Skip to main content
Log in

The reduction in ice adhesion using controlled topography superhydrophobic coatings

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Since ice formation on surfaces at subzero temperatures leads to accidents, increased equipment maintenance costs, and reduced performance, multiple strategies, including superhydrophobic surfaces and coatings, have been explored as means to reduce ice adhesion to solid surfaces. Previous work has correlated the effect of topography of regularly patterned superhydrophobic surfaces with ice adhesion. This work, however, investigated the effect of filtered topography on ice adhesion for random superhydrophobic surfaces. The ice adhesion behavior of superhydrophobic composite coatings, prepared from a mixture of silica nanoparticles and polymer binder and sprayed on glass slides, was determined using a shear strength measurement. The ice adhesion significantly decreased with an increase in particle content up to 40 wt.%, after which the ice adhesion became nearly constant. The present study focuses on the use of a novel filtering method for coating topography evaluation which isolated the asperities contributing to the interface from the roughness profile in the superhydrophobic coating. It showed that the ice adhesion correlated with the filtered asperity height and spacing for these random hydrophobic surfaces. Higher particle contents led to larger asperity distances, smaller solid fractions, and lower ice adhesion. The results and conclusions are based on a static ice adhesion test using still water. In this work, it is demonstrated that ice adhesion can be predicted based on the solid–water–air interface, a correlation that could guide future superhydrophobic coating fabrication to create surfaces with greater reduction in ice adhesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Boluk, Y., Canadian Air Transportation Administration, Civil Aviation Branch, and Transportation Development Centre (Canada), Adhesion of Freezing Precipitates to Aircraft Surfaces. Montreal: Transportation Development Centre, 1996.

  2. Laforte, JL, Allaire, MA, Laflamme, J, “State-of-the-Art on Power Line De-Icing.” Atmospheric Res., 46 143–158. https://doi.org/10.1016/S0169-8095(97)00057-4 (1998)

    Article  Google Scholar 

  3. Frankenstein, S, Tuthill, AM, “Ice Adhesion to Locks and Dams: Past Work; Future Directions?” J. Cold Reg. Eng., 16 (2) 83–96. https://doi.org/10.1061/(ASCE)0887-381X(2002)16:2(83) (2002)

    Article  Google Scholar 

  4. Parent, O, Ilinca, A, “Anti-Icing and De-Icing Techniques for Wind Turbines: Critical Review.” Cold Reg. Sci. Technol., 65 (1) 88–96. https://doi.org/10.1016/j.coldregions.2010.01.005 (2011)

    Article  Google Scholar 

  5. Boinovich, LB, Emelyanenko, AM, “Anti-icing Potential of Superhydrophobic Coatings.” Mendeleev Commun., 23 (1) 3–10. https://doi.org/10.1016/j.mencom.2013.01.002 (2013)

    Article  CAS  Google Scholar 

  6. Lv, J, Song, Y, Jiang, L, Wang, J, “Bio-Inspired Strategies for Anti-Icing.” ACS Nano, 8 (4) 3152–3169. https://doi.org/10.1021/nn406522n (2014)

    Article  CAS  Google Scholar 

  7. Cao, Y, Wu, Z, Su, Y, Xu, Z, “Aircraft Flight Characteristics in Icing Conditions.” Prog. Aerosp. Sci., 74 62–80. https://doi.org/10.1016/j.paerosci.2014.12.001 (2015)

    Article  Google Scholar 

  8. Broeren, AP, Lee, S, Clark, C, “Aerodynamic Effects of Anti-Icing Fluids on a Thin High-Performance Wing Section.” J. Aircr., 53 (2) 451–462. https://doi.org/10.2514/1.C033384 (2016)

    Article  Google Scholar 

  9. Davis, NN, Pinson, P, Hahmann, AN, Clausen, N-E, Žagar, M, “Identifying and Characterizing the Impact of Turbine Icing on Wind Farm Power Generation.” Wind Energy, 19 (8) 1503–1518. https://doi.org/10.1002/we.1933 (2016)

    Article  Google Scholar 

  10. Wei, X, Jia, Z, Sun, Z, Farzaneh, M, Guan, Z, “Effect of the Parameters of the Semiconductive Coating on the Anti-Icing Performance of the Insulators.” IEEE Trans. Power Deliv., 31 (4) 1413–1421. https://doi.org/10.1109/TPWRD.2014.2337012 (2016)

    Article  CAS  Google Scholar 

  11. Heinrich, A, et al. “Aircraft Icing Handbook.” p. 108 (2000)

  12. Hejazi, V, Sobolev, K, Nosonovsky, M, “From Superhydrophobicity to Icephobicity: Forces and Interaction Analysis.” Sci. Rep., 3 (2194) 6. https://doi.org/10.1038/srep02194 (2013)

    Article  Google Scholar 

  13. Menini, R, Farzaneh, M, “Elaboration of Al2O3/PTFE Icephobic Coatings for Protecting Aluminum Surfaces.” Surf. Coat. Technol., 203 (14) 1941–1946. https://doi.org/10.1016/j.surfcoat.2009.01.030 (2009)

    Article  CAS  Google Scholar 

  14. Meuler, AJ, Smith, JD, Varanasi, KK, Mabry, JM, McKinley, GH, Cohen, RE, “Relationships Between Water Wettability and Ice Adhesion.” ACS Appl. Mater. Interfaces, 2 (11) 3100–3110. https://doi.org/10.1021/am1006035 (2010)

    Article  CAS  Google Scholar 

  15. Brassard, J-D, Laforte, C, Guerin, F, Blackburn, C, “Icephobicity: Definition and Measurement Regarding Atmospheric Icing, Berlin, Heidelberg: Springer.” Berlin Heidelberg,. https://doi.org/10.1007/12_2017_36 (2017)

    Article  Google Scholar 

  16. Golovin, K, Kobaku, SPR, Lee, DH, DiLoreto, ET, Mabry, JM, Tuteja, A, “Designing Durable Icephobic Surfaces.” Sci. Adv., 2 (3) e1501496. https://doi.org/10.1126/sciadv.1501496 (2016)

    Article  Google Scholar 

  17. Jung, S, Dorrestijn, M, Raps, D, Das, A, Megaridis, CM, Poulikakos, D, “Are Superhydrophobic Surfaces Best for Icephobicity?” Langmuir, 27 (6) 3059–3066. https://doi.org/10.1021/la104762g (2011)

    Article  CAS  Google Scholar 

  18. Guo, P, Zheng, Y, Wen, M, Song, C, Lin, Y, Jiang, L, “Icephobic/Anti-Icing Properties of Micro/Nanostructured Surfaces.” Adv. Mater., 24 (19) 2642–2648. https://doi.org/10.1002/adma.201104412 (2012)

    Article  CAS  Google Scholar 

  19. Jung, S, Tiwari, MK, Doan, NV, Poulikakos, D, “Mechanism of Supercooled Droplet Freezing on Surfaces.” Nat. Commun.https://doi.org/10.1038/ncomms1630 (2012)

    Article  Google Scholar 

  20. Mohammadi, M, Tembely, M, Dolatabadi, A, “Supercooled Water Droplet Impacting Superhydrophobic Surfaces in the Presence of Cold Air Flow.” Appl. Sci.https://doi.org/10.3390/app7020130 (2017)

    Article  Google Scholar 

  21. Kreder, MJ, Alvarenga, J, Kim, P, Aizenberg, J, “Design of Anti-icing Surfaces: Smooth, Textured or Slippery?” Nat. Rev. Mater., 1 (1) 15003. https://doi.org/10.1038/natrevmats.2015.3 (2016)

    Article  CAS  Google Scholar 

  22. Wilson, PW, et al. “Inhibition of Ice Nucleation by Slippery Liquid-Infused Porous Surfaces (SLIPS).” Phys. Chem. Chem. Phys., 15 (2) 581–585. https://doi.org/10.1039/C2CP43586A (2013)

    Article  CAS  Google Scholar 

  23. Wong, T-S, et al. “Bioinspired Self-Repairing Slippery Surfaces with Pressure-Stable Omniphobicity.” Nature, 477 (7365) 443–447. https://doi.org/10.1038/nature10447 (2011)

    Article  CAS  Google Scholar 

  24. Irajizad, P, Hasnain, M, Farokhnia, N, Sajadi, SM, Ghasemi, H, “Magnetic Slippery Extreme Icephobic Surfaces.” Nat. Commun., 7 (1) 13395. https://doi.org/10.1038/ncomms13395 (2016)

    Article  CAS  Google Scholar 

  25. Irajizad, P, Ray, S, Farokhnia, N, Hasnain, M, Baldelli, S, Ghasemi, H, “Remote Droplet Manipulation on Self-Healing Thermally Activated Magnetic Slippery Surfaces.” Adv. Mater. Interfaces, 4 (12) 1700009. https://doi.org/10.1002/admi.201700009 (2017)

    Article  Google Scholar 

  26. Masoudi, A, Irajizad, P, Farokhnia, N, Kashyap, V, Ghasemi, H, “Anti-Scaling Magnetic Slippery Surfaces.” p. 31 (2017)

  27. Ragunathan, T, Xu, X, Shuhili, JA, Wood, CD, “Preventing Hydrate Adhesion with Magnetic Slippery Surfaces.” ACS Omega, 4 (14) 15789–15797. https://doi.org/10.1021/acsomega.9b01232 (2019)

    Article  CAS  Google Scholar 

  28. He, Z, Xiao, S, Gao, H, He, J, Zhang, Z, “Multiscale Crack Initiator Promoted Super-Low Ice Adhesion Surfaces.” Soft Matter, 13 (37) 6562–6568. https://doi.org/10.1039/c7sm01511a (2017)

    Article  CAS  Google Scholar 

  29. Irajizad, P, et al. “Stress-Localized Durable Icephobic Surfaces.” Mater. Horiz.https://doi.org/10.1039/C8MH01291A (2019)

    Article  Google Scholar 

  30. Wang, S, Jiang, L, “Definition of Superhydrophobic States.” Adv. Mater., 19 (21) 3423–3424. https://doi.org/10.1002/adma.200700934 (2007)

    Article  CAS  Google Scholar 

  31. Sethi, SK, Manik, G, Sahoo, SK, “Fundamentals of Superhydrophobic Surfaces.” In: Superhydrophobic Polymer Coatings, Elsevier, pp. 3–29. https://doi.org/10.1016/B978-0-12-816671-0.00001-1. (2019)

    Chapter  Google Scholar 

  32. Nosonovsky, M, Hejazi, V, “Why Superhydrophobic Surfaces Are Not Always Icephobic.” ACS Nano, 6 (10) 8488–8491. https://doi.org/10.1021/nn302138r (2012)

    Article  CAS  Google Scholar 

  33. Chen, J, et al. “Superhydrophobic Surfaces Cannot Reduce Ice Adhesion.” Appl. Phys. Lett., 101 (11) 111603. https://doi.org/10.1063/1.4752436 (2012)

    Article  CAS  Google Scholar 

  34. Kim, P, Wong, T-S, Alvarenga, J, Kreder, MJ, Adorno-Martinez, WE, Aizenberg, J, “Liquid-Infused Nanostructured Surfaces with Extreme Anti-Ice and Anti-Frost Performance.” ACS Nano, 6 (8) 6569–6577. https://doi.org/10.1021/nn302310q (2012)

    Article  CAS  Google Scholar 

  35. Farhadi, S, Farzaneh, M, Kulinich, SA, “Anti-Icing Performance of Superhydrophobic Surfaces.” Appl. Surf. Sci., 257 (14) 6264–6269. https://doi.org/10.1016/j.apsusc.2011.02.057 (2011)

    Article  CAS  Google Scholar 

  36. Yeong, YH, Milionis, A, Loth, E, Sokhey, J, Lambourne, A, “Atmospheric Ice Adhesion on Water-Repellent Coatings: Wetting and Surface Topology Effects.” Langmuir, 31 (48) 13107–13116. https://doi.org/10.1021/acs.langmuir.5b02725 (2015)

    Article  CAS  Google Scholar 

  37. Belaud, C, Vercillo, V, Kolb, M, Bonaccurso, E, “Development of Nanostructured Icephobic Aluminium Oxide Surfaces for Aeronautic Applications.” Surf. Coat. Technol., 405 126652. https://doi.org/10.1016/j.surfcoat.2020.126652 (2021)

    Article  CAS  Google Scholar 

  38. Alamri, S, Vercillo, V, Aguilar-Morales, AI, Schell, F, Wetterwald, M, Lasagni, AF, Bonaccurso, E, Kunze, T, “Self-Limited Ice Formation and Efficient De-Icing on Superhydrophobic Micro-Structured Airfoils through Direct Laser Interference Patterning.” Adv. Mater. Interfaces, 7 2001231. https://doi.org/10.1002/admi.202001231 (2020)

    Article  Google Scholar 

  39. Bonaccurso, E, “Laser-Treated Superhydrophobic Surfaces to Reduce Ice Build-Up in Aeronautical Applications.” SPIE Photon. West Ind.https://doi.org/10.1117/12.2593541 (2021)

    Article  Google Scholar 

  40. Wang, P, Li, Z, Xie, Q, Duan, W, Zhang, X, Han, H, “A Passive Anti-icing Strategy Based on a Superhydrophobic Mesh with Extremely Low Ice Adhesion Strength.” J. Bionic Eng., 18 55–64. https://doi.org/10.1007/s42235-021-0012-4 (2021)

    Article  Google Scholar 

  41. Maghsoudi, K, Vazirinasab, E, Momen, G, Jafari, R, “Icephobicity and Durability Assessment of Superhydrophobic Surfaces: The Role of Surface Roughness and the Ice Adhesion Measurement Technique.” J. Mater. Process. Technol., 288 116883. https://doi.org/10.1016/j.jmatprotec.2020.116883 (2021)

    Article  CAS  Google Scholar 

  42. Wu, X, Silberschmidt, VV, Hu, ZT, Chen, Z, “When Superhydrophobic Coatings are Icephobic: Role of Surface Topology.” Surf. Coat. Technol., 358 207–214. https://doi.org/10.1016/j.surfcoat.2018.11.039 (2019)

    Article  CAS  Google Scholar 

  43. Boinovich, LB, Emelyanenko, KA, Emelyanenko, AM, “Superhydrophobic Versus SLIPS: Temperature Dependence and the Stability of Ice Adhesion Strength.” J. Colloid Interface Sci., 606 556–566. https://doi.org/10.1016/j.jcis.2021.08.030 (2022)

    Article  CAS  Google Scholar 

  44. Subramanyam, SB, Kondrashov, V, Rühe, J, Varanasi, KK, “Low Ice Adhesion on Nano-Textured Superhydrophobic Surfaces Under Supersaturated Conditions.” ACS Appl. Mater. Interfaces, 8 (20) 12583–12587. https://doi.org/10.1021/acsami.6b01133 (2016)

    Article  CAS  Google Scholar 

  45. Kulinich, SA, Farzaneh, M, “On Ice-Releasing Properties of Rough Hydrophobic Coatings.” Cold Reg. Sci. Technol., 65 (1) 60–64. https://doi.org/10.1016/j.coldregions.2010.01.001 (2011)

    Article  Google Scholar 

  46. Sarkar, DK, Farzaneh, M, “Superhydrophobic Coatings with Reduced Ice Adhesion.” J. Adhes. Sci. Technol., 23 (9) 1215–1237. https://doi.org/10.1163/156856109X433964 (2009)

    Article  CAS  Google Scholar 

  47. Davis, A, Yeong, YH, Steele, A, Bayer, IS, Loth, E, “Superhydrophobic Nanocomposite Surface Topography and Ice Adhesion.” ACS Appl. Mater. Interfaces, 6 (12) 9272–9279. https://doi.org/10.1021/am501640h (2014)

    Article  CAS  Google Scholar 

  48. Dodiuk, H, Kenig, S, Dotan, A, “Do Self-cleaning Surfaces Repel Ice?” J. Adhes. Sci. Technol., 26 (4–5) 701–714. https://doi.org/10.1163/016942411X575933 (2012)

    Article  CAS  Google Scholar 

  49. Gutowski, WV, Dodiuk, H, Recent Advances in Adhesion Science and Technology in Honor of Dr. CRC Press, Kash Mittal (2013)

    Google Scholar 

  50. Dotan, A, Dodiuk, H, Laforte, C, Kenig, S, “The Relationship between Water Wetting and Ice Adhesion.” J. Adhes. Sci. Technol., 23 (15) 1907–1915. https://doi.org/10.1163/016942409X12510925843078 (2009)

    Article  CAS  Google Scholar 

  51. Kenig, S, et al., “Novel Super Hydrophobic Durable Nanocomposite Coatings for Reduction of Ice Adhesion.” PPS Conf., Oct. 2014, Accessed: Jun. 17, 2020. [Online]. Available: https://www.academia.edu/29457076/Novel_Super_Hydrophobic_Durable_Nanocomposite_Coatings_for_Reduction_of_Ice_Adhesion

  52. He, Z, Zhuo, Y, He, J, Zhang, Z, “Design and Preparation of Sandwich-Like Polydimethylsiloxane (PDMS) Sponges with Super-Low Ice Adhesion.” Soft Matter, 14 (23) 4846–4851. https://doi.org/10.1039/C8SM00820E (2018)

    Article  CAS  Google Scholar 

  53. Beemer, DL, Wang, W, Kota, AK, “Durable Gels with Ultra-Low Adhesion to Ice.” J. Mater. Chem. A, 4 (47) 18253–18258. https://doi.org/10.1039/C6TA07262C (2016)

    Article  CAS  Google Scholar 

  54. Yu, D, Zhao, Y, Li, H, Qi, H, Li, B, Yuan, X, “Preparation and Evaluation of Hydrophobic Surfaces of Polyacrylate-Polydimethylsiloxane Copolymers for Anti-Icing.” Prog. Org. Coat., 76 (10) 1435–1444. https://doi.org/10.1016/j.porgcoat.2013.05.036 (2013)

    Article  CAS  Google Scholar 

  55. Wang, C, Fuller, T, Zhang, W, Wynne, KJ, “Thickness Dependence of Ice Removal Stress for a Polydimethylsiloxane Nanocomposite: Sylgard 184.” Langmuir, 30 (43) 12819–12826. https://doi.org/10.1021/la5030444 (2014)

    Article  CAS  Google Scholar 

  56. Meuler, AJ, McKinley, GH, Cohen, RE, “Exploiting Topographical Texture to Impart Icephobicity.” ACS Nano, 4 (12) 7048–7052. https://doi.org/10.1021/nn103214q (2010)

    Article  CAS  Google Scholar 

  57. Memon, H, et al. “In-situ Icing and Water Condensation Study on Different Topographical Surfaces.” Cold Reg. Sci. Technol., 165 102814. https://doi.org/10.1016/j.coldregions.2019.102814 (2019)

    Article  Google Scholar 

  58. Varanasi, KK, Deng, T, Smith, JD, Hsu, M, Bhate, N, “Frost Formation and Ice Adhesion on Superhydrophobic Surfaces.” Appl. Phys. Lett., 97 (23) 234102. https://doi.org/10.1063/1.3524513 (2010)

    Article  CAS  Google Scholar 

  59. Lazauskas, A, Guobienė, A, Prosyčevas, I, Baltrušaitis, V, Grigaliūnas, V, Narmontas, P, Baltrusaitis, J, “Water Droplet Behavior on Superhydrophobic SiO2 Nanocomposite Films During Icing/Deicing Cycles.” Mater. Charact., 82 9–16. https://doi.org/10.1016/j.matchar.2013.04.017 (2013)

    Article  CAS  Google Scholar 

  60. Kulinich, SA, Farhadi, S, Nose, K, Du, XW, “Superhydrophobic Surfaces: Are They Really Ice-Repellent?” Langmuir, 27 25–29. https://doi.org/10.1021/la104277q (2011)

    Article  CAS  Google Scholar 

  61. Whitehouse, D, Surfaces and Their Measurement. HPS, London (2002)

    Google Scholar 

  62. Koivuluoto, H, Stenroos, C, Ruohomaa, R, Bolelli, G, Lusvarghi, L, Vuoristo, P, “Research on Icing Behavior and Ice Adhesion Testing of Icephobic Surfaces.” p. 6.

  63. He, Z, Vågenes, ET, Delabahan, C, He, J, Zhang, Z, “Room Temperature Characteristics of Polymer-Based Low Ice Adhesion Surfaces.” Sci. Rep., 7 (1) 42181. https://doi.org/10.1038/srep42181 (2017)

    Article  CAS  Google Scholar 

  64. Yeong, H, Loth, E, Sokhey, J, Lambourne, A, “Ice Adhesion Performance of Superhydrophobic Coatings in Aerospace Icing Conditions.” Jun. 2015, pp. 2015-01–2120. doi: https://doi.org/10.4271/2015-01-2120

  65. Zhang, Y, Sundararajan, S, “The Effect of Autocorrelation Length on the Real Area of Contact and Friction Behavior of Rough Surfaces.” J. Appl. Phys., 97 (10) 103526. https://doi.org/10.1063/1.1914947 (2005)

    Article  CAS  Google Scholar 

  66. Constantinou, J, et al., “Methods and Formulations for Durable Superhydrophic, Self-cleaning, and Superhydrophobic Polymer Coatings and Objects Having Coatings Thereon.” US20170036241A1, Feb. 09, 2017 Accessed: Mar. 01, 2020. [Online]. Available: https://patents.google.com/patent/US20170036241A1/en/und

  67. Yuan, Y, Choi, S-O, Kim, J, “Analysis of Contact Area Between Water and Irregular Fibrous Surface for Prediction of Wettability.” RSC Adv., 6 (77) 73313–73322. https://doi.org/10.1039/C6RA15389E (2016)

    Article  CAS  Google Scholar 

  68. Meuler, AJ, Smith, JD, Varanasi, KK, Mabry, JM, McKinley, GH, Cohen, RE, “Relationships Between Water Wettability and Ice Adhesion.” ACS Appl. Mater. Interfaces, 2 (11) 3100–3110. https://doi.org/10.1021/am1006035 (2010)

    Article  CAS  Google Scholar 

  69. Dotan, A, Dodiuk, H, Laforte, C, Kenig, S, “The Relationship between Water Wetting and Ice Adhesion.” J. Adhes. Sci. Technol., 23 (15) 1907–1915. https://doi.org/10.1163/016942409X12510925843078 (2009)

    Article  CAS  Google Scholar 

  70. Nishino, T, Meguro, M, Nakamae, K, Matsushita, M, Ueda, Y, “The Lowest Surface Free Energy Based on −CF3 Alignment.” Langmuir, 15 (13) 4321–4323. https://doi.org/10.1021/la981727s (1999)

    Article  CAS  Google Scholar 

  71. Zisman, WA, “Relation of the Equilibrium Contact Angle to Liquid and Solid Constitution.” Advances in Chemistry, 43 1–51. https://doi.org/10.1021/ba-1964-0043.ch001 (1964)

    Article  CAS  Google Scholar 

  72. Kulinich, SA, Farzaneh, M, “Ice Adhesion on Super-Hydrophobic Surfaces.” Appl. Surf. Sci., 255 8153–8157. https://doi.org/10.1016/j.apsusc.2009.05.033 (2009)

    Article  CAS  Google Scholar 

  73. Makkonen, L, “Ice Adhesion —Theory, Measurements and Countermeasures.” J. Adhes. Sci. Technol., 26 (4–5) 413–445. https://doi.org/10.1163/016942411X574583 (2012)

    Article  CAS  Google Scholar 

  74. Nguyen, T-B, Park, S, Lim, H, “Effects of Morphology Parameters on Anti-icing Performance in Superhydrophobic Surfaces.” Appl. Surf. Sci., 435 585–591. https://doi.org/10.1016/j.apsusc.2017.11.137 (2018)

    Article  CAS  Google Scholar 

  75. Maitra, T, Jung, S, Giger, ME, Kandrical, V, Ruesch, T, Poulikakos, D, “Superhydrophobicity vs. Ice Adhesion: The Quandary of Robust Icephobic Surface Design.” Adv. Mater. Interfaces, 2 (16) 1500330 (2015)

    Article  Google Scholar 

  76. He, Y, “Reducing Ice Adhesion by Hierarchical Micro-Nano-Pillars.” Appl. Surf. Sci., 305 589–595 (2014)

    Article  CAS  Google Scholar 

  77. Böttcher, R, Seidelmann, M, Scherge, M, “Sliding of UHMWPE on Ice: Experiment vs. Modeling.” Cold Reg. Sci. Technol., 141 171–180. https://doi.org/10.1016/j.coldregions.2017.06.010 (2017)

    Article  Google Scholar 

  78. Bäurle, L, Kaempfer, ThU, Szabó, D, Spencer, ND, “Sliding Friction of Polyethylene on Snow and Ice: Contact Area and Modeling.” Cold Reg. Sci. Technol., 47 (3) 276–289. https://doi.org/10.1016/j.coldregions.2006.10.005 (2007)

    Article  Google Scholar 

  79. Hemette, S, Cayer-Barrioz, J, Mazuyer, D, “Friction Setup and Real-Time Insights of the Contact Under Controlled Cold Environment: The KŌRI Tribometer for Rubber-Ice Contact Application.” Rev. Sci. Instrum., 89 (12) 123903. https://doi.org/10.1063/1.5048844 (2018)

    Article  CAS  Google Scholar 

  80. Zheng, K, et al. “The Effect of Solid-Water-Air Morphology on Wetting States for Nanocomposite Superhydrophobic Coating.” Surf. Coat. Technol., 387 125457. https://doi.org/10.1016/j.surfcoat.2020.125457 (2020)

    Article  CAS  Google Scholar 

  81. Tuteja, A, et al. “Designing Superoleophobic Surfaces.” Science, 318 (5856) 1618–1622 (2007)

    Article  Google Scholar 

  82. Tuteja, A, Choi, W, Mabry, JM, McKinley, GH, Cohen, RE, “Robust Omniphobic Surfaces.” Proc. Natl. Acad. Sci., 105 (47) 18200–18205. https://doi.org/10.1073/pnas.0804872105 (2008)

    Article  Google Scholar 

  83. Lee, SG, Ham, DS, Lee, DY, Bong, H, Cho, K, “Transparent Superhydrophobic/Translucent Superamphiphobic Coatings Based on Silica-Fluoropolymer Hybrid Nanoparticles.” Langmuir, 29 (48) 15051–15057. https://doi.org/10.1021/la404005b (2013)

    Article  CAS  Google Scholar 

  84. Choi, W, Tuteja, A, Mabry, JM, Cohen, RE, McKinley, GH, “A Modified Cassie-Baxter Relationship to Explain Contact Angle Hysteresis and Anisotropy on Non-Wetting Textured Surfaces.” J. Colloid Interface Sci., 339 (1) 208–216. https://doi.org/10.1016/j.jcis.2009.07.027 (2009)

    Article  CAS  Google Scholar 

  85. Zheng, K, et al. “Effect of Superhydrophobic Composite Coatings on Drag Reduction in Laminar Flow.” ACS Appl. Polym. Mater., 2 (4) 1614–1622. https://doi.org/10.1021/acsapm.0c00049 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants (PR2021_80294) from US Army Combat Capabilities Development Command Solider Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joey Mead.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, J., Dodiuk, H. et al. The reduction in ice adhesion using controlled topography superhydrophobic coatings. J Coat Technol Res 20, 469–483 (2023). https://doi.org/10.1007/s11998-022-00682-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-022-00682-2

Keywords

Navigation