Skip to main content

Advertisement

Log in

Overview on progress in polysaccharides and aliphatic polyesters as coating of water-soluble fertilizers

  • Review Article
  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Nitrogen, phosphorus, and potassium are the major nutrients solicited in the fertilization process, and their supply is highly useful to improve agricultural productivity. The conventional fertilizers suffer from low efficacy due to the fast release of nutrients. For that, the coating of granular fertilizer is considered as the best way to enhance their efficiency. Nowadays, biodegradable polymers are replacing synthetic polymers and avoiding the accumulation of nondegradable plastic residues in arable land. Since the coating of fertilizers by sulfur was criticized, many research studies investigated the use of polysaccharide such as cellulose, chitosan, carrageenan, lignin, and starch or aliphatic polyesters such as polylactide and polycaprolactone as coating matrix for granular fertilizer coating to delay or control the dissolution rate of nutrients. This review starts by apprising the readers about the environmental impact of conventional fertilizers (uncoated) and then an overview on the use of all those biopolymers and their combination for the coating agent mineral fertilizer. Furthermore, the present contribution provides an outline on different coating processes solicited in the field and the slow-release fertilizers criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Copyright 2020 Elsevier

Fig. 7

Copyright 2021 Elsevier

Fig. 8

Copyright 2016 Elsevier

Fig. 9
Fig. 10

Copyright 2017 Elsevier

Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Dawson, CJ, Hilton, J, “Fertiliser Availability in a Resource-Limited World: Production and Recycling of Nitrogen and Phosphorus.” Food Policy, 36 S14–S22. https://doi.org/10.1016/j.foodpol.2010.11.012 (2011)

    Article  Google Scholar 

  2. Brown, ME, Higgins, N, “Markets, Climate Change, and Food Security in West Africa.” Environ. Sci. Technol., 43 8016–8020 (2009)

    Article  CAS  Google Scholar 

  3. Azeem, B, Kushaari, K, Man, ZB, et al. “Review on Materials & Methods to Produce Controlled Release Coated Urea Fertilizer.” J. Control. Release, 181 11–21. https://doi.org/10.1016/j.jconrel.2014.02.020 (2014)

    Article  CAS  Google Scholar 

  4. Majeed, Z, Ramli, NK, Mansor, N, Man, Z, “A Comprehensive Review on Biodegradable Polymers and Their Blends Used in Controlled-Release Fertilizer Processes.” Rev. Chem. Eng., 31 69–95. https://doi.org/10.1515/revce-2014-0021 (2015)

    Article  CAS  Google Scholar 

  5. Shaviv, A, “Advances in Controlled-Release Fertilizers.” Adv. Agron., 71 1–49. https://doi.org/10.1016/S0065-2113(01)71011-5 (2001)

    Article  CAS  Google Scholar 

  6. Shaviv, A, Mikkelsen, RL, "Controlled-Release Fertilizers to Increase Efficiency of Nutrient Use and Minimize Environmental Degradation - A Review." Fertilizer Research, 1–12 (1995)

  7. Trenkel, M, Controlled-Release and Stabilized Fertilizers in Agriculture. Published by the International Fertilizer Industry Association (IFA), Paris (1997)

    Google Scholar 

  8. Naz, MY, Sulaiman, SA, “Slow Release Coating Remedy for Nitrogen Loss from Conventional Urea: A Review.” J. Control. Release, 225 109–120. https://doi.org/10.1016/j.jconrel.2016.01.037 (2016)

    Article  CAS  Google Scholar 

  9. Tomaszewska, M, Jarosiewicz, A, “Controlled-Release NPK Fertilizer Encapsulated by Polymeric Membranes.” J. Agric. Food Chem., 51 413–417. https://doi.org/10.1021/JF020800O (2003)

    Article  Google Scholar 

  10. Chen, J, Lü, S, Zhang, Z, et al. “Environmentally Friendly Fertilizers: A Review of Materials Used and Their Effects on the Environment.” Sci. Total Environ., 613–614 829–839. https://doi.org/10.1016/j.scitotenv.2017.09.186 (2018)

    Article  CAS  Google Scholar 

  11. Trenkel, ME, Slow- and Controlled-Release and Stabilized Fertilizers: An Option for Enhancing Nutrient Use Efficiency in Agriculture. International Fertilizer Industry Association (IFA), Paris (2010)

    Google Scholar 

  12. Cordell, D, Smit, AL, Rosemarin, A, Sustainable Use of Phosphorus. Wageningen University and Research Centre Stockholm Environment Institute (SEI) (2009)

    Google Scholar 

  13. Satyaprakash, M, Nikitha, T, Reddi, EUB, Sadhana, B, Vani, SS, “Phosphorous and Phosphate Solubilising Bacteria and their Role in Plant Nutrition.” Int. J. Curr. Microbiol. Appl. Sci., 4 2133–2144. https://doi.org/10.20546/ijcmas.2017.604.251 (2017)

    Article  CAS  Google Scholar 

  14. Chien, SH, Prochnow, LI, Cantarella, H, “Chapter 8 Recent Developments of Fertilizer Production and Use to Improve Nutrient Efficiency and Minimize Environmental Impacts.” Adv. Agron., 102 267–322 (2009)

    Article  CAS  Google Scholar 

  15. Khan, FA, Ansari, AA, “Eutrophication: An Ecological Vision.” Bot. Rev., 71 449–482. https://doi.org/10.1663/0006-8101(2005)071[0449:EAEV]2.0.CO;2 (2005)

    Article  Google Scholar 

  16. Conley, DJ, Paerl, HW, Howarth, RW, et al. “Controlling Eutrophication: Phosphorus and Nitrogen.” Science, 323 1014–1015 (2009)

    Article  CAS  Google Scholar 

  17. Tolescu, C, Iovu, H, “Polymer Conditioned Fertilizers.” UPB Sci. Bull. Ser. B, 72 (2) 3–14 (2010)

    CAS  Google Scholar 

  18. Devassine, M, Henry, F, Guerin, P, Briand, X, “Coating of Fertilizers by Degradable Polymers.” Int. J. Pharm., 242 399–404. https://doi.org/10.1016/S0378-5173(02)00225-9 (2002)

    Article  CAS  Google Scholar 

  19. Robert, S, Sofocleous, PE, "Production of Slow Release Nitrogen Fertilizers by Improved Method of Coating Urea with Sulfur." US Patent. 1–9 (1975)

  20. Naz, MY, Sulaiman, SA, “Testing of Starch-Based Carbohydrate Polymer Coatings for Enhanced Urea Performance.” J. Coat. Technol. Res., 11 747–756. https://doi.org/10.1007/s11998-014-9590-y (2014)

    Article  CAS  Google Scholar 

  21. Mulder, WJ, Gosselink, RJA, Vingerhoeds, MH, et al. “Lignin Based Controlled Release Coatings.” Ind. Crop. Prod., 34 915–920. https://doi.org/10.1016/j.indcrop.2011.02.011 (2011)

    Article  CAS  Google Scholar 

  22. Chen, W, et al. “Modeling of Pan Coating Process: Prediction of Tablet Content Uniformity and Determination of Critical Process Parameters.” J. Pharm. Sci., 99 3213–3225. https://doi.org/10.1002/jps (2010)

    Article  CAS  Google Scholar 

  23. Babadi, FE, Yunus, R, Abbasi, A, “Response Surface Method in the Optimization of a Rotary Pan-Equipped Process for Increased Efficiency of Slow-Release Coated Urea.” MDPI Process, 7 125. https://doi.org/10.3390/pr7030125 (2019)

    Article  CAS  Google Scholar 

  24. Porter, S, Sackett, G, Liu, L, "Development, Optimization, and Scale-Up of Process Parameters: Pan Coating." In: Pharmaceutical Theory and Practice, pp. 953–996 (2017)

  25. Donida, MW, Rocha, SCS, “Coating of Urea with an Aqueous Polymeric Suspension in a Two-Dimensional Spouted Bed.” Drying Technol., 20 685–704. https://doi.org/10.1081/DRT-120002824 (2002)

    Article  CAS  Google Scholar 

  26. Naz, MY, Sulaiman, SA, Ariwahjoedi, B, Shaari, KZK, “Natural Carbohydrate Polymer Coatings for Green Urea.” Surf. Eng., 31 486–491. https://doi.org/10.1179/1743294414Y.0000000381 (2014)

    Article  CAS  Google Scholar 

  27. Othman, S, Wahab, AA, Raghavan, VR, "Numerical Study of the Plenum Chamber of a Swirling Fluidized Bed." In: International Conference on Mechanical & Manufacturing Engineering, pp. 21–23 (2008).

  28. Li, J, Wang, M, She, D, Zhao, Y, “Structural Functionalization of Industrial Softwood Kraft Lignin for Simple Dip-Coating of Urea as Highly Efficient Nitrogen Fertilizer.” Ind. Crops Prod., 109 255–265. https://doi.org/10.1016/j.indcrop.2017.08.011 (2017)

    Article  CAS  Google Scholar 

  29. Li, T, Gao, B, Tong, Z, et al. “Chitosan and Graphene Oxide Nanocomposites as Coatings for Controlled-Release Fertilizer.” Water Air Soil Pollut.https://doi.org/10.1007/s11270-019-4173-2 (2019)

    Article  Google Scholar 

  30. Tomaszewska, M, Jarosiewicz, A, Karakulski, K, “Physical and Chemical Characteristics of Polymer Coatings in CRF Formulation.” Desalination, 146 319–323 (2002)

    Article  CAS  Google Scholar 

  31. Jarrell, WM, Boersma, L, “Release of Urea by Granules of Sulfur-Coated Urea.” Soil Sci. Soc. Am. J., 44 418–422. https://doi.org/10.2136/sssaj1980.03615995004400020042x (1980)

    Article  CAS  Google Scholar 

  32. Shaviv, AVI, Raban, S, Zaidel, E, “Modeling Controlled Nutrient Release from Polymer Coated Fertilizers: Diffusion Release from Single Granules.” Environmental Sci. Technol., 37 2251–2256 (2003)

    Article  CAS  Google Scholar 

  33. Shoji, S, Kanno, H, “Use of Polyolefin-Coated Fertilizers for Increasing Fertilizer Efficiency and Reducing Nitrate Leaching and Nitrous Oxide Emissions.” Fertil. Res., 39 147–152. https://doi.org/10.1007/BF00750913 (1994)

    Article  CAS  Google Scholar 

  34. Shaviv, A, “Plant Response and Environmental Aspects as Affected by Rate and Pattern of Nitrogen Release from Controlled Release N Fertilizers.” Prog. Nitrogen Cycl. Stud.https://doi.org/10.1007/978-94-011-5450-5_48 (1996)

    Article  Google Scholar 

  35. Wu, L, Liu, M, “Preparation and Characterization of Cellulose Acetate-Coated Compound Fertilizer with Controlled-Release and Water-Retention.” Polym. Adv. Technol.https://doi.org/10.1002/pat (2008)

    Article  Google Scholar 

  36. Taylor, P, Zhang, L, Zhang, G, et al. “Preparation and Characterization of Carboxymethyl Cellulose/Polyvinyl Alcohol Blend Film as a Potential Coating Material.” Polym. Plast. Technol. Eng.https://doi.org/10.1080/03602559.2012.734361 (2013)

    Article  Google Scholar 

  37. Costa, MME, Cabral-Albuquerque, ECM, Alves, TLM, et al. “Use of Polyhydroxybutyrate and Ethyl Cellulose for Coating of Urea Granules.” J. Agric. Food Chem., 61 9984–9991. https://doi.org/10.1021/jf401185y (2013)

    Article  CAS  Google Scholar 

  38. Li, Y, Zhen, D, Liao, S, et al. “Controlled-Release Urea Encapsulated by Ethyl Cellulose/Butyl Acrylate/Vinyl Acetate Hybrid Latex.” Polish J. Chem. Technol., 20 108–112. https://doi.org/10.2478/pjct-2018-0062 (2018)

    Article  CAS  Google Scholar 

  39. Kassem, I, Ablouh, EH, El Bouchtaoui, FZ, et al. “Cellulose Nanocrystals-Filled Poly(vinyl alcohol) Nanocomposites as Waterborne Coating Materials of NPK Fertilizer with Slow Release and Water Retention Properties.” Int. J. Biol. Macromol., 189 1029–1042. https://doi.org/10.1016/j.ijbiomac.2021.08.093 (2021)

    Article  CAS  Google Scholar 

  40. Kassem, I, Ablouh, EH, El Bouchtaoui, FZ, et al. “Biodegradable all-Cellulose Composite Hydrogel as Eco-friendly and Efficient Coating Material for Slow-Release MAP Fertilizer.” Prog. Org. Coat., 162 10657. https://doi.org/10.1016/j.porgcoat.2021.106575 (2022)

    Article  CAS  Google Scholar 

  41. Zhang, M, Yang, J, “Preparation and Characterization of Multifunctional Slow Release Fertilizer Coated with Cellulose Derivatives.” Int. J. Polym. Mater. Polym. Biomater., 70 774–781. https://doi.org/10.1080/00914037.2020.1765352 (2021)

    Article  CAS  Google Scholar 

  42. Wu, L, Liu, M, “Preparation and Properties of Chitosan-Coated NPK Compound Fertilizer with Controlled-Release and Water-Retention.” Carbohydr. Polym., 72 240–247. https://doi.org/10.1016/j.carbpol.2007.08.020 (2008)

    Article  CAS  Google Scholar 

  43. Chen, C, Tao, S, Qiu, X, et al. “Long-Alkane-Chain Modified N-phthaloyl Chitosan Membranes with Controlled Permeability.” Carbohydr. Polym., 91 269–276. https://doi.org/10.1016/j.carbpol.2012.08.042 (2013)

    Article  CAS  Google Scholar 

  44. Wang, X, Lü, S, Gao, C, et al. “Biomass-Based Multifunctional Fertilizer System Featuring Controlled-Release Nutrient, Water-Retention and Amelioration of Soil.” RSC Adv., 4 18382–18390. https://doi.org/10.1039/c4ra00207e (2014)

    Article  CAS  Google Scholar 

  45. Lubkowski, K, “Coating Fertilizer Granules with Biodegradable Materials for Controlled Fertilizer Release.” Environ. Eng. Manag. J., 13 2573–2581 (2014)

    Article  Google Scholar 

  46. El Assimi, T, et al. “Sustainable Coating Material Based on Chitosan-Clay Composite and Paraffin Wax for Slow-Release DAP Fertilizer.” Int. J. Biol. Macromol., 161 492–502. https://doi.org/10.1016/j.ijbiomac.2020.06.074 (2020)

    Article  CAS  Google Scholar 

  47. Eddarai, EM, et al. “Chitosan-Kaolinite Clay Composite as Durable Coating Material for Slow Release NPK Fertilizer.” Int. J. Biol. Macromol., 195 424–432. https://doi.org/10.1016/j.ijbiomac.2021.12.055 (2022)

    Article  CAS  Google Scholar 

  48. Peng, Z, Chen, F, “Synthesis and Properties of Lignin-Based Polyurethane Hydrogels.” Int. J. Polym. Mater., 60 674–683. https://doi.org/10.1080/00914037.2010.551353 (2011)

    Article  CAS  Google Scholar 

  49. Fertahi, S, Bertrand, I, Amjoud, M, “Properties of Coated Slow-Release Triple Superphosphate (TSP) Fertilizers Based on Lignin and Carrageenan Formulations.” ACS Sustain. Chem. Eng., 7 10371–10382. https://doi.org/10.1021/acssuschemeng.9b00433 (2019)

    Article  CAS  Google Scholar 

  50. Fertahi, S, Bertrand, I, Ilsouk, M, et al. “Impact of Plasticizers on Lignin-Carrageenan Formulation Properties and on Phosphorus Release from a Coated Triple Superphosphate Fertilizer.” Ind. Eng. Chem. Res., 59 14172–14179. https://doi.org/10.1021/acs.iecr.0c03143 (2020)

    Article  CAS  Google Scholar 

  51. Dos Santos, ACS, Henrique, HM, Cardoso, VL, Reis, MHM, “Slow Release Fertilizer Prepared with Lignin and Poly(vinyl acetate) Bioblend.” Int. J. Biol. Macromol., 185 543–550. https://doi.org/10.1016/j.ijbiomac.2021.06.169 (2021)

    Article  CAS  Google Scholar 

  52. Tomaszewska, M, Jarosiewicz, A, “Polysulfone Coating with Starch Addition in CRF Formulation.” Desalination, 163 247–252 (2004)

    Article  CAS  Google Scholar 

  53. Han, X, Chen, S, Hu, X, “Controlled-Release Fertilizer Encapsulated by Starch/Polyvinyl Alcohol Coating.” Desalination, 240 21–26. https://doi.org/10.1016/j.desal.2008.01.047 (2009)

    Article  CAS  Google Scholar 

  54. Naz, MY, Sulaiman, SA, Ariwahjoedi, B, et al. “Characterization of Modified Tapioca Starch Solutions and Their Sprays for High Temperature Coating Applications.” Sci. World J.https://doi.org/10.1155/2014/375206 (2014)

    Article  Google Scholar 

  55. Muslim, S, Salman, Fitriani, L, et al. “Use of Bioblend Polystyrene/Starch for Coating Urea Granules as Slow Release Fertilizer.” J. Chem. Pharm. Res., 7 478–484 (2015)

    CAS  Google Scholar 

  56. Qiao, D, Liu, H, Yu, L, et al. “Preparation and Characterization of Slow-Release Fertilizer Encapsulated by Starch-Based Superabsorbent Polymer.” Carbohydr. Polym., 147 146–154. https://doi.org/10.1016/j.carbpol.2016.04.010 (2016)

    Article  CAS  Google Scholar 

  57. Sofyane, A, Ablouh, E, Lahcini, M, et al. “Slow-Release Fertilizers Based on Starch Acetate/Glycerol/Polyvinyl Alcohol Biocomposites for Sustained Nutrient Release.” Mater. Today Proc.https://doi.org/10.1016/j.matpr.2020.05.319 (2020)

    Article  Google Scholar 

  58. Zafar, N, Niazi, MBK, Sher, F, et al. “Starch and Polyvinyl Alcohol Encapsulated Biodegradable Nanocomposites for Environment Friendly Slow Release of Urea Fertilizer.” Chem. Eng. J. Adv., 7 100123. https://doi.org/10.1016/j.ceja.2021.100123 (2021)

    Article  CAS  Google Scholar 

  59. Wang, Y, Liu, M, Ni, B, Xie, L, “κ-Carrageenan-Sodium Alginate Beads and Superabsorbent Coated Nitrogen Fertilizer with Slow-Release, Water-Retention, and Anticompaction Properties.” Ind. Eng. Chem. Res., 51 1413–1422. https://doi.org/10.1021/ie2020526 (2012)

    Article  CAS  Google Scholar 

  60. Fertahi, S, Bertrand, I, Ilsouk, M, et al. “New Generation of Controlled Release Phosphorus Fertilizers Based on Biological Macromolecules: Effect of Formulation Properties on Phosphorus Release.” Int. J. Biol. Macromol., 143 153–162. https://doi.org/10.1016/j.ijbiomac.2019.12.005 (2020)

    Article  CAS  Google Scholar 

  61. Bao, CY, Cellulose Acetate/Plasticizer Systems: Structure, Morphology and Dynamics, Polymers. Université Claude Bernard - Lyon I (2015)

    Google Scholar 

  62. Rinaudo, M, Pavlov, G, Desbrières, J, “Influence of Acetic Acid Concentration on the Solubilization of Chitosan.” Polymer, 40 7029–7032. https://doi.org/10.1016/S0032-3861(99)00056-7 (1999)

    Article  CAS  Google Scholar 

  63. Chen, C, Gao, Z, Qiu, X, Hu, S, “Enhancement of the Controlled-Release Properties of Chitosan Membranes by Crosslinking with Suberoyl Chloride.” Molecules, 18 7239–7252. https://doi.org/10.3390/molecules18067239 (2013)

    Article  CAS  Google Scholar 

  64. Duval, A, Lawoko, M, “A Review on Lignin-Based Polymeric, Micro- and Nano-structured Materials.” React. Funct. Polym., 85 78–96. https://doi.org/10.1016/j.reactfunctpolym.2014.09.017 (2014)

    Article  CAS  Google Scholar 

  65. Wang, S, Li, C, Copeland, L, et al. “Starch Retrogradation: A Comprehensive Review.” Compr. Rev. Food Sci. Food Saf., 14 568–585. https://doi.org/10.1111/1541-4337.12143 (2015)

    Article  CAS  Google Scholar 

  66. Zobel, HF, “Molecules to Granules: A Comprehensive Starch Review.” Starch - Stärke, 40 44–50. https://doi.org/10.1002/star.19880400203 (1988)

    Article  CAS  Google Scholar 

  67. Necas, J, Bartosikova, L, “Carrageenan: A Review.” Veterinarni Medicina, 58 187–205. https://doi.org/10.17221/6758-VETMED (2013)

    Article  CAS  Google Scholar 

  68. Madhavan Nampoothiri, K, Nair, NR, John, RP, “An Overview of the Recent Developments in Polylactide (PLA) Research.” Bioresour. Technol., 101 8493–8501. https://doi.org/10.1016/j.biortech.2010.05.092 (2010)

    Article  CAS  Google Scholar 

  69. Di Lorenzo, ML, Androsch, R, Industrial Applications of Poly(lactic acid). Adv. Polym. Sci., Springer (2018)

  70. Murariu, M, Dubois, P, “PLA Composites: From Production to Properties.” Adv. Drug Deliv. Rev., 107 17–46. https://doi.org/10.1016/j.addr.2016.04.003 (2016)

    Article  CAS  Google Scholar 

  71. Bordes, P, Pollet, E, Avérous, L, “Nano-biocomposites: Biodegradable Polyester/Nanoclay Systems.” Prog. Polym. Sci., 34 125–155. https://doi.org/10.1016/j.progpolymsci.2008.10.002 (2009)

    Article  CAS  Google Scholar 

  72. Le Borgne, A, Prud, RE, Sarasua, J-R, et al. “Crystallization and Melting Behavior of Polylactides.” Macromolecules, 31 3895 (1998)

    Article  Google Scholar 

  73. Park, KI, Xanthos, M, “A Study on the Degradation of Polylactic Acid in the Presence of Phosphonium Ionic Liquids.” Polym. Degrad. Stab., 94 834–844. https://doi.org/10.1016/j.polymdegradstab.2009.01.030 (2009)

    Article  CAS  Google Scholar 

  74. Schliecker, G, Schmidt, C, Fuchs, S, Kissel, T, “Characterization of a Homologous Series of d,l-lactic acid Oligomers; A Mechanistic Study on the Degradation Kinetics In Vitro.” Biomaterials, 24 3835–3844. https://doi.org/10.1016/S0142-9612(03)00243-6 (2003)

    Article  CAS  Google Scholar 

  75. Elsawy, MA, Kim, KH, Park, JW, Deep, A, “Hydrolytic Degradation of Polylactic Acid (PLA) and Its Composites.” Renew. Sustain. Energy Rev., 79 1346–1352. https://doi.org/10.1016/j.rser.2017.05.143 (2017)

    Article  CAS  Google Scholar 

  76. Li, S, Tenon, M, Garreau, H, et al. “Enzymatic Degradation of Stereocopolymers Derived from L-, DL- and Meso-lactides.” Polym. Degrad. Stab., 67 85–90. https://doi.org/10.1016/S0141-3910(99)00091-9 (2000)

    Article  CAS  Google Scholar 

  77. Mark, JE, Polymer Data Handbook. Oxford University Press, New York (1999)

    Google Scholar 

  78. Peponi, L, Navarro-baena, I, Báez, JE, et al. “Effect of the Molecular Weight on the Crystallinity of PCL-b-PLLA Di-block Copolymers.” Polymer (Guildf), 53 4561–4568. https://doi.org/10.1016/j.polymer.2012.07.066 (2012)

    Article  CAS  Google Scholar 

  79. Colin, GP, Zhong, G, “Modification of the Rates of Chain Cleavage of Polycaprolactone and Related Polyesters in the Solid State.” J. Control. Release, 4 283–292 (1987)

    Article  Google Scholar 

  80. Jerome, R, Henrioulle-granville, M, Boutevin, B, Robin, JJS, “Telechelic Polymers Synthesis, Characterization and Applications.” Prog. Polym. Sci., 16 837–906 (1992)

    Article  Google Scholar 

  81. Degke, P, Dubois, P, Jkrrne, R, “Thermal Stability and Viscoelastic Properties.” Macromol. Chem., 1995 1985–1995 (1997)

    Google Scholar 

  82. Braud, C, et al. “Capillary Zone Electrophoresis in Normal or Reverse Polarity Separation Modes for the Analysis of Hydroxyl Acid Oligomers in Neutral Phosphate Buffer.” J. Chromatogr. B Biomed. Sci. Appl., 706 73–82 (1998)

    Article  Google Scholar 

  83. Mahapatro, A, Kumar, A, Gross, RA, “Mild, Solvent-Free ω-Hydroxy Acid Polycondensations Catalyzed by Candida antarctica Lipase B.” Biomacromolecules, 5 62–68. https://doi.org/10.1021/bm0342382 (2004)

    Article  CAS  Google Scholar 

  84. Boujemaoui, A, Carlsson, L, Malmstro, E, et al. “Facile Preparation Route for Nanostructured Composites: Surface- Initiated Ring-Opening Polymerization of ε -Caprolactone from High- Surface-Area Nanopaper.” ACS Appl. Mater. Interfaces, 4 3191–3198 (2012)

    Article  CAS  Google Scholar 

  85. Lahcini, M, Elhakioui, S, Szopinski, D, et al. “Harnessing Synergies in Tin-Clay Catalyst for the Preparation of Poly(e-caprolactone)/Halloysite Nanocomposites.” Eur. Polym. J., 81 1–11. https://doi.org/10.1016/j.eurpolymj.2016.05.014 (2016)

    Article  CAS  Google Scholar 

  86. El Assimi, T, Blažic, R, El Kadib, A, et al. “Synthesis of Poly(ε-caprolactone)-Grafted Guar Gum by Surface-Initiated Ring-Opening Polymerization.” Carbohydr. Polym., 220 95–102. https://doi.org/10.1016/j.carbpol.2019.05.049 (2019)

    Article  CAS  Google Scholar 

  87. Mohamed, RM, Yusoh, K, “A Review on the Recent Research of Polycaprolactone (PCL).” Adv. Mater. Res., 1134 249–255. https://doi.org/10.4028/www.scientific.net/amr.1134.249 (2015)

    Article  Google Scholar 

  88. Jintakanon, N, Opaprakasit, P, Petchsuk, A, Opaprakasit, M, “Controlled-Release Materials for Fertilizer Based on Lactic Acid Polymers.” Adv. Mat. Res., 57 905–908. https://doi.org/10.4028/www.scientific.net/AMR.55-57.905 (2008)

    Article  Google Scholar 

  89. Djamaan, A, Suardi, M, Mayerni, R, et al. “Formulation of Slow-Release NPK Double-Coated Granules Using Bioblend Polymer by Spray.” Iraqi J. Agric. Sci., 49 1032–1040 (2018)

    Google Scholar 

  90. Suardi, M, Rahmayulis, Ben ES, Djamaan, A, “Slow-Release NPK Double-Coating Granules Using Bioblends Polystyrene—Polycaprolactone as a Coating Polymer.” J. Agric. Vet. Sci., 13 59–64. https://doi.org/10.9790/2380-1301035964 (2020)

    Article  Google Scholar 

  91. El Assimi, T, et al. “Poly(ε-caprolactone)-g-guar Gum and poly(ε-caprolactone)-g-halloysite Nanotubes as Coatings for Slow-release DAP Fertilizer.” J. Polym. Environ., 28 2078–2090. https://doi.org/10.1007/s10924-020-01750-7 (2020)

    Article  CAS  Google Scholar 

  92. Wang, X, Zhang, X, Han, X, et al. “Performance Adjustable Porous Polylactic Acid-Based Membranes for Controlled Release Fertilizers.” J. Appl. Polym. Sci.https://doi.org/10.1002/app.49649 (2020)

    Article  Google Scholar 

  93. Xia, X, Zhang, F, Yang, L, et al. “Low-Temperature Flowable Poly(lactic acid)/Polycaprolactone Blends for the Solvent-Free Preparation of Slow-Released Urea Fertilizer in a Thermal Shear Field.” Ind. Eng. Chem. Res., 59 (47) 20601–20611. https://doi.org/10.1021/acs.iecr.0c04419 (2020)

    Article  CAS  Google Scholar 

  94. El Assimi, T, Bla, R, Vidovi, E, et al. “Progress in Organic Coatings Polylactide/Cellulose Acetate Biocomposites as Potential Coating Membranes for Controlled and Slow Nutrients Release from Water-Soluble Fertilizers.” Prog. Org. Coat., 156 106255. https://doi.org/10.1016/j.porgcoat.2021.106255 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work comes from a fruitful collaboration between Mohammed VI Polytechnic University (UM6P), Cadi Ayyad University (UCA) and University of Hamburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Lahcini.

Ethics declarations

Conflict of interest

The authors report no declaration of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Assimi, T., Beniazza, R., Raihane, M. et al. Overview on progress in polysaccharides and aliphatic polyesters as coating of water-soluble fertilizers. J Coat Technol Res 19, 989–1007 (2022). https://doi.org/10.1007/s11998-022-00613-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-022-00613-1

Keywords

Navigation