Skip to main content
Log in

Nano-silica-containing acrylic polyurethane and acrylic-polyester hybrid polyurethane coatings for direct-to-metal (DTM) coating applications – a comparative study

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

In the era of sustainability, direct-to-metal coatings have proven to be a promising solution as it eliminates the need for underneath primer coating layers. In the present study, two coating systems, viz. acrylic polyurethane and acrylic-polyester hybrid polyurethane nano-composite coatings, were prepared by addition of nano-silica in various loadings for direct-to-metal coating applications. The addition of nano-silica along with selected resin systems enables to meet desired mechanical properties, chemical resistance along with weathering and corrosion resistance of DTM coating system. Incredible improvement in the overall mechanical properties of the coating including pencil hardness and scratch resistance has been observed by the addition of nano-silica. SEM technique was employed to evaluate the nano-silica dispersion into the coating system along with its morphology. SEM studies revealed thorough dispersion of the nanoparticles within the coating matrix for both the coating systems. Thermal properties were studied by thermogravimetric analysis along with structural characterization by Fourier transform infrared spectroscopy. Thermal stability of both the coating systems increased with the addition of nano-silica; however, acrylic-polyester hybrid polyurethane coatings revealed better thermal stability at 8% nano-silica loading. Color and gloss changes were studied before and after 500 h exposure to a QUV chamber. Anticorrosive properties were evaluated by salt spray exposure for 700 h. At 8% nano-silica loading, acrylic-polyester hybrid polyurethane coatings revealed better weathering performance along with anticorrosive properties and chemical resistance owing to the presence of hybrid polymer chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Santos, D, Brites, C, Costa, MR, Santos, MT, “Performance of paint systems with polyurethane topcoats, proposed for atmospheres with very high corrosivity category.” Prog. Org. Coat., 54 (4) 344–352 (2005)

    Article  CAS  Google Scholar 

  2. Potter, TA, Kahl, L, “1K and 2K polyurethanes for automotive topcoats.” SAE Techn. Papers, 412 7–12 (1993)

    Google Scholar 

  3. Kralj, M, Pavković, K, Stojanović, I, Anđal, J, “Adhesion and anticorrosive properties of DTM coating as related to primer coating.” Gradjevinar, 71 (5) 401–408 (2019)

    Google Scholar 

  4. Clamen, G, et al. “Protection of metal with a novel waterborne acrylic/urethane hybrid technology.” Prog. Org. Coat., 72 (1–2) 144–151 (2011)

    Article  CAS  Google Scholar 

  5. Bulick AS, LeFever CR, Frazee GR, Jin K, Mellott ML, “Metal adhesion and corrosion resistance in waterborne, styrenated acrylic direct to metal (DTM) resins,” Eur. Coat. Show, 2017(1) (2017)

  6. Gao, T, He, Z, Hihara, LH, Mehr, HS, Soucek, MD, “Outdoor exposure and accelerated weathering of polyurethane/polysiloxane hybrid coatings.” Prog. Org. Coat., 130 44–57 (2019)

    Article  CAS  Google Scholar 

  7. Gite, VV, Mahulikar, PP, Hundiwale, DG, “Preparation and properties of polyurethane coatings based on acrylic polyols and trimer of isophorone diisocyanate.” Prog. Org. Coat., 68 (4) 307–312 (2010)

    Article  CAS  Google Scholar 

  8. Gite, VV, Mahulikar, PP, Hundiwale, DG, Kapadi, UR, “Polyurethane coatings using trimer of isophorone diisocyanate.” J. Sci. Industr. Res., 63 (4) 348–354 (2004)

    CAS  Google Scholar 

  9. Kabra, AP, Mahanwar, P, Shertukde, V, Bambole, V, “Performance of nanosilica in acrylic polyol 2K polyurethane coatings.” Pigment Resin Technol., 41 (4) 230–239 (2012)

    Article  CAS  Google Scholar 

  10. Zhang, J, Tu, W, Dai, Z, “Transparent polyester polyol-based polyurethane coatings: the effect of alcohols.” J. Coat. Technol. Res., 10 (6) 887–895 (2013)

    Article  Google Scholar 

  11. Zhang, J, Tu, W, Dai, Z, “Synthesis and characterization of transparent and high impact resistance polyurethane coatings based on polyester polyols and isocyanate trimers.” Prog. Org. Coat., 75 (4) 579–583 (2012)

    Article  CAS  Google Scholar 

  12. Chen, X, Wu, L, Zhou, S, You, B, “In situ polymerization and characterization of polyester-based polyurethane/nano-silica composites.” Polymer Int., 52 (6) 993–998 (2003)

    Article  CAS  Google Scholar 

  13. Baer, DR, Burrows, PE, El-Azab, AA, “Enhancing coating functionality using nanoscience and nanotechnology.” Prog. Org. Coat., 47 (3–4) 342–356 (2003)

    Article  CAS  Google Scholar 

  14. Presting, H, König, U, “Future nanotechnology developments for automotive applications.” Mater. Sci. Eng. C, 23 (6–8) 737–741 (2003)

    Article  Google Scholar 

  15. Gläsel, HJ, et al. “Preparation of scratch and abrasion resistant polymeric nanocomposites by monomer grafting onto nanoparticles, 2a: Characterization of radiation-cured polymeric nanocomposites.” Macromol. Chem. Phys., 201 (18) 2765–2770 (2000)

    Article  Google Scholar 

  16. Maganty, S, et al. “Enhanced mechanical properties of polyurethane composite coatings through nanosilica addition.” Prog. Org. Coat., 90 243–251 (2016)

    Article  CAS  Google Scholar 

  17. Syamsundar, C, Chatterjee, D, Kamaraj, M, Maiti, AK, “Erosion characteristics of nanoparticle-reinforced polyurethane coatings on stainless steel substrate.” J. Mater. Eng. Perform., 24 (4) 1391–1405 (2015)

    Article  CAS  Google Scholar 

  18. Rashvand, M, Ranjbar, Z, Rastegar, S, “Nano zinc oxide as a UV-stabilizer for aromatic polyurethane coatings.” Prog. Org. Coat., 71 (4) 362–368 (2011)

    Article  CAS  Google Scholar 

  19. Mondal, C, et al. “Deposition of zinc oxide nanomaterial on different substrates for useful applications.” Cryst. Eng. Comm., 16 (20) 4322–4328 (2014)

    Article  CAS  Google Scholar 

  20. Rashvand, M, Ranjbar, Z, “Effect of nano-ZnO particles on the corrosion resistance of polyurethane-based waterborne coatings immersed in sodium chloride solution via EIS technique.” Prog. Org. Coat., 76 (10) 1413–1417 (2013)

    Article  CAS  Google Scholar 

  21. Fangli, Y, Peng, H, Chunlei, Y, Shulan, H, Jinlin, L, “Preparation and properties of zinc oxide nanoparticles coated with zinc aluminate.” J. Mater. Chem., 13 (3) 634–637 (2003)

    Article  Google Scholar 

  22. Lowry, MS, Hubble, DR, Wressell, AL, Vratsanos, MS, Pepe, FR, Hegedus, CR, “Assessment of UV-permeability in nano-ZnO filled coatings via high throughput experimentation.” J. Coat. Technol. Res., 5 (2) 233–239 (2008)

    Article  CAS  Google Scholar 

  23. Shi, H, Liu, F, Yang, L, Han, E, “Characterization of protective performance of epoxy reinforced with nanometer-sized TiO2 and SiO2.” Prog. Org. Coat., 62 (4) 359–368 (2008)

    Article  CAS  Google Scholar 

  24. Allen, NS, Edge, M, Ortega, A, Liauw, CM, Stratton, J, McIntyre, RB, “Behaviour of nanoparticle (ultrafine) titanium dioxide pigments and stabilisers on the photooxidative stability of water based acrylic and isocyanate based acrylic coatings.” Polymer Degrad. Stability, 78 (3) 467–478 (2002)

    Article  CAS  Google Scholar 

  25. Allen, NS, et al. “Degradation and stabilisation of polymers and coatings: nano vs pigmentary titania particles.” Polymer Degrad. Stability, 85 (3) 927–946 (2004)

    Article  CAS  Google Scholar 

  26. Chen, XD, Wang, Z, Liao, ZF, Mai, YL, Zhang, MQ, “Roles of anatase and rutile TiO2 nanoparticles in photo oxidation of polyurethane.” Polymer Test., 26 (2) 202–208 (2007)

    Article  CAS  Google Scholar 

  27. Shi, X, Nguyen, TA, Suo, Z, Liu, Y, Avci, R, “Effect of nanoparticles on the anticorrosion and mechanical properties of epoxy coating.” Surf. Coat. Technol., 204 (3) 237–245 (2009)

    Article  CAS  Google Scholar 

  28. Groenewolt, M, “Highly scratch resistant coatings for automotive applications.” Prog. Org. Coat., 61 (2–4) 106–109 (2008)

    Article  CAS  Google Scholar 

  29. Seubert, C, Nietering, K, Nichols, M, Wykoff, R, Bollin, S, “An overview of the scratch resistance of automotive coatings: exterior clearcoats and polycarbonate hardcoats.” Coatings, 2 (4) 221–234 (2012)

    Article  CAS  Google Scholar 

  30. Bertrand-Lambotte, P, Loubet, JL, Verpy, C, Pavan, S, “Understanding of automotive clearcoats scratch resistance.” Thin Solid Films, 420–421 281–286 (2002)

    Article  Google Scholar 

  31. Latthe, SS, et al. “Self – cleaning superhydrophobic coatings: potential industrial applications.” Prog. Org. Coat., 128 52–58 (2019)

    Article  CAS  Google Scholar 

  32. Tahmassebi, N, Moradian, S, Ramezanzadeh, B, Khosravi, A, Behdad, S, “Effect of addition of hydrophobic nano silica on viscoelastic properties and scratch resistance of an acrylic/melamine automotive clearcoat.” Tribol. Int., 43 (3) 685–693 (2010)

    Article  CAS  Google Scholar 

  33. Barna, E, et al. “Innovative, scratch proof nanocomposites for clear coatings.” Comp. Part A: Appl. Sci. Manuf., 36 (4) 473–480 (2005)

    Article  Google Scholar 

  34. Scrinzi, E, Rossi, S, Kamarchik, P, Deflorian, F, “Evaluation of durability of nano-silica containing clear coats for automotive applications.” Prog. Org. Coat., 71 (4) 384–390 (2011)

    Article  CAS  Google Scholar 

  35. Chen, Y, Zhou, S, Yang, H, Gu, G, Wu, L, “Preparation and characterization of nanocomposite polyurethane.” J. Colloid Interface Sci., 279 (2) 370–378 (2004)

    Article  CAS  Google Scholar 

  36. Zhou, S, Wu, L, Sun, J, Shen, W, “The change of the properties of acrylic-based polyurethane via addition of nano-silica.” Prog. Org. Coat., 45 (1) 33–42 (2002)

    Article  CAS  Google Scholar 

  37. Dashtizadeh, A, Abdouss, M, Mahdavi, H, Khorassani, M, “Acrylic coatings exhibiting improved hardness, solvent resistance and glossiness by using silica nano-composites.” Appl. Surf. Sci., 257 (6) 2118–2125 (2011)

    Article  CAS  Google Scholar 

  38. Chen, G, Zhou, S, Gu, G, Yang, H, Wu, L, “Effects of surface properties of colloidal silica particles on redispersibility and properties of acrylic-based polyurethane/silica composites.” J. Colloid Interface Sci., 281 (2) 339–350 (2005)

    Article  CAS  Google Scholar 

  39. Zhou, S, Wu, L, Xiong, M, He, Q, Chen, G, “Dispersion and UV-VIS properties of nanoparticles in coatings.” J. Dispersion Sci. Technol., 25 (4) 417–433 (2004)

    Article  CAS  Google Scholar 

  40. Chen, G, Zhou, S, Gu, G, Wu, L, “Modification of colloidal silica on the mechanical properties of acrylic based polyurethane/silica composites.” Coll. Surf. A: Physicochem. Eng. Aspects, 296 (1–3) 29–36 (2007)

    CAS  Google Scholar 

  41. Allahverdi, A, Ehsani, M, Janpour, H, Ahmadi, S, “The effect of nanosilica on mechanical, thermal and morphological properties of epoxy coating.” Prog. Org. Coat., 75 (4) 543–548 (2012)

    Article  CAS  Google Scholar 

  42. Mirabedini, SM, Sabzi, M, Zohuriaan-Mehr, J, Atai, M, Behzadnasab, M, “Weathering performance of the polyurethane nanocomposite coatings containing silane treated TiO2 nanoparticles.” Appl. Surf. Sci., 257 (9) 4196–4203 (2011)

    Article  CAS  Google Scholar 

  43. Chen, Y, Zhou, S, Yang, H, Wu, L, “Structure and properties of polyurethane/nanosilica composites.” J. Appl. Polymer Sci., 95 (5) 1032–1039 (2005)

    Article  CAS  Google Scholar 

  44. Carneiro, C, Vieira, R, Mendes, AM, Magalhães, FD, “Nanocomposite acrylic paint with self-cleaning action.” J. Coat. Technol. Res., 9 (6) 687–693 (2012)

    Article  CAS  Google Scholar 

  45. Malaki, M, Hashemzadeh, Y, Fadaei Tehrani, A, “Abrasion resistance of acrylic polyurethane coatings reinforced by nano-silica.” Prog. Org. Coat., 125 507–515 (2018)

    Article  CAS  Google Scholar 

  46. Malaki, M, Hashemzadeh, Y, Karevan, M, “Effect of nano-silica on the mechanical properties of acrylic polyurethane coatings.” Prog. Org. Coat., 101 477–485 (2016)

    Article  CAS  Google Scholar 

  47. Li, X, Cao, Z, Zhang, Z, Dang, H, “Surface-modification in situ of nano-SiO2 and its structure and tribological properties.” Appl. Surf. Sci., 252 (22) 7856–7861 (2006)

    Article  CAS  Google Scholar 

  48. Bertrand-Lambotte, P, Loubet, JL, Verpy, C, “Mar and scratch resistance of automotive clearcoats: development of new testing methods to improve coatings.” Tribol. Ser., 39 883–893 (2001)

    Article  CAS  Google Scholar 

  49. Shen, W, et al. “A quantitative index for mar and scratch resistance of materials for automotive glazing applications and quantitative evaluation of damages by different scratching modes.” Tribol. Lett., 17 (3) 637–644 (2004)

    Article  Google Scholar 

  50. Madireddi, N, Mahanwar, PA, “Anticorrosive polyurethane clear coat with self-cleaning character.” Int. J. Chem, Molec, Nucl, Mater. Metall. Eng., 10 (1) 34–41 (2016)

    Google Scholar 

  51. Bui, TMA, et al. “Investigation of crosslinking, mechanical properties and weathering stability of acrylic polyurethane coating reinforced by SiO2 nanoparticles issued from rice husk ash.” Mater. Chem. Phys., 241 122445 (2020)

    Article  Google Scholar 

  52. Mills, DJ, Jamali, SS, Paprocka, K, “Investigation into the effect of nano-silica on the protective properties of polyurethane coatings.” Surf. Coat. Technol., 209 137–142 (2012)

    Article  CAS  Google Scholar 

  53. Jalili, MM, Moradian, S, Dastmalchian, H, Karbasi, A, “Investigating the variations in properties of 2-pack polyurethane clear coat through separate incorporation of hydrophilic and hydrophobic nano-silica.” Prog. Org. Coat., 59 (1) 81–87 (2007)

    Article  CAS  Google Scholar 

  54. Ni, L, et al. “Direct-to-metal UV-cured hybrid coating for the corrosion protection of aircraft aluminium alloy.” Corros. Sci., 89 242–249 (2014)

    Article  CAS  Google Scholar 

  55. Jalili, MM, Moradian, S, “Deterministic performance parameters for an automotive polyurethane clearcoat loaded with hydrophilic or hydrophobic nano-silica.” Prog. Org. Coat., 66 (4) 359–366 (2009)

    Article  CAS  Google Scholar 

  56. Gaumet, BPS, Lemaire, J, “Influence of titanium dioxide pigment characteristics on durability of four paints (acrylic isocyanate, polyester melamine, polyester lsocyanate, alkyd).” Surf. Coat. Int., 8 367–372 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukanya Gangopadhyay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gangopadhyay, S., Mahanwar, P.A. Nano-silica-containing acrylic polyurethane and acrylic-polyester hybrid polyurethane coatings for direct-to-metal (DTM) coating applications – a comparative study. J Coat Technol Res 19, 1773–1786 (2022). https://doi.org/10.1007/s11998-022-00647-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-022-00647-5

Keywords

Navigation