Skip to main content
Log in

Performance of different water-based resins in the formulation of intumescent coatings for passive fire protection

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

In civil construction, intumescent coatings are widely used in steel structures, because in a fire, this material loses approximately half of its elastic modulus at 500°C. The use of these paints is essential to ensure the structural safety of the construction as well as that of humans. The phenomenon of intumescence in paints occurs when they are subjected to high temperatures forming a carbonaceous layer that expands on the surface of the coating, with the main purpose of serving as a thermal insulator of the substrate. The development of paints with low impact on the environment has been stimulated due to restrictions on the emission of volatile organic compounds imposed by government agencies. Therefore, the development of water-based intumescent paints has become essential to meet these guidelines. In the present work, intumescent coatings were developed with different water-based resins: epoxy, acrylic and alkyd. The paints were formulated using expandable graphite as a blowing agent and expanded char source, ammonium polyphosphate as an acid source and lignin as a carbon source. The formulations were applied to steel substrates and exposed to burning tests to verify fire resistance, and in addition, the samples were characterized by combustion microcalorimetry, thermogravimetric analysis and pyrolysis coupled with gas chromatography and mass spectrometry. The carbonaceous layers were characterized by optical microscopy, scanning electron microscopy with dispersive energy spectroscopy, X-ray diffraction and Raman spectroscopy. The results of combustion microcalorimetry showed that the formulations containing lignin released less heat than the others. No toxic gases were detected in the pyrolysis of epoxy and acrylic system paints. The X-ray diffraction and Raman analyses proved the formation of thermally stable compounds in the carbonaceous layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Martins, NO, “Ecosystems, Strong Sustainability and the Classical Circular Economy.” Ecol. Econ., 129 32–39 (2016)

    Article  Google Scholar 

  2. Qian, W, Li, XZ, Wu, ZP, Liu, YX, Fang, CC, Meng, W, “Formulation of Intumescent Flame Retardant Coatings Containing Natural-Based Tea Saponin.” J. Agric. Food Chem., 63 2782–2788 (2015)

    Article  CAS  Google Scholar 

  3. Carosio, F, Blasio, A, Alongi, J, Malucelli, G, “Green DNA-Based Flame Retardant Coatings Assembled Through Layer by Layer.” Polymer, 54 5148–5153 (2013)

    Article  CAS  Google Scholar 

  4. Cheng, Y, Wang, CH, “Enabling Sustainable Development Through Creative and Innovative Chemical Engineering-APCChE 2012 Special Issue on Energy, Water, and Environment.” Ind. Eng. Chem. Res., 51 (2012) 9919–9920 (2012)

    Article  CAS  Google Scholar 

  5. Alongi, J, Han, Z, Bourbigot, S, “Intumescence: Tradition Versus Novelty. A Comprehensive Review.” Prog. Polym. Sci., 51 28–73 (2014)

    Article  Google Scholar 

  6. Hu, X, Zhu, X, Sun, Z, “Effect of CaAlCO3-LDHs on Fire Resistant Properties of Intumescent Fireproof Coatings for Steel Structure.” Appl. Surf. Sci., 457 164–169 (2018)

    Article  CAS  Google Scholar 

  7. Duquesne, S, Magnet, S, Jama, C, Delobel, R, “Thermoplastic Resins for Thin Film Intumescent Coatings—Towards a Better Understanding of Their Effect on Intumescence Efficiency.” Polym. Degrad. Stab., 88 63–69 (2005)

    Article  CAS  Google Scholar 

  8. Sá, SC, Milena, MS, Peres, RS, Zmozinski, AV, Braga, RM, Melo, DMA, Ferreira, CA, “Environmentally Friendly Intumescent Coatings Formulated with Vegetable Compounds.” Prog. Org. Coat., 113 47–59 (2017)

    Article  Google Scholar 

  9. Horrocks, AR, Kandola, BK, Davies, PJ, Zhang, S, Pandbury, SA, “Developments in Flame Retardant Textiles—A Review.” Polym. Degrad. Stab., 88 3–12 (2005)

    Article  CAS  Google Scholar 

  10. Jiao, L, Wu, Z, “Alkali Lignin as a Carbonization Agent on the Thermal Degradation and Flame Retardancy of Intumescent Flame Retardant Coating.” Adv. Mater. Res., 750–752 1385–1388 (2013)

    Article  Google Scholar 

  11. Souza, MM, Sá, SC, Zmozinski, AV, Peres, RS, Ferreira, CA, “Biomass as the Carbon Source in Intumescent Coatings for Steel Protection Against Fire.” Ind. Eng. Chem. Res., 55 11961–11969 (2016)

    Article  Google Scholar 

  12. Puri, RG, Khanna, AS, “Intumescent Coatings: A Review on Recent Progress.” J. Coat. Technol. Res., 14 1–20 (2017)

    Article  CAS  Google Scholar 

  13. Mariappan, T, “Recent Developments of Intumescent Fire Protection Coatings for Structural Steel: A Review.” J. Fire Sci., 34 120–163 (2016)

    Article  CAS  Google Scholar 

  14. Hartmann, D, “Resinas alquídicas base água emulsionadas por inversão de fase.” 2011. 104 f. Dissertação (Mestrado em Engenharia) - Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, 2011.

  15. Baldissera, AF, Silveira, MR, Beraldo, CH, Tocchetto, NS, Ferreira, CA, “Evaluation of the Expandable Graphite/Polyaniline Combination in Intumescent Coatings.” Synth. Met., 256 116141 (2019)

    Article  Google Scholar 

  16. Beraldo, CHM, Silveira, MRS, Baldissera, AF, Ferreira, CA, “A New Benzoxazine-Based Intumescent Coating for Passive Protection Against Fire.” Prog. Org. Coat., 137 105321 (2019)

    Article  Google Scholar 

  17. Kandola, BK, Luangtriratana, P, Duquesne, S, Bourbigot, S, “The Effects of Thermophysical Properties and Environmental Conditions on Fire Performance of Intumescent Coatings on Glass Fibre-Reinforced Epoxy Composites.” Materials, 8 5216–5237 (2015)

    Article  CAS  Google Scholar 

  18. Duquesne, S, Magnet, S, Jama, C, Delobel, R, “Intumescent Paints: Fire Protective Coatings for Metallic Substrates.” Surf. Coat. Technol., 180–181 302–307 (2004)

    Article  Google Scholar 

  19. Krassowski, DW, Hutchings, DA, Qureshi, SP, “Expandable Graphite Flake as an Additive for a New Flame Retardant Resin. GrafTech International Holdings Inc. http://www.graftech.com/wp-content/uploads/2015/03/GRAFGUARDExpandable-Graphite-Flake-as-an-Additive-for-a-New-Flame-Retardant-Resin.pdf. Access: April 12, 2020.

  20. Beraldo, CHM, “Desenvolvimento de tintas intumescentes a base de resinas benzoxazina e epóxi: avaliação da proteção contra o fogo após exposição à radiação UV.” 2019. 102 f. Dissertação (Mestrado em Engenharia) - Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, 2019.

  21. Ullah, S, Ahmad, F, “Effects of Zirconium Silicate Reinforcement on Expandable Graphite Based Intumescent Fire Retardant Coating.” Polym. Degrad. Stab., 103 49–62 (2014)

    Article  CAS  Google Scholar 

  22. Brebu, M, Vasile, C, “Thermal Degradation of Lignin—A Review.” Cellul. Chem. Technol., 44 353–363 (2010)

    CAS  Google Scholar 

  23. Novozhilov, V, Joseph, P, Ishiko, K, Shimada, T, Wang, H, Liu, J, “Polymer Combustion as a Basis for Hybrid Propulsion: A Comprehensive Review and New Numerical Approaches.” Energies, 4 1779–1839 (2011)

    Article  CAS  Google Scholar 

  24. Benin, V, Durganala, S, Morgan, AB, “Synthesis and Flame Retardant Testing of New Boronated and Phosphonated Aromatic Compounds.” J. Mater. Chem., 22 1180–1190 (2012)

    Article  CAS  Google Scholar 

  25. Sonnier, R, Otazaghine, B, Dumazert, L, Ménard, R, Viretto, A, Dumas, L, Bonnaud, L, Dubois, P, Safronava, N, Walters, R, Lyon, R, “Prediction of Thermosets Flammability Using a Model Based on Group Contributions.” Polymer, 127 203–213 (2017)

    Article  CAS  Google Scholar 

  26. Howell, BA, Sun, W, “Biobased Flame Retardants from Tartaric Acid and Derivatives.” Polym. Degrad. Stab., 157 199–211 (2018)

    Article  CAS  Google Scholar 

  27. Pereira, CMC, Martins, MSS, “Flame Retardancy of Fiber-Reinforced Polymer Composites Based on Nanoclays and Carbon Nanotubes”. In: Polymer Green Flame Retardants, pp. 551–595 (2014)

  28. Chen, S, Ai, L, Zeng, J, Liu, P, “Synergistic Flame-Retardant Effect of an Aryl Boronic Acid Compound and Ammonium Polyphosphate on Epoxy Resins.” Chem. Select, 4 9677–9682 (2019)

    CAS  Google Scholar 

  29. Zhang, W, He, X, Song, T, Jiao, Q, Yang, R, “Comparison of Intumescence Mechanism and Blowing-Out Effect in Flame-Retarded Epoxy Resins.” Polym. Degrad. Stab., 112 43–51 (2015)

    Article  CAS  Google Scholar 

  30. Dong, LP, Deng, C, Li, RM, Cao, ZJ, Lin, L, Chen, L, Wang, YZ, “Poly(Piperazinyl Phosphamide): A Novel Highly Efficient Charring Agent for an EVA/APP Intumescent Flame Retardant System.” RSC Adv., 6 30436–30444 (2016)

    Article  CAS  Google Scholar 

  31. Ház, A., Jablonský, M., Orságová, A., Surina, I, “Characterization of Lignins by Py-GC/MS.” In: 4° International Conference Renewable Energy Sources, Tatranské Matliare, Slovakia, 2013.

  32. Zhang, M, Resende, FLP, Moutsoglou, A, Raynie, DE, “Pyrolysis of Lignin Extracted from Prairie Cordgrass, Aspen, and Kraft Lignin by Py-GC/MS and TGA/FTIR.” J. Anal. Appl. Pyrolysis, 98 65–71 (2012)

    Article  CAS  Google Scholar 

  33. Osete-Cortina, L, Doménech-Carbó, MT, “Characterization of Acrylic Resins Used for Restoration of Artworks by Pyrolysis-Silylation-Gas Chromatography/Mass Spectrometry with Hexamethyldisilazane.” J. Chromatogr. A, 1127 228–236 (2006)

    Article  CAS  Google Scholar 

  34. Mao, S, Ohtani, H, Tsuge, S, “Compositional Analysis of Multicomponent Acrylic Resins by Pyrolysis-Capillary Gas Chromatography.” J. Anal. Appl. Pyrolysis, 33 181–194 (1995)

    Article  CAS  Google Scholar 

  35. Williams, PT, Horne, PA, Taylor, DT, “Polycyclic Aromatic Hydrocarbons in Polyestyrene Derived Pyrolysis Oil.” J. Anal. Appl. Pyrolysis, 25 325–334 (1993)

    Article  CAS  Google Scholar 

  36. Williams, PT, Williams, EA, “Product Composition from the Fast Pyrolysis of Polystyrene.” Environ. Technol., 20 1109–1118 (1999)

    Article  CAS  Google Scholar 

  37. Mallégol, J, Gardette, J, Lemaire, J, “Long-Term Behavior of Oil-Based Varnishes and Paints. Photo- and Thermooxidation of Cured Linseed Oil.” J. Am. Oil Chem. Soc., 77 257–263 (2000)

    Article  Google Scholar 

  38. van Gorkum, R, Bouwman, E, “The Oxidative Drying of Alkyd Paints Catalyzed by Metal Complexes.” Coord. Chem. Rev., 249 1709–1728 (2005)

    Article  Google Scholar 

  39. Wei, S, Pintus, V, Schreiner, M, “A Comparison Study of Alkyd Resin Used in Art Works by Py-GC/MS and GC/MS: The Influence of Aging.” J. Anal. Appl. Pyrolysis, 104 441–447 (2013)

    Article  CAS  Google Scholar 

  40. Rodrigues, CFS, “Caracterização de Tintas Alquídicas por THM-GC-MS, FTIR in situ e FTIR-S.” Estudo da obra de “Francisco de Assis” de Àlvaro Lapa. 2012. 176 f. Dissertação (Mestrado em Química) – Universidade de Lisboa, 2012.

  41. Zhao, H, Pang, X, Lin, R, “Preparation of Boric Acid Modified Expandable Graphite and Its Influence on Polyethylene Combustion Characteristics.” J. Chilean Chem. Soc., 61 2767–2771 (2016)

    Article  CAS  Google Scholar 

  42. Wladyka-Przybylak, M, Kozlowski, R, “The Thermal Characteristics of Different Intumescent Coatings.” Fire Mater., 23 33–43 (1999)

    Article  CAS  Google Scholar 

  43. Song, QY, Han, LH, Zhou, K, Feng, Y, “Fire Resistance of Circular Concrete-Filled Steel Tubular (CFST) Column Protected by Intumescent Coating.” J. Constr. Steel Res., 147 154–170 (2018)

    Article  Google Scholar 

  44. Li, H, Hu, Z, Zhang, S, Gu, X, Wang, H, Jiang, P, Zhao, Q, “Effects of Titanium Dioxide on the Flammability and Char Formation of Water-Based Coatings Containing Intumescent Flame Retardants.” Prog. Org. Coat., 78 318–324 (2015)

    Article  Google Scholar 

  45. Wang, Z, Han, E, Liu, F, Ke, W, “Thermal Behavior of Nano-TiO2 in Fire-Resistant Coating.” J. Mater. Sci. Technol., 23 547–550 (2007)

    CAS  Google Scholar 

  46. Friederich, B, Laachachi, A, Ferriol, M, Cochez, M, Sonnier, R, Toniazzo, V, Ruch, D, “Investigation of Fire-Resistance Mechanisms of the Ternary System (APP/MPP/TiO2) in PMMA.” Polym. Degrad. Stab., 97 2154–2161 (2012)

    Article  CAS  Google Scholar 

  47. Loridant, S, Marcu, IC, Bergeret, G, Millet, JMM, “TiP2O7 Catalysts Characterised by In Situ Raman Spectroscopy During the Oxidative Dehydrogenation of n-Butane.” Phys. Chem. Chem. Phys., 20 4384–4389 (2003)

    Article  Google Scholar 

  48. Aliouane, N, Badeche, T, Gagou, Y, Nigrelli, E, Saint-Gregoire, P, “Synthesis and Phase Transitions of Iron Phosphate.” Ferroelectrics, 241 255–262 (2000)

    Article  Google Scholar 

  49. Rebeyrat, S, Grosseau-Poussard, JL, Silvain, JF, Panicaud, B, Dinhut, JF, “Phosphating of Bulk α-Iron and Its Oxidation Resistance at 400°C.” Applied Surface Science, 199 11–21 (2002)

    Article  CAS  Google Scholar 

  50. Marciuš, M, Ristić, M, Ivanda, M, Music, S, “Formation of Iron Oxides by Surface Oxidation of Iron Plate.” Croatica Chem. Acta, 85 117–124 (2012)

    Article  Google Scholar 

  51. Pilchin, AN, Eppelbaum, LV, “Stability of Iron Oxides and Their Role in the Formation of Rock Magnetism.” Acta Geophys., 55 133–153 (2007)

    Article  Google Scholar 

  52. Song, L, Wu, K, Wang, Y, Wang, Z, Hu, Y, “Flammability and Thermo-Oxidative Decomposition of Epoxy Resin Containing Ammonium Polyphosphate and Metallic Oxide.” J. Macromol. Sci. Part A Pure Appl. Chem., 46 290–295 (2009)

    Article  CAS  Google Scholar 

  53. Zhou, S, Song, L, Wang, Z, Hu, Y, Xing, W, “Flame Retardation and Char Formation Mechanism of Intumescent Flame Retarded Polypropylene Composites Containing Melamine Phosphate and Pentaerythritol Phosphate.” Polym. Degrad. Stab., 93 1799–1806 (2008)

    Article  CAS  Google Scholar 

  54. de Souza Haack, M, “Caracterização de Grafeno Obtido por Diferentes Métodos Utilizando Espectroscopia Raman.” 2017. 87 f. Dissertação (Mestrado em Engenharia) - Universidade Federal do Rio Grande do Sul, 2017.

  55. Tuinstra, F, Koenig, JL, “Raman Spectrum of Graphite.” J. Chem. Phys., 53 1126–1130 (1970)

    Article  CAS  Google Scholar 

  56. Cançado, LG, Jorio, A, Ferreira, EHM, Stavale, F, Achete, CA, Capaz, RB, Moutinho, MVO, Lombardo, A, Kulmala, TS, Ferrari, AC, “Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies.” Nano Lett., 11 3190–3196 (2011)

    Article  Google Scholar 

  57. Xie, R, Qu, B, “Expandable Graphite Systems for Halogen-Free Flame Retarding of Polyolefins. II. Structures of Intumescent Char and Flame-Retardant Mechanism.” J. Appl. Polym. Sci., 80 1190–1197 (2001)

    Article  CAS  Google Scholar 

  58. Porto, SPS, Fleury, PA, Damen, TC, “Raman Spectra of TiO2, MgF2, ZnF2, FeF2 and MnF2.” Phys. Rev., 154 522–526 (1967)

    Article  CAS  Google Scholar 

  59. Bamberger, CE, Begun, GM, “Synthesis and Characterization of Titanium Phosphates, TiP2O7 and (TiO)2P2O7.” J. Less-Common Met., 134 201–206 (1987)

    Article  CAS  Google Scholar 

  60. Sato, Y, Kamo, M, Setaka, N, “Raman Spectra of Carbons at 2600–3300 cm1 Region.” Carbon, 16 279–280 (1978)

    Article  CAS  Google Scholar 

  61. Nemanich, RJ, Solin, SA, “Observation of an Anomolously Sharp Feature in the 2nd Order Raman Spectrum of Graphite.” Solid State Commun., 23 417–420 (1977)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank CAPES, CNPq and FAPERGS for financial support, Suzano for the supply of lignin and Nacional de Grafite for the supply of expandable graphite.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Ferreira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strassburger, D., Silveira, M.R., Baldissera, A.F. et al. Performance of different water-based resins in the formulation of intumescent coatings for passive fire protection. J Coat Technol Res 20, 201–221 (2023). https://doi.org/10.1007/s11998-021-00597-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-021-00597-4

Keywords

Navigation