Skip to main content
Log in

Assessment of dust adhesion forces on the hydrophilic/hydrophobic glasses at two representative CSP sites in Morocco

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Many sites with high solar radiation like MENA regions face high dust loads that reduce the efficiency generation of solar plants. In this context, this paper provides an overview of dust adhesion mechanism on the surfaces of concentrated solar power (CSP) mirrors. The assessment of dust adhesion was performed on the hydrophilic/hydrophobic glasses at two representative CSP locations in Morocco (Ouarzazate and Midelt). Two types of reflecting mirrors are examined. The first one is based on superhydrophilic TiO2 protective coating, and the second one is the reflector mirror based on hydrophobic Al2O3 protective coating. The research shows that for particle radius of 2 µm, the Van der Waals force dominates for hydrophobic coating for Midelt with high humidity. In contrast, the capillary forces are prominent on the superhydrophilic TiO2 coating for Ouarzazate with low humidity. The results show good agreement with the X-ray diffraction results. However, as compared to Midelt dust, the dust particles from Midelt are formed of Smectites for the clay fractions. Smectite is highly swelling clay in water compared with Illite, Kaolinite, and Vermiculites types of clay minerals (low swelling clay in water). This work provided a facile method for the calculus of adhesion forces on the surfaces of CSP mirrors and as result helps us to select the best types of anti-soiling coating for reflector mirrors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kannan, N, Vakeesan, D, “Solar Energy for Future World: - A Review.” Renew. Sustain. Energy Rev., 62 1092–1105. https://doi.org/10.1016/j.rser.2016.05.022 (2016)

    Article  Google Scholar 

  2. Madsen, DN, Hansen, JP, “Outlook of Solar Energy in Europe Based on Economic Growth Characteristics.” Renew. Sustain. Energy Rev., 114 109306. https://doi.org/10.1016/j.rser.2019.109306 (2019)

    Article  Google Scholar 

  3. Šimelytė, A, “Promotion of Renewable Energy in Morocco.” In: Energy Transformation Towards Sustainability, pp. 249–287 (2019)

  4. Kharbach, M, Chfadi, T, “CO2 Emissions in Moroccan Road Transport Sector: Divisia, Cointegration, and EKC Analyses.” Sustain. Cities Soc., 35 396–401. https://doi.org/10.1016/j.scs.2017.08.016 (2017)

    Article  Google Scholar 

  5. Polo, J, Fernández-peruchena, C, Gastón, M, “Analysis on the Long-Term Relationship Between DNI and CSP Yield Production for Different Technologies.” Solar Energy, 155 1121–1129. https://doi.org/10.1016/j.solener.2017.07.059 (2017)

    Article  Google Scholar 

  6. Cogliani, E, “The Role of the Direct Normal Irradiance (DNI) Forecasting in the Operation of Solar Concentrating Plants.” Energy Procedia, 49 1612–1621. https://doi.org/10.1016/j.egypro.2014.03.170 (2013)

    Article  Google Scholar 

  7. El Baraka, A, Bouhafra, O, Jorio, A, Khaldoun, A, “Improvement of WET Cleaning Technique of CSP Reflector Mirrors Using Novel Liquids.” Mater. Today Proc., 53 332–335. https://doi.org/10.1016/j.matpr.2022.01.363 (2022)

    Article  CAS  Google Scholar 

  8. Sayyah, A, Horenstein, MN, Mazumder, MK, “Energy Yield Loss Caused by Dust Deposition on Photovoltaic Panels.” Sol. Energy, 107 576–604. https://doi.org/10.1016/j.solener.2014.05.030 (2014)

    Article  Google Scholar 

  9. Ennaceri, H, et al. “Deposition of Multifunctional TiO2 and ZnO Top-Protective Coatings for CSP Application.” Surf. Coat. Technol., 298 103–113. https://doi.org/10.1016/j.surfcoat.2016.04.048 (2016)

    Article  CAS  Google Scholar 

  10. Houda, E, Dounya, B, Asmae, K, Abdelilah, B, Ahmed, E, “Deposition of Transparent Aluminum Oxide Films on Silvered CSP Mirrors.” In: International Renewable and Sustainable Energy Conference (IRSEC 2014), pp. 114–119 (2014)

  11. Figgis, B, et al. “Investigation of Factors Affecting Condensation on Soiled PV Modules.” Sol. Energy, 159 (2017) 488–500. https://doi.org/10.1016/j.solener.2017.10.089 (2018)

    Article  CAS  Google Scholar 

  12. Ilse, K, et al. “Advanced Performance Testing of Anti-Soiling Coatings—Part II: Particle-Size Dependent Analysis for Physical Understanding of Dust Removal Processes and Determination of Adhesion Forces.” Sol. Energy Mater. Sol. Cells, 202 110049. https://doi.org/10.1016/j.solmat.2019.110049 (2019)

    Article  CAS  Google Scholar 

  13. Three, C, Constants, H, Distance, ME, Surfaces, TNI, Materials, C, Energies, PI, “The Extended DLVO Theory.” Interface Sci. Technol., 16 31–48. https://doi.org/10.1016/S1573-4285(08)00203-2 (2008)

    Article  Google Scholar 

  14. Reza, M, Hizam, H, Gomes, C, Amran, M, Ismael, M, Hajighorbani, S, “Power Loss Due to Soiling on Solar Panel: A Review.” Renew. Sustain. Energy Rev., 59 1307–1316. https://doi.org/10.1016/j.rser.2016.01.044 (2016)

    Article  Google Scholar 

  15. Kazmerski, LL, et al. “Fundamental Studies of Adhesion of Dust to PV Module Surfaces.” IEEE J. Photovoltaics, 6 719–729 (2016)

    Article  Google Scholar 

  16. Tan, CL, Gao, S, Wee, BS, Asa-Awuku, A, Thio, BJ, “Adhesion of Dust Particles to Common Indoor Surfaces in an Air-Conditioned Environment.” Aerosol Sci. Technol., 48 (5) 541–551. https://doi.org/10.1080/02786826.2014.898835 (2014)

    Article  CAS  Google Scholar 

  17. El Baraka, A, Ennaceri, H, Ennaoui, A, Ghennioui, A, Jorio, A, Khaldoun, A, “A Novel Approach to Evaluate Soiling Adhesion on the Surface of CSP Reflectors via Extended DLVO Theory.” Appl. Phys. A, 125 1–8. https://doi.org/10.1007/s00339-019-2809-0 (2019)

    Article  CAS  Google Scholar 

  18. Ennaceri, H, Khaldoun, A, Benyoussef, A, Köhler, T, SáezAraoz, R, Ennaoui, A, “Transparent and Hydrophilic TiO2 Anatase as Top-Protective Layer for CSP Reflectors.” Adv. Mater. Res., 1119 355–359. https://doi.org/10.4028/www.scientific.net/AMR.1119.355 (2015)

    Article  Google Scholar 

  19. Isaifan, RJ, Johnson, D, Ackermann, L, Figgis, B, Ayoub, M, “Solar Energy Materials and Solar Cells Evaluation of the Adhesion Forces Between Dust Particles and Photovoltaic Module Surfaces.” Sol. Energy Mater. Sol. Cells, 191 (2018) 413–421. https://doi.org/10.1016/j.solmat.2018.11.031 (2019)

    Article  CAS  Google Scholar 

  20. Li, Q, Rudolph, V, Peukert, W, “London-van der Waals Adhesiveness of Rough Particles.” Powder Technol., 161 (3) 248–255. https://doi.org/10.1016/j.powtec.2005.10.012 (2006)

    Article  CAS  Google Scholar 

  21. Ghanbari, A, Attar, MM, “Surface Free Energy Characterization and Adhesion Performance of Mild Steel Treated Based on Zirconium Conversion Coating: A Comparative Study.” Surf. Coat. Technol., 246 26–33. https://doi.org/10.1016/j.surfcoat.2014.02.057 (2014)

    Article  CAS  Google Scholar 

  22. Nguyen, D, Phan, T, Hsu, TP, Phan, J, “Adhesion and Surface Energy of Shale Rocks.” Colloids Surfaces A Physicochem. Eng. Asp., 520 712–721. https://doi.org/10.1016/j.colsurfa.2017.02.029 (2017)

    Article  CAS  Google Scholar 

  23. Pennetta, S, Yu, S, Borghesani, P, Cholette, M, Barry, J, Guan, Z, “An Investigation on Factors Influencing Dust Accumulation on CSP Mirrors.” In: AIP Conference Proceedings 1734, vol. 070024 (2016). https://doi.org/10.1063/1.4949171.

  24. Ibrahim, AH, Brach, RM, Dunn, PF, “Microparticle Detachment from Surfaces Exposed to Turbulent Air Flow: Microparticle Motion After Detachment.” J. Aerosol Sci., 35 (10) 1189–1204. https://doi.org/10.1016/j.jaerosci.2004.05.003 (2004)

    Article  CAS  Google Scholar 

  25. Hough, DB, White, LR, “The Calculation of Hamakar Constants from Liftshitz Theory with Applications to Wetting Phenomena.” Adv. Colloid Interface Sci., 14 3–41 (1980)

    Article  CAS  Google Scholar 

  26. Van Oss, MKCCJ, “Interfacial Lifshitz–van der Waals and Polar Interactions in Macroscopic Systems.” Chem. Rev., 88 927–941 (1988)

    Article  Google Scholar 

  27. Butt, H, Kappl, M, “Normal Capillary Forces.” Adv. Colloid Interface Sci., 146 (1–2) 48–60. https://doi.org/10.1016/j.cis.2008.10.002 (2009)

    Article  CAS  Google Scholar 

  28. Cleaver, JAS, Tyrrell, JWG, “The Influence of Relative Humidity on Particle Adhesion.” Kona Powder Part., 22 (22) 9 (2004)

    Article  CAS  Google Scholar 

  29. Rabinovich, YI, Movchan, TG, Churaev, NV, Ten, PG, “Phase Separation of Binary Mixtures of Polar Liquids Close to Solid Surfaces.” Langmuir, 7 817–820 (1991)

    Article  CAS  Google Scholar 

  30. Rabinovich, YI, Adler, JJ, Esayanur, MS, Ata, A, Singh, RK, “Capillary Forces Between Surfaces with Nanoscale Roughness.” Adv. Colloid Interface Sci., 96 213–230 (2002)

    Article  CAS  Google Scholar 

  31. Bowling, RA, “An Analysis of Particle Adhesion on Semiconductor Surfaces.” J. Electrochem. Soc., 157 (1980) 2208–2214 (1985)

    Article  Google Scholar 

  32. Wentworth, CK, “A Scale of Grade and Class Terms for Clastic Sediments.” J. Geol., 30 (5) 377–392 (1922)

    Article  Google Scholar 

  33. Betancur, V, Sun, J, Wu, N, Liu, Y, “Integrated Lateral Flow Device for Flow Control with Blood Separation and Biosensing.” Micromachines, 8 (12) 367. https://doi.org/10.3390/mi8120367 (2017)

    Article  Google Scholar 

  34. Aramrak, S, Flury, M, Harsh, JB, “Detachment of Deposited Colloids by Advancing and Receding Air–Water Interfaces.” Langmuir, 27 (16) 9985–9993. https://doi.org/10.1021/la201840q (2011)

    Article  CAS  Google Scholar 

  35. Latthe, SS, Sutar, RS, Kodag, VS, Bhosale, AK, Kumar, AM, “Self-Cleaning Superhydrophobic Coatings: Potential Industrial Applications.” Prog. Org. Coat., 128 (2018) 52–58. https://doi.org/10.1016/j.porgcoat.2018.12.008 (2019)

    Article  CAS  Google Scholar 

  36. Boström, M, Deniz, V, Franks, GV, Ninham, BW, “Extended DLVO Theory: Electrostatic and Non-Electrostatic Forces in Oxide Suspensions.” Adv. Colloid Interface Sci., 126 5–15. https://doi.org/10.1016/j.cis.2006.05.001 (2006)

    Article  CAS  Google Scholar 

  37. Figgis, B, Ennaoui, A, Guo, B, Javed, W, Chen, E, “Outdoor Soiling Microscope for Measuring Particle Deposition and Resuspension.” Sol. Energy, 137 158–164. https://doi.org/10.1016/j.solener.2016.08.015 (2016)

    Article  Google Scholar 

  38. He, C, Benkoski, JJ, Luedeman, WL, Teehan, JO, Sarah, MH, Lorenz, RD, “Experimental Investigation of Surface Adhesion of Titan Analog Materials: Mitigation by Dust-Repellent Coatings Force.” Planet. Space Sci., 179 (August) 2019. https://doi.org/10.1016/j.pss.2019.104721 (2019)

    Article  CAS  Google Scholar 

  39. Rifai, A, Abu, N, Yilbas, BS, Khaled, M, “Mechanics of Dust Removal from Rotating Disk in Relation to Self-Cleaning Applications of PV Protective Cover.” Sol. Energy, 130 193–206. https://doi.org/10.1016/j.solener.2016.02.028 (2016)

    Article  Google Scholar 

  40. Search, H, Journals, C, Contact, A, Iopscience, M, Address, IP, “TiO2 Photocatalysis: A Historical Overview and Future Prospects.” Jpn. J. Appl. Phys., 44 8269–8285. https://doi.org/10.1143/JJAP.44.8269 (2005)

    Article  CAS  Google Scholar 

  41. Ganesh, VA, Raut, HK, Nair, AS, Ramakrishna, S, “A Review on Self-Cleaning Coatings.” J. Mater. Chem., 21 (41) 16304–16322. https://doi.org/10.1039/c1jm12523k (2011)

    Article  CAS  Google Scholar 

  42. Martinez, A, Byrnes, AP, “Modeling Dielectric-Constant Values of Geologic Materials: An Aid to Ground-Penetrating Radar Data Collection and Interpretation.” Curr. Res. Earth Sci., 247 (1) 1–16 (2001)

    Google Scholar 

  43. Lebron, I, Robinson, DA, Goldberg, S, Lesch, SM, “The Dielectric Permittivity of Calcite and Arid Zone Soils with Carbonate Minerals.” Soil Sci. Soc. Am. J., 68 (5) 1549–1559. https://doi.org/10.2136/sssaj2004.1549 (2004)

    Article  CAS  Google Scholar 

  44. Egashira, K, Tanigawa, H, “Swelling Properties of Smectitic Clays of Different Origins.” Soil Sci. Plant Nutr., 32 (4) 635–638. https://doi.org/10.1080/00380768.1986.10557545 (1986)

    Article  CAS  Google Scholar 

  45. Christidis, GE, “Industrial Clays.” European Mineralogical Union Notes in Mineralogy, 9 (1) 341–414 (2011)

    Google Scholar 

  46. Geramian, M, Osacky, M, Ivey, DG, Liu, Q, Etsell, TH, “Effect of Swelling Clay Minerals (Montmorillonite and Illite-Smectite) on Nonaqueous Bitumen Extraction from Alberta Oil Sands.” Energy and Fuels, 30 (10) 8083–8090. https://doi.org/10.1021/acs.energyfuels.6b01026 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayoub El Baraka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Baraka, A., Jorio, A., Ennaoui, A. et al. Assessment of dust adhesion forces on the hydrophilic/hydrophobic glasses at two representative CSP sites in Morocco. J Coat Technol Res 20, 403–412 (2023). https://doi.org/10.1007/s11998-022-00681-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-022-00681-3

Keywords

Navigation