2 were evaluated, see Fig. 13
(LSR video), Fig. 14 (PSR video), and Fig. 15 (MR
video). The CAMs visualize the areas that were most
important for the model’s classification decision. The
first layer yielded four CAMs that were overlaid with
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Fig. 10: Confusion matrices for all 3-class-models (a) and 2-class-models (b)
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Fig. 11: Two exemplary snapshots for misclassified samples. Model #4 misclassified a PSR video (a) as LSR and model #3
misclassified a LSR video (b) as PSR. Both images were enhanced in contrast and brightness for better visibility

63

J. Coat. Technol. Res., 20 (1) 51–72, 2023



the four original video frames so that the hot parts of
the CAM could be directly connected to certain
features of the video frames. Whereas the first layer
detected numerous small features, e.g., the gravure
raster dots, small droplets, or single fluid fingers, the
DL model focused on larger features in later layers,
e.g., groups of features. The second layer of the DL
model yielded two CAMs and the third and fourth
layer resulted in one CAM each. Consequently, these
CAMs could not be assigned to the four original
video frames and were plotted without any overlay.
This is because a 3D-CNN not only convolves the
spatial dimensions but also the temporal dimension.
In other words, the model looks at each input frame
individually in the first layer and in later layers
considers all input frames at once for the classification
decision. Interestingly, especially in the first layer,
model #2 also paid attention to features outside the
ROI, e.g., as seen in Fig. 15a. The region outside the
ROI was much hotter than the ROI itself. However,
in later layers (15b-d), the model tended to focus on
the ROI. We observed this behavior also for many
other videos from the Schäfer data set, although not
presented here.

Discussion

The aim of this study was to develop a training and
verification scheme for DL models in automated
classification of high-speed videos of fluid splitting-
related patterns in the gravure printing nip. Depending
on the model details classification accuracies of 94 %
to 100 % were achieved for all trained DL models after
20 training epochs. We consider this as a very promis-
ing output. Only few videos were misclassified by
certain DL models as summarized in the confusion
matrices in Fig. 10. The training duration of about one
to seven hours on a CPU was acceptable for our
research purposes.

The 2-class-models achieved higher accuracies than
the 3-class-models for the same architecture and
resolution, see Table 3. This was not unexpected as
the 3-class classification problem is also more chal-
lenging for a human referee than the 2-class problem.
It is consistent with the fact that the characteristic
features of the LSR and PSR allow for a closer, more
selective class definition, and are therefore associated
with a larger structural entropy, which, in turn, means a
superior learning efficiency for the DNNs. Confusion
matrices and the investigation of class probabilities for
selected videos support the assumption that the MR
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Fig. 12: Class probabilities for models #1 and #2
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comprises a relatively broad variety of features, and is
therefore more challenging to recognize. Another
explanation could be that the qualitative labels pro-
vided for the Schäfer data set, especially for the MR
videos, contain some degree of inconsistency by
themselves, and do not allow a 100 % clear distinction
by a DL model. The 2-class-models were able to

distinguish the PSR and the LSR confidently, whereas
videos labeled with MR yielded a broad range of class
probabilities for PSR and LSR, see Fig. 12.

One might be tempted to identify the MR within the
2-class-models by setting a lower and upper threshold
of the PSR and LSR class probabilities. For example, a
video could be classified as MR if the class probability

(a)

(b) (c) (d)

Fig. 13: CAMs of model #2 for an exemplary LSR video. The CAMs for the first layer of the 3D-CNN architecture are overlaid
with the original frames (a). CAMs for the second (b), third (c), and fourth layer (d) are not overlaid with original frames

(a)

(b) (c) (d)

Fig. 14: CAMs of model #2 for an exemplary PSR video. See caption of Fig. 13, (a)–(d) represent the four layers
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for the PSR was between 30 % and 70 %. If the class
probability for the PSR was less than 30 % or more
than 70 %, the video would then be classified as LSR
or PSR, respectively. In this manner, 2-class-models
could be used to distinguish all three fluid splitting
regimes. The classification performed by the trained 2-
class-models could even outperform the human referee
by providing a more objective classification criterion in
form of thresholds. However, the use of such thresh-
olds as a criterion for a third class could be spurious,
because it eventually would not distinguish between a
pattern with truly unique features and a pattern which
is just a superposition or collage of dots and fingers.
Thus, the classification would be misleading. Using,
however, 3-class-models, we could show that the third
class is possible and distinct from a superposition of the
other classes. It is also possible to teach the network in
the learning process even though the specific features
are not explicitly known. In spite of the somewhat
smaller accuracy, the 3-class-models confidently classi-
fied MR videos. Videos labeled as MR had high
median class probabilities for MR and low median
class probabilities for LSR and PSR. A clear discrim-
ination of the third class from mixtures of the other two
classes is thus possible. Regarding videos with a clear
MR class assignment, a closer inspection with respect
to unidentified, more complex symmetries or period-
icities could be the next step in finding the relevant
feature of this third class. This could be done using
spectral analysis of the fingering patterns within the
new regime.

We do not expect that extending the number of
training epochs to more than 20 would have a
substantial impact on the accuracy for most of the

models. The recognition rate had already reached a
high level, and the test accuracy curves appeared to
approach an upper limit. However, the test accuracy of
model #2 with data augmentation might still have some
rising trend, see Fig. 9. Extended training could have a
positive effect here. The number of frames used for the
training had significant effect on test accuracy only for
the MR classification in the best performing model
(#2). The best results were already achieved using only
four to six frames per video.

CAMs for selected frames provided deep and useful
insight into the decision-making process of the 3D-
CNN architecture models. We found that the DL
models indeed focused on the pattern formation within
the ROI, but partly, features outside the ROI were
considered. From this, we conclude that the classifica-
tion relied on the particular pattern features, even
though the images contain a lot of structural informa-
tion and entropy which is not related to pattern
formation, e.g., the gravure raster and the borders of
the test field, both having intense optical contrast and
exhibit peculiar geometric details on length scales
comparable to the dots and fingers. Therefore, we
regard DL as a reasonable approach for distinguishing
pattern formation regimes, even though the pattern
contrast was not dominant, and sometimes obscured by
redundant features. The trained DL models can be
used for automated classification of pattern formation
regimes in further unlabeled video data sets, provided
that the experimental high-speed video setup does not
differ from Schäfer’s setup significantly. In case of a
significant change, the performance of the ML models
would have to be tested and, if necessary, the models
should be retrained with labeled high-speed videos

(a)

(b) (c) (d)

Fig. 15: CAMs of model #2 for an exemplary MR video. See caption of Fig. 13, (a)–(d) represent the four layers
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from the new experimental setup. One could consider
to train the models only on the stabilized ROI to
obtain DL models that are more independent from the
experimental conditions like the field of view.

Conclusions and outlook

In our study, we trained and compared several DL
models on video frames of the complex, highly dynamic
meniscus at the liquid–air interface that evolves through
fluid splitting in a gravure printing press. We trained the
models with different classes of meniscus patterns, i.e.,
LSR, PSR, and MR. Each such pattern was defined by
specific local geometric features, indicating particular nip
hydrodynamics, but was also highly stochastic. The
features that defined the classes were dependent on,
and could be manipulated by the physical printing
parameters, namely printing velocity and raster geometry
of the gravure cylinder. The DL models were quite
successful in assigning the correct classes to the video
data,with testaccuraciesbetween94 %and100 %.From
this, it can be concluded that it is possible to identify the
parameter regimes of the prevailing fluid splitting hydro-
dynamics, and to establish a correlation between printing
parameters and themechanisms and phenomenologyof a
possibly very delicate pattern formation problem. This
was our initial goal, in spite of the fact that we do not fully
understand the details of fluid splitting from the hydro-
dynamic point of view. The automated classification via
DLenables us to sort the videos and apply specific further
analysesoneachpatternclass.Another conclusion results
from the comparison of 2- and 3-class-models concerning
the MR. Provided that the MR is regarded as a truly
unique pattern rather than a superposition of PSR and
LSR, we suggest to use 3-class-models for classification,
rather than 2-class-models.

Several methods, i.e., calculation of test accuracies
as well as analysis of confusion matrices, class proba-
bilities and CAMs, were applied to confirm that the
DL process was successful and that the trained DL
models focused on the ROI over the course of the
training. By analysis of the CAMs in subsequent layers
of the 3D-CNN, we demonstrated that the network
increasingly shifted its focus to the actually relevant
pattern details in the ROI. The hot areas in the CAMs
of later layers appeared to be more uniform, and were
extended over much larger scales than the gravure
raster. In contrast, the CAMs of earlier layers typically
consisted of more or less randomly distributed small
hot insulas, partly located outside of the ROI. We
interpret this as an indication that later layers put more
weight on the long-scale autocorrelation in the evolv-
ing liquid meniscus pattern, and on its immanent, even
though stochastically blurred finger or dot periodicity.

Concerning pattern formation analysis, RNNs/3D-
CNNs have interesting pattern detection capabilities
which could supplement conventional classification
methods: classification by visual perception through

an experienced human referee, and by spectral anal-
ysis, i.e., by fast Fourier transformation (FFT) of the
video images and subsequent characteristic spike
identification. Due to the stochastic nature of the
patterns, none of these analyzing methods needs to be
fully conclusive even if large quantities of data are
processed.

In summary, we would like to emphasize the
following key advantages of DL for pattern classifica-
tion in the gravure printing fluid splitting process:

1. Independence of subjective human judgment: DL
makes the distinction of spontaneously forming
patterns independent of human judgment, and can
handle large data quantities which can help to
improve statistical significance.

2. Multiple patterns: If it was clear that not more than
two different patterns are possible (PSR, LSR),
human judgment or FFT analysis of periodicities
may be considered adequate for pattern discrim-
ination. However, if there are many possible
patterns in a noisy environment, NNs take advan-
tage from long-ranged correlations in the noisy
background. In contrast to FFT analysis which is
only sensitive to periodic features, DL can dis-
criminate much more complex characteristics such
as branching frequency in network-like structures.

3. Time-correlations: The very strength of video-
based DL pattern recognition is the resolution of
time-correlation in a dynamic pattern, in addition
to the spatial correlation of the patterns. We were
able to demonstrate that this feature significantly
reduced the number of erroneous assignments of
the observed patterns to their respective classes.

DL is a useful tool for hydrodynamic and pattern
formation research in general, especially when com-
bined with large-scale printing technology. We would
like to make the reader aware of our recent DL studies
which did not use high-speed videos from the nip, but a
large data set consisting of the finished printouts of a
gravure printing press.37 Theoretically, data generation
and pattern recognition capabilities could be scaled up
to huge data sets almost without upper boundary. NN
capabilities have improved especially in the last decade
with the advent of parallelized computations through
GPUs. Printing technology offers fluid handling and
transport performance and accuracy which has drasti-
cally advanced in the same manner during the past two
decades, also driven by digitalization and economiza-
tion. This could make stochastic data evaluation
feasible even in cases where conventional methods
appear to be statistically hopeless.

For future work, a deeper insight into the decision-
making process of the trained DL models would be
strongly desired. For this purpose, one could consider
to implement further visualization methods for our
DNNs apart from the CAMs for 3D-CNN architec-
tures. Also, a classification into more than three fluid
splitting regimes should be considered in order to
comply with the large variety of different pattern
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formation phenomena observed. Moreover, MR
should be investigated in closer detail because this
class may be composed of different, possibly very
complex patterns. The distinction between LSR and
MR as well as PSR and MR is particularly challenging
because the class appears in a comparably small
number of videos only, and MR is not defined in terms
of geometric features alone, but also comprises time-
dependent aspects. As a further option, pattern recog-
nition could be made more independent of subjective
human perception by implementing unsupervised
learning methods. Labeled data are no longer needed
here for teaching. Instead, the AI would identify
pattern regimes by itself. However, unsupervised
learning for image classification is presently still very
challenging, and a rapidly developing topic in current
research. As an alternative, we consider using unsu-
pervised ML methods as an interesting option, e.g.,
clustering based on previously extracted features such
as specific pattern symmetries.
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Appendix

See Figs. 16, 17, 18 and Tables 5, 6 .
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Fig. 16: Confusion matrices for model #2 for different frame numbers (1, 2, 4, 6, and 8 frames per video). Four frames per
video was the default value for model #2 in this work
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Fig. 18: Class probabilities for models #5 and #6

Table 5: List of videos used for exemplary snapshots in this paper with corresponding printing parameters and label

Figure Video name Tonal value (%) Raster frequency (lines/cm) Printing velocity (m/s) Label

4b 181_1_T100_R140_V0500 100 140 0.5 LSR
5a 126_1_T095_R040_V0500 95 40 0.5 LSR
5b 100_2_T090_R040_V1500 90 40 1.5 LSR
5c 040_1_T070_R040_V1500 70 40 1.5 LSR
5d 081_3_T080_R090_V0750 80 90 0.75 LSR
5e 032_2_T060_R060_V0500 60 60 0.5 LSR
5f 052_1_T070_R090_V1000 70 90 1 MR
5g 060_1_T070_R120_V1500 70 120 1.5 PSR
5h 034_3_T060_R120_V0500 60 120 0.5 PSR
5i 002_1_T005_R060_V0500 5 60 0.5 PSR
8a 031_3_T060_R040_V0500 60 40 0.5 LSR
8b 160_1_T100_R040_V1500 100 40 1.5 LSR
11a 022_3_T040_R060_V0500 40 60 0.5 PSR
11b 151_3_T095_R140_V0500 95 140 0.5 LSR
13 126_3_T095_R040_V0500 95 40 0.5 LSR
14 033_3_T060_R090_V0500 60 90 0.5 PSR
15 052_3_T070_R090_V1000 70 90 1.0 MR
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