Skip to main content

Advertisement

Log in

Slow-release fertilizers based on lignin–sodium alginate biopolymeric blend for sustained N–P nutrients release

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

In this study, biodegradable sodium alginate–lignin (SA-L) blend formulations at different SA/L ratios were developed as low-cost coating material for highly efficient slow-release di-ammonium phosphate (DAP) fertilizer. The structural and chemical properties of different coating formulations were investigated via FTIR spectroscopy, and the slow-release capability of coated fertilizers was determined in water, as well as in soil. Moreover, their impact on the water-holding and retention capacities of soil was also examined. Experimental results indicated that the application of developed coatings corrected the fertilizer surface irregularities by forming a uniform and compact polymeric film. Further, they significantly enhanced its mechanical properties and extended the maximum nutrients availability toward longer periods. It was also found that increasing the lignin content favorably affected the slow-release behavior, exceeding one month before the nutrients complete release in soil, instead of only four days obtained using uncoated DAP. Findings from this work indicated that SA-L blend coating material could interestingly serve in producing new eco-friendly slow-release DAP fertilizer with improved physical quality and nutrients use efficiency.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang, Y, Liu, M, Ni, B, Xie, L, “κ-Carrageenan-Sodium Alginate Beads and Superabsorbent Coated Nitrogen Fertilizer with Slow-Release, Water-Retention, and Anticompaction Properties.” Ind. Eng. Chem. Res., 51 (3) 1413–1422. https://doi.org/10.1021/ie2020526 (2012)

    Article  CAS  Google Scholar 

  2. Salimi, M, Motamedi, E, Motesharezedeh, B, Hosseini, HM, Alikhani, HA, “Starch-g-Poly(Acrylic Acid-Co-Acrylamide) Composites Reinforced with Natural Char Nanoparticles Toward Environmentally Benign Slow-Release Urea Fertilizers.” J. Environ. Chem. Eng., 8 (3) 103765. https://doi.org/10.1016/j.jece.2020.103765 (2020)

    Article  CAS  Google Scholar 

  3. Liu, X, Yang, Y, Gao, B, Li, Y, Wan, Y, “Environmentally Friendly Slow-Release Urea Fertilizers Based on Waste Frying Oil for Sustained Nutrient Release.” ACS Sustain. Chem. Eng., 5 (7) 6036–6045. https://doi.org/10.1021/acssuschemeng.7b00882 (2017)

    Article  CAS  Google Scholar 

  4. Kassem, I, Ablouh, E-H, El Bouchtaoui, F-Z, et al. “Biodegradable All-Cellulose Composite Hydrogel as Eco-Friendly and Efficient Coating Material for Slow-Release MAP Fertilizer.” Prog. Org. Coat., 162 106575. https://doi.org/10.1016/j.porgcoat.2021.106575 (2022)

    Article  CAS  Google Scholar 

  5. Shaviv, A, Mikkelsen, RL, “Controlled-Release Fertilizers to Increase Efficiency of Nutrient Use and Minimize Environmental Degradation—A Review.” Fertil. Res., 35 (1–2) 1–12. https://doi.org/10.1007/BF00750215 (1993)

    Article  CAS  Google Scholar 

  6. El Assimi, T, Blažic, R, Vidović, E, et al. “Polylactide/Cellulose Acetate Biocomposites as Potential Coating Membranes for Controlled and Slow Nutrients Release from Water-Soluble Fertilizers.” Prog. Org. Coat.,. https://doi.org/10.1016/j.porgcoat.2021.106255 (2021)

    Article  Google Scholar 

  7. Sofyane, A, Ablouh, E, Lahcini, M, et al. “Slow-Release Fertilizers Based on Starch Acetate/Glycerol/Polyvinyl Alcohol Biocomposites for Sustained Nutrient Release.” Mater. Today Proc., 36 74–81. https://doi.org/10.1016/j.matpr.2020.05.319 (2021)

    Article  CAS  Google Scholar 

  8. Lawrencia, D, Wong, SK, Low, DYS, et al. “Controlled Release Fertilizers: A Review on Coating Materials and Mechanism of Release.” Plants, 10 (2) 1–26. https://doi.org/10.3390/plants10020238 (2021)

    Article  CAS  Google Scholar 

  9. Sanguanwong, A, Flood, AE, Ogawa, M, et al. “Hydrophobic Composite Foams Based on Nanocellulose-Sepiolite for Oil Sorption Applications.” J. Hazard Mater.,. https://doi.org/10.1016/j.jhazmat.2021.126068 (2021)

    Article  Google Scholar 

  10. Zhao, X, Qi, X, Chen, Q, Ao, X, Guo, Y, “Sulfur-Modified Coated Slow-Release Fertilizer Based on Castor Oil: Synthesis and a Controlled-Release Model.” ACS Sustain. Chem. Eng.,. https://doi.org/10.1021/acssuschemeng.0c06056 (2020)

    Article  Google Scholar 

  11. Lu, H, Tian, H, Liu, Z, et al. “Polyolefin Wax Modification Improved Characteristics of Nutrient Release from Biopolymer-Coated Phosphorus Fertilizers.” ACS Omega, 4 (23) 20402–20409. https://doi.org/10.1021/acsomega.9b03348 (2019)

    Article  CAS  Google Scholar 

  12. Tomaszewska, M, Jarosiewicz, A, “Use of Polysulfone in Controlled-Release NPK Fertilizer Formulations.” J. Agric. Food Chem., 50 (16) 4634–4639. https://doi.org/10.1021/jf0116808 (2002)

    Article  CAS  Google Scholar 

  13. Lü, S, Feng, C, Gao, C, et al. “Multifunctional Environmental Smart Fertilizer Based on L-Aspartic Acid for Sustained Nutrient Release.” J. Agric. Food Chem., 64 (24) 4965–4974. https://doi.org/10.1021/acs.jafc.6b01133 (2016)

    Article  CAS  Google Scholar 

  14. Eghbali Babadi, F, Yunus, R, Masoudi Soltani, S, Shotipruk, A, “Release Mechanisms and Kinetic Models of Gypsum-Sulfur-Zeolite-Coated Urea Sealed with Microcrystalline Wax for Regulated Dissolution.” ACS Omega, 6 (17) 11144–11154. https://doi.org/10.1021/acsomega.0c04353 (2021)

    Article  CAS  Google Scholar 

  15. Qi, T, Lü, S, Li, T, et al. “A Multielement Compound Fertilizer Used Polydopamine and Sodium Carboxymethyl Starch Matrices as Coatings.” Int. J. Biol. Macromol., 124 582–590. https://doi.org/10.1016/j.ijbiomac.2018.11.245 (2019)

    Article  CAS  Google Scholar 

  16. Azeem, B, KuShaari, K, Naqvi, M, et al. “Production and Characterization of Controlled Release Urea Using Biopolymer and Geopolymer as Coating Materials.” Polymers (Basel)., 12 (2) 400. https://doi.org/10.3390/polym12020400 (2020)

    Article  CAS  Google Scholar 

  17. Pang, L, Gao, Z, Feng, H, Wang, S, Wang, Q, “Cellulose Based Materials for Controlled Release Formulations of Agrochemicals: A Review of Modifications and Applications.” J. Control Release., 316 (November) 105–115. https://doi.org/10.1016/j.jconrel.2019.11.004 (2019)

    Article  CAS  Google Scholar 

  18. Kassem, I, Ablouh, E-H, El Bouchtaoui, F-Z, et al. “Cellulose Nanocrystals-Filled Poly (Vinyl Alcohol) Nanocomposites as Waterborne Coating Materials of NPK Fertilizer with Slow Release and Water Retention Properties.” Int. J. Biol. Macromol., 189 1029–1042. https://doi.org/10.1016/j.ijbiomac.2021.08.093 (2021)

    Article  CAS  Google Scholar 

  19. Lubkowski, K, Smorowska, A, Grzmil, B, Kozłowska, A, “Controlled-Release Fertilizer Prepared Using a Biodegradable Aliphatic Copolyester of Poly(Butylene Succinate) and Dimerized Fatty Acid.” J. Agric. Food. Chem., 63 (10) 2597–2605. https://doi.org/10.1021/acs.jafc.5b00518 (2015)

    Article  CAS  Google Scholar 

  20. Zhang, S, Fu, X, Tong, Z, et al. “Lignin-Clay Nanohybrid Biocomposite-Based Double-Layer Coating Materials for Controllable-Release Fertilizer.” ACS Sustain. Chem. Eng., 8 (51) 18957–18965. https://doi.org/10.1021/acssuschemeng.0c06472 (2020)

    Article  CAS  Google Scholar 

  21. Ablouh, E-H, Brouillette, F, Taourirte, M, Sehaqui, H, El Achaby, M, Belfkira, A, “A Highly Efficient Chemical Approach to Producing Green Phosphorylated Cellulosic Macromolecules.” RSC Adv., 11 (39) 24206–24216. https://doi.org/10.1039/D1RA02713A (2021)

    Article  CAS  Google Scholar 

  22. Mulder, WJ, Gosselink, RJA, Vingerhoeds, MH, Harmsen, PFH, Eastham, D, “Lignin Based Controlled Release Coatings.” Ind. Crops. Prod., 34 (1) 915–920. https://doi.org/10.1016/j.indcrop.2011.02.011 (2011)

    Article  CAS  Google Scholar 

  23. Sipponen, MH, Rojas, OJ, Pihlajaniemi, V, Lintinen, K, Österberg, M, “Calcium Chelation of Lignin from Pulping Spent Liquor for Water-Resistant Slow-Release Urea Fertilizer Systems.” ACS Sustain. Chem. Eng., 5 (1) 1054–1061. https://doi.org/10.1021/acssuschemeng.6b02348 (2017)

    Article  CAS  Google Scholar 

  24. Olk, DC, Cassman, KG, Schmidt-Rohr, K, Anders, MM, Mao, J-D, Deenik, JL, “Chemical Stabilization of Soil Organic Nitrogen by Phenolic Lignin Residues in Anaerobic Agroecosystems.” Soil Biol. Biochem., 38 (11) 3303–3312. https://doi.org/10.1016/j.soilbio.2006.04.009 (2006)

    Article  CAS  Google Scholar 

  25. Li, J, Wang, M, She, D, Zhao, Y, “Structural Functionalization of Industrial Softwood Kraft Lignin for Simple Dip-Coating of Urea as Highly Efficient Nitrogen Fertilizer.” Ind. Crops. Prod., 109 (August) 255–265. https://doi.org/10.1016/j.indcrop.2017.08.011 (2017)

    Article  CAS  Google Scholar 

  26. Fertahi, S, Bertrand, I, Amjoud, M, Oukarroum, A, Arji, M, Barakat, A, “Properties of Coated Slow-Release Triple Superphosphate (TSP) Fertilizers Based on Lignin and Carrageenan Formulations.” ACS Sustain. Chem. Eng., 7 (12) 10371–10382. https://doi.org/10.1021/acssuschemeng.9b00433 (2019)

    Article  CAS  Google Scholar 

  27. National N standards and. Water Quality. Determination of Phosphorus. Ammonium Molybdate Spectrometric Method, 1997

  28. Normative N standards and national. Water Quality—Determination of Ammonium—Part 2: Indophenol Blue Spectrophotometric Method, 1–5, 2000

  29. Boussetta, A, Ablouh, E-H, Benhamou, AA, Taourirte, M, Moubarik, A, “Valorization of Moroccan Brown Seaweeds: Elaboration of Formaldehyde-Free Particleboards Based on Sodium Alginate–Corn-Starch-Mimosa Tannin Wood Adhesives.” Int. J. Adhes. Adhes., 108 102894. https://doi.org/10.1016/j.ijadhadh.2021.102894 (2021)

    Article  CAS  Google Scholar 

  30. Ablouh, E, Hanani, Z, Eladlani, N, Rhazi, M, Taourirte, M, “Chitosan Microspheres/Sodium Alginate Hybrid Beads: An Efficient Green Adsorbent for Heavy Metals Removal From Aqueous Solutions.” Sustain. Environ. Res., 29 (1) 5. https://doi.org/10.1186/s42834-019-0004-9 (2019)

    Article  CAS  Google Scholar 

  31. Bahsis, L, Ablouh, E-H, Anane, H, Taourirte, M, Julve, M, Stiriba, S-E, “Cu(II)-Alginate-Based Superporous Hydrogel Catalyst for Click Chemistry Azide–Alkyne Cycloaddition Type Reactions in Water.” RSC Adv., 10 (54) 32821–32832. https://doi.org/10.1039/D0RA06410F (2020)

    Article  CAS  Google Scholar 

  32. Ablouh, E, Essaghraoui, A, Eladlani, N, Rhazi, M, Taourirte, M, “Uptake of Pb(II) onto Nanochitosan/Sodium Alginate Hybrid Beads: Mechanism and Kinetics Study.” Water Environ. Res., 91 (3) 239–249. https://doi.org/10.1002/wer.1050 (2019)

    Article  CAS  Google Scholar 

  33. Yue, W, Zhang, HH, Yang, ZN, Xie, Y, “Preparation of Low-Molecular-Weight Sodium Alginate by Ozonation.” Carbohydr. Polym., 2021 (251) 117104. https://doi.org/10.1016/j.carbpol.2020.117104 (2020)

    Article  CAS  Google Scholar 

  34. Daemi, H, Barikani, M, “Synthesis and Characterization of Calcium Alginate Nanoparticles, Sodium Homopolymannuronate Salt and Its Calcium Nanoparticles.” Sci. Iran., 19 (6) 2023–2028. https://doi.org/10.1016/j.scient.2012.10.005 (2012)

    Article  CAS  Google Scholar 

  35. Xiao, T, Yuan, H, Ma, Q, Guo, X, Wu, Y, “An Approach for In Situ Qualitative and Quantitative Analysis of Moisture Adsorption in Nanogram-Scaled Lignin by Using Micro-FTIR Spectroscopy and Partial Least Squares Regression.” Int. J. Biol. Macromol., 132 1106–1111. https://doi.org/10.1016/j.ijbiomac.2019.04.043 (2019)

    Article  CAS  Google Scholar 

  36. Liu, Y, Hu, T, Wu, Z, et al. “Study on Biodegradation Process of Lignin by FTIR and DSC.” Environ. Sci. Pollut. Res., 21 (24) 14004–14013. https://doi.org/10.1007/s11356-014-3342-5 (2014)

    Article  CAS  Google Scholar 

  37. Aadil, KR, Jha, H, “Physico-Chemical Properties of Lignin–Alginate Based Films in the Presence of Different Plasticizers.” Iran Polym. J. English Ed., 25 (8) 661–670. https://doi.org/10.1007/s13726-016-0449-1 (2016)

    Article  CAS  Google Scholar 

  38. Narapakdeesakul, D, Sridach, W, Wittaya, T, “Novel Use of Oil Palm Empty Fruit Bunch’s Lignin Derivatives for Production of Linerboard Coating.” Prog. Org. Coat., 76 (7–8) 999–1005. https://doi.org/10.1016/j.porgcoat.2013.02.015 (2013)

    Article  CAS  Google Scholar 

  39. Da Cruz, DF, Bortoletto-Santos, R, Guimarães, GGF, Polito, WL, Ribeiro, C, “Role of Polymeric Coating on the Phosphate Availability as a Fertilizer: Insight from Phosphate Release by Castor Polyurethane Coatings.” J. Agric. Food. Chem., 65 (29) 5890–5895. https://doi.org/10.1021/acs.jafc.7b01686 (2017)

    Article  CAS  Google Scholar 

  40. El Assimi, T, Lakbita, O, El Meziane, A, et al. “Sustainable Coating Material Based on Chitosan-Clay Composite and Paraffin Wax for Slow-Release DAP Fertilizer.” Int. J. Biol. Macromol., 161 492–502. https://doi.org/10.1016/j.ijbiomac.2020.06.074 (2020)

    Article  CAS  Google Scholar 

  41. Li, Y, Jia, C, Zhang, X, et al. “Synthesis and Performance of Bio-Based Epoxy Coated Urea as Controlled Release Fertilizer.” Prog. Org. Coat., 2018 (119) 50–56. https://doi.org/10.1016/j.porgcoat.2018.02.013 (2017)

    Article  CAS  Google Scholar 

  42. Zhang, S, Yang, Y, Gao, B, Wan, Y, Li, YC, Zhao, C, “Bio-Based Interpenetrating Network Polymer Composites from Locust Sawdust as Coating Material for Environmentally Friendly Controlled-Release Urea Fertilizers.” J. Agric. Food Chem., 64 (28) 5692–5700. https://doi.org/10.1021/acs.jafc.6b01688 (2016)

    Article  CAS  Google Scholar 

  43. Ahmed Khan, T, Zakaria, MET, Kim, HJ, Ghazali, S, Jamari, SS, “Carbonaceous Microsphere-Based Superabsorbent Polymer as Filler for Coating of NPK Fertilizer: Fabrication, Properties, Swelling, and Nitrogen Release Characteristics.” J. Appl. Polym. Sci., 137 (8) 1–8. https://doi.org/10.1002/app.48396 (2020)

    Article  CAS  Google Scholar 

  44. Ahmad, NNR, Fernando, WJN, Uzir, MH, “Parametric Evaluation Using Mechanistic Model for Release Rate Of Phosphate Ions from Chitosan-Coated Phosphorus Fertiliser Pellets.” Biosyst. Eng., 129 78–86. https://doi.org/10.1016/j.biosystemseng.2014.09.015 (2015)

    Article  Google Scholar 

  45. Lubkowski, K, Smorowska, A, Grzmil, B, Kozlowska, A, “Controlled Release Fertilizer Prepared Using a Biodegradable Aliphatic Copolyester Of Poly(butylene succinate) and Dimerized Fatty Acid.” J. Agric. Food Chem., 63 (10) 2597–2605 (2015). https://doi.org/10.1021/acs.jafc.5b00518

    Article  CAS  Google Scholar 

  46. Hignett, TP, “Physical and Chemical Properties of Fertilizers and Methods for their Determination.” Fertil. Man.,. https://doi.org/10.1007/978-94-017-1538-6_22 (1985)

    Article  Google Scholar 

  47. Kelbaliyev, GI, Samedli, VM, Samedov, MM, Kasimova, RK, “Experimental Study and Calculation of the Effect of Intensifying Additives on the Strength of Superphosphate Granules.” Russ. J. Appl. Chem., 86 (10) 1478–1482. https://doi.org/10.1134/S1070427213100030 (2013)

    Article  CAS  Google Scholar 

  48. Nie, X, Besant, RW, Evitts, RW, “An Experimental Study of Moisture Uptake and Transport in a Bed of Urea Particles.” Granul. Matter., 10 (4) 301–308. https://doi.org/10.1007/s10035-008-0091-5 (2008)

    Article  CAS  Google Scholar 

  49. Chen, J, Lü, S, Zhang, Z, et al. “Environmentally Friendly Fertilizers: A Review of Materials Used and Their Effects on the Environment.” Sci. Total. Environ., 613–614 829–839. https://doi.org/10.1016/j.scitotenv.2017.09.186 (2018)

    Article  CAS  Google Scholar 

  50. He, Y, Wu, Z, Tu, L, Han, Y, Zhang, G, Li, C, “Encapsulation and Characterization of Slow-Release Microbial Fertilizer from the Composites of Bentonite and Alginate.” Appl. Clay Sci., 109–110 68–75. https://doi.org/10.1016/j.clay.2015.02.001 (2015)

    Article  CAS  Google Scholar 

  51. Mohamadnia, Z, Zohuriaan-Mehr, MJ, Kabiri, K, Jamshidi, A, Mobedi, H, “Ionically Cross-Linked Carrageenan-Alginate Hydrogel Beads.” J. Biomater. Sci. Polym. Ed., 19 (1) 47–59. https://doi.org/10.1163/156856208783227640 (2008)

    Article  CAS  Google Scholar 

  52. García, MC, Vallejo, A, García, L, Cartagena, MC, “Manufacture and Evaluation of Coated Triple Superphosphate Fertilizers.” Ind. Eng. Chem. Res., 36 (3) 869–873. https://doi.org/10.1021/ie960153o (1997)

    Article  Google Scholar 

  53. Ramli, RA, “Slow Release Fertilizer Hydrogels: A Review.” Polym. Chem., 10 (45) 6073–6090. https://doi.org/10.1039/c9py01036j (2019)

    Article  CAS  Google Scholar 

  54. Sofyane, A, Lahcini, M, El Meziane, A, et al. “Properties of Coated Controlled Release Diammonium Phosphate Fertilizers Prepared with the Use of Bio-based Amino Oil.” JAOCS J. Am. Oil Chem. Soc., 97 (7) 751–763. https://doi.org/10.1002/aocs.12360 (2020)

    Article  CAS  Google Scholar 

  55. Legras-Lecarpentier, D, Stadler, K, Weiss, R, Guebitz, GM, Nyanhongo, GS, “Enzymatic Synthesis of 100% Lignin Biobased Granules as Fertilizer Storage and Controlled Slow Release Systems.” ACS Sustain. Chem. Eng., 7 (14) 12621–12628. https://doi.org/10.1021/acssuschemeng.9b02689 (2019)

    Article  CAS  Google Scholar 

  56. Bazban-Shotorbani, S, Dashtimoghadam, E, Karkhaneh, A, Hasani-Sadrabadi, MM, Jacob, KI, “Microfluidic Directed Synthesis of Alginate Nanogels with Tunable Pore Size for Efficient Protein Delivery.” Langmuir, 32 (19) 4996–5003. https://doi.org/10.1021/acs.langmuir.5b04645 (2016)

    Article  CAS  Google Scholar 

  57. López Córdoba, A, Deladino, L, Martino, M, “Effect of Starch Filler on Calcium-Alginate Hydrogels Loaded with Yerba Mate Antioxidants.” Carbohydr. Polym., 95 (1) 315–323. https://doi.org/10.1016/j.carbpol.2013.03.019 (2013)

    Article  CAS  Google Scholar 

  58. Song, B, Liang, H, Sun, R, Peng, P, Jiang, Y, She, D, “Hydrogel Synthesis Based on Lignin/Sodium Alginate and Application in Agriculture.” Int. J. Biol. Macromol., 144 219–230. https://doi.org/10.1016/j.ijbiomac.2019.12.082 (2020)

    Article  CAS  Google Scholar 

  59. Fernández-Pérez, M, Garrido-Herrera, FJ, González-Pradas, E, “Alginate and Lignin-Based Formulations to Control Pesticides Leaching in a Calcareous Soil.” J. Hazard Mater., 190 (1–3) 794–801. https://doi.org/10.1016/j.jhazmat.2011.03.118 (2011)

    Article  CAS  Google Scholar 

  60. Azeem, B, KuShaari, K, Man, ZB, Basit, A, Thanh, TH, “Review on Materials and Methods to Produce Controlled Release Coated Urea Fertilizer.” J. Control Release., 181 (1) 11–21. https://doi.org/10.1016/j.jconrel.2014.02.020 (2014)

    Article  CAS  Google Scholar 

  61. Majeed, Z, Mansor, N, Man, Z, Wahid, SA, “Lignin Reinforcement of Urea-Crosslinked Starch Films for Reduction of Starch Biodegradability to Improve Slow Nitrogen Release Properties Under Natural Aerobic Soil Condition.” E-Polymers., 16 (2) 159–170. https://doi.org/10.1515/epoly-2015-0231 (2016)

    Article  CAS  Google Scholar 

  62. Fernández-Pérez, M, Garrido-Herrera, FJ, González-Pradas, E, Villafranca-Sánchez, M, Flores-Céspedes, F, “Lignin and Ethylcellulose as Polymers in Controlled Release Formulations of Urea.” J. Appl. Polym. Sci., 108 (6) 3796–3803. https://doi.org/10.1002/app.27987 (2008)

    Article  CAS  Google Scholar 

  63. Kong, W, Li, Q, Li, X, Su, Y, Yue, Q, Gao, B, “A Biodegradable Biomass-Based Polymeric Composite for Slow Release and Water Retention.” J. Environ. Manag., 2019 (230) 190–198. https://doi.org/10.1016/j.jenvman.2018.09.086 (2018)

    Article  CAS  Google Scholar 

  64. Ni, B, Liu, M, Lü, S, Xie, L, Wang, Y, “Environmentally Friendly Slow-Release Nitrogen Fertilizer.” J. Agric. Food Chem., 59 (18) 10169–10175. https://doi.org/10.1021/jf202131z (2011)

    Article  CAS  Google Scholar 

  65. Ni, B, Liu, M, Luü, S, Xie, L, Zhang, X, Wang, Y, “Novel Slow-Release Multielement Compound Fertilizer with Hydroscopicity and Moisture Preservation.” Ind. Eng. Chem. Res., 49 (10) 4546–4552. https://doi.org/10.1021/ie9019769 (2010)

    Article  CAS  Google Scholar 

  66. Bakass, M, Mokhlisse, A, Lallemant, M, “Absorption and Desorption of Liquid Water by a Superabsorbent Polymer: Effect of Polymer in the Drying of the Soil and the Quality of Certain Plants.” J. Appl. Polym. Sci., 83 (2) 234–243. https://doi.org/10.1002/app.2239 (2002)

    Article  CAS  Google Scholar 

  67. Zhang, J, Chen, H, Wang, A, “Study on Superabsorbent Composite. III. Swelling Behaviors of Polyacrylamide/Attapulgite Composite Based on Acidified Attapulgite and Organo-Attapulgite.” Eur. Polym. J., 41 (10) 2434–2442. https://doi.org/10.1016/j.eurpolymj.2005.03.022 (2005)

    Article  CAS  Google Scholar 

  68. Bauli, CR, Lima, GF, de Souza, AG, Ferreira, RR, Rosa, DS, “Eco-Friendly Carboxymethyl Cellulose Hydrogels Filled with Nanocellulose or Nanoclays for Agriculture Applications as Soil Conditioning and Nutrient Carrier and Their Impact on Cucumber Growing.” Colloids Surf. A Physicochem. Eng. Asp., 623 (May) 126771. https://doi.org/10.1016/j.colsurfa.2021.126771 (2021)

    Article  CAS  Google Scholar 

  69. Brennan, M, McLean, JP, Altaner, CM, Ralph, J, Harris, PJ, “Cellulose Microfibril Angles and Cell-Wall Polymers in Different Wood Types of Pinus radiata.” Cellulose, 19 (4) 1385–1404. https://doi.org/10.1007/s10570-012-9697-1 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the “Office Chérifien des Phosphates (OCP S.A.)” in Morocco, under a funded research project (Specific Agreement OCP/UM6P #ASN°34).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to El-Houssaine Ablouh or Mounir El Achaby.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1300 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Bouchtaoui, FZ., Ablouh, EH., Kassem, I. et al. Slow-release fertilizers based on lignin–sodium alginate biopolymeric blend for sustained N–P nutrients release. J Coat Technol Res 19, 1551–1565 (2022). https://doi.org/10.1007/s11998-022-00629-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-022-00629-7

Keywords

Navigation