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Abstract This article analyzes a published formula-
tion of the Navier–Stokes equations cast into surface-
following coordinates and provides some additional
mathematical background to follow the article. Ubiq-
uitous in the paint shops of automotive plants around
the world, a high-speed rotary bell is succinctly
described as a rapidly spinning concave axisymmetric
surface with liquid paint supplied from a port coincid-
ing with the center of rotation. The spinning surface
transfers momentum to the paint film causing it to flow
outward. Upon reaching the bell periphery, it is flung
off, subsequently forming an atomized spray trans-
ferred to an automotive body through advection and
electrostatics. Common analytical frameworks of rotat-
ing films were spherical or cylindrical coordinate
systems where the wetted surface profile of the bell
was constrained to follow a coordinate axis. This led to
solutions for films modeled with conical, disk-like, or
partial hemispherical profiles. An alternative was a
more general case using a surface-following orthogonal
curvilinear coordinate system along with its derived
vector operators. In the unique case of a thin film,
these results validated a simpler pattern found in
common coordinate systems.

Keywords Rotary Bell, Curvilinear, Rotational Fluid
Mechanics, Automotive Paint, Atomization

Abbreviations

A Vector variable (with subscripts)

r Radial coordinate (or subscript) in spherical or

cylindrical coordinates

x Bell angular velocity

l Fluid dynamic viscosity

R Constant radius in spherical coordinates

R Perpendicular distance from axis of rotation

v Velocity (subscripted direction)

h Polar angle (spherical), angle (cylindrical), or

subscript

b Interior cone angle

w Angle from line perpendicular to axis to bell

surface tangent

h Liquid film thickness

hðqÞ Scale factor for dimension q

q Coordinate proxy in an equation (with

subscript)

u Coordinate proxy in an equation (with

subscript)

Q Volumetric flow supplied at center of bell

g Metric coefficient (subscripted)

s Length variable

x Cartesian

y Cartesian

z Height in a cylindrical coordinate system (or

Cartesian x� y direction)

q Fluid density

R nð Þ Radial position of bell surface at arc length

n(subscript indicates derivative)

Z nð Þ Vertical position of bell surface at arc length

n(subscript indicates derivative)

n Arc length parameter and coordinate

(subscript)

g Normal coordinate at arc length n(subscript)

r Gradient operator
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D Laplacian operator

Introduction

Knowing the thickness of a paint film on a high-speed
rotary bell,1 especially near the periphery,2 has signif-
icance because film thickness in the region of departure
contributes to the determination of average drop
diameter in the subsequent spray.3 An example of an
automotive body painting process, from supplied liquid
through film deposition, is schematically shown in
Fig. 1. As paint, which is a system of solvents and
solutes, departs from the bell, it is shredded4 into an
‘‘infinity’’ of drops that can be approximated by a
statistical distribution.5 Aerodynamic forces have a
dependency on the initial tangential velocity of the
departing drops. Thus, the eventual average drop
diameter is influenced by a tentative balance between
complex aerodynamic drop-shredding forces, drop-
preserving forces of surface tension, and, if present,
electrostatic forces.6 Larger drops are more vulnerable
to aerodynamic shredding. However, as shredding
reduces drop diameter, surface tension forces become
relatively dominant, limiting further drop breakup.

The academic study of rotary atomization7 morphs
into a tangible and financially quantitative industrial
problem when considering the effects of variation in
paint drop viscosity caused by solvent evaporation
from the paint drop while they are inflight from the bell
to final deposition on a body surface. A simplifying
assumption is that the extrinsic solvent evaporation
rate is proportional to drop surface area. Since a
spherical drop has a surface area to volume ratio of
three over the radius (3/r), at a constant intrinsic
evaporation rate per unit area, the rate of change in
solvent concentration within a drop is inversely pro-

portional to drop radius. Compared to an average
inflight drop, larger drops have a slower solvent
concentration reduction rate, while smaller drops have
a faster solvent concentration reduction rate. If a drop
is significantly oversized, insufficient inflight solvent
evaporation leaves it relatively solvent rich upon
deposition at the car body. Therefore, the paint film
has a higher likelihood of sagging due to low viscosity.

On the other hand, if a drop is significantly under-
sized, excess inflight evaporation leaves it solvent
deficient upon deposition. The paint film can become
too viscous to form a level surface, thereby contribut-
ing to an uneven finish colloquially known as ‘‘orange
peel.’’ The desired rotary bell-induced spray has two
important statistics: controllable drop size and narrow
distribution, enabling a uniform and level paint film to
satisfy customers.8

Background

Axisymmetric rotary bells profiles analyzed with the
Navier–Stokes equations (NSE’s) in spherical9,10 or
cylindrical coordinate systems are represented by
schematics cross sections shown in Fig. 2.

Prior works by Hinze and Milborn,11 Orzechowski
and Bayvel12 (h), Sun et al.,13 Ogasawra et al.14 (h),
and Yang et al.15 are summarized in Table 1.

Table 1 summarizes simplified governing equations
based on assumptions of steady state, a Newtonian
fluid, thin film, in-film geometry defined by profile
geometry, axisymmetric flow, axisymmetric deriva-
tives, center-fed volumetric flow Q, no-slip and no-
shear boundary conditions, high-speed, and point
analysis. Point analysis implies all calculations are
local instead of integrating from an upstream set of
initial conditions constraining film thickness and veloc-
ity profiles. This last assumption leads to a singularity
of an infinitely thick film at the center of rotation.
However, since an actual rotary bell has a cap over the
centrally located supply port that extends over a
portion of the bell, point analysis becomes a reasonable
assumption since the thickness is not calculated around
the center of rotation.
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Fig. 1: Process flow—liquid paint enters the center of the
bell, shear forces spread the liquid over the concave bell
surface and accelerate it to the edge where it is atomized,
and finally, air currents and electrostatics propel droplets
toward deposition on the body panel
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R
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Fig. 2: Bell cross sections coincident with rotation axis in
spherical or cylindrical coordinates
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Although the governing equations in Table 1 appear
algebraically different, they are essentially equation (1)
cast into different coordinate systems, along with
different geometric references. The film thicknesses
in Table 1 are the result of integrations that were
simplified by implementing previously mentioned
assumptions.

d2vtan

dv2
norm

¼ qRx2

l
cosw ð1Þ

Equation (1) describes a pattern that emerges from
analyses in familiar (spherical, cylindrical) coordinate
systems. The film thickness at any point on a bell
profile can be approximated in the context of a local
normal-tangential coordinate system at a point on the
bell profile by specifying the local angle w and other
operating parameters. A schematic that describes this
relationship is shown in Fig. 3.

Despite the apparent simplicity represented by
equation (1) and Fig. 3, there is a hidden subtlety in
analyzing a spherical bell profile with this approach.
Since the angle w varies with radial position R, and if
the bell is of sufficient diameter, it is possible to find a
location where the film thickness is minimum, beyond
which, the film becomes thicker in the direction of flow.
On the other hand, for profiles of constant polar angle,
such as a cone or disk, the film thickness is strictly
decreasing as the radial coordinate goes to infinity. In
other words, for a bell surface profile that has an

infinite radius of curvature, the film becomes forever
thinning in the direction of flow. In contrast, in the case
of a spherical surface, there is an inflection point, after
which flow can proceed from thinner to thicker films.
This article does not include an analysis of such flow
conditions.

The bell cross section shown in Fig. 4 is casually
different from those shown in Fig. 2. It does not have a
surface profile coincident with a coordinate axis of a
common coordinate system. An alternative coordinate
system for analysis is defining a profile-following
coordinate system. However, vector operators appli-
cable to this surface-following coordinate system, such
as those used in the vector form of the Navier–Stokes
equations, will require derivation since they depend on
the particular profile.

As shown in Fig. 4, two questions will be answered
with the introduction of a blended surface profile. First,
does analyzing the film in the context of equation (1)
provide a usable thickness profile in the case of a
variable curvature bell surface? Second, does a Navier–
Stokes formulation in surface-following coordinates,
along with previously mentioned assumptions, simplify
into the form of equation (1)? The answer to both of
these questions is yes.

Example in literature

A bell profile was scaled from an illustration contained
in Domnick et al.16 It consists of a substantially conical
section with a surface angle, measured from a normal

Table 1: Summary of prior works in common coordinate systems

Authors System Governing equation h - film thickness

Hinze and Milborn Orzechowski et al. Spherical @2vr

r 2@h2
¼ � qx2

l rsin2b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q3l

2pqR2x2sinb
3

q

Sun et al. Ogasawra et al. Cylindrical @2vr

@z2
¼ � qrx2

l

ffiffiffiffiffiffiffiffiffiffiffiffiffi

Q3l
2pqr 2x2

3

q

Yang et al. Spherical @2vh

@r 2
¼ � q

l x
2R

R2�R2ð Þ1=2
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q3lR
2pqR2x2 R2�R2ð Þ1=2

3

r

Surface
normal

Parcel of fluid with
density � and viscosity �

R

�

�

Surface velocity tangent

Bell surface

Fig. 3: Localized analysis

Conical to Curved

Fig. 4: Example of blended profile
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to the rotation axis, of about 28 degrees up to a radius
of about 30 mm, and then blends into another
substantially conical section with the surface angle of
about 60 degrees and extends out to the peripheral
radius of about 31.5 mm. The fluid had a viscosity of
about 0.086 Pa-s viscosity and a density approximated
as 1.0 gram per cc. Two different RPM curves are
shown in Fig. 5, a 40,000-RPM curve and a 60,000-
RPM curve. These curves agree with the data pub-
lished by Domnick et al.16

The curves shown in Fig. 5 had discontinuities at
around the 30-millimeter radial position that were the
result of lines connecting the points of local analysis
between the two conical angles. Moreover, Domnick
et al. included an ANSYS Fluent analysis that had
similar results. Obtaining film thickness profiles based
on localized calculations utilizing equation (1) does
indeed have the ability to show useful results.

Surface-following coordinate system

In a mathematically elegant work published by
Mogilevskii and Shkadov,17 although their analysis
was tailored for an exceedingly more complex problem

than a high-speed rotary bell, extensive simplification
of the outward nð Þ momentum equation eventually
yields equation (1). In their work, a plane curve with
radial and vertical positions parameterized by arc
length along the bell profile was revolved around the
axis of rotation, thereby creating a surface-following
orthogonal coordinate system. Since any particular bell
profile defines a unique coordinate system, vector
operators associated with this coordinate system
required derivation. In the analysis of Mogilevskii
and Shkadov, this paper attempts to fill in several
intermediate steps that assist in recreating a derivation
of their extraordinary work; however, derivations of
results beyond select terms in the outwards nð Þ
momentum equation were not included.

In Fig. 6, a plane on R;Z was parameterized by the
coordinate n, or arc length. A value of g is the distance
normal to the curve at the point parameterized by n.
The angular position around the Z-axis is similar to the
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Fig. 5: Equation (1) applied to a bell with variable cone angles
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rotational coordinate in a ‘‘traditional’’ cylindrical
coordinate system. Figure 7 and equation (2) are the
keys to transformation between the planar systems of
R;Z and n; g. Since n; g; and unit vector for rotation
around z (perpendicular to the page) are mutually
orthogonal, this coordinate system is isomorphic to all
orthogonal coordinate systems. It retains the property
of invariance of differential length.

The invariance of length, or the L2 norm, in Hilbert
Space can be expressed by equation (2). In this case,
‘‘x’s’’ represent the coordinates in a Cartesian x; y; zð Þ
system, the ‘‘q’s’’ represent the coordinates in the
surface-profile-following n; g; hð Þ system. The coeffi-
cients glm are the components of the metric tensor, or
metric coefficients. They are defined by equation (3).

ds2 ¼ dxi � dxi ¼
@xi
@ql

@xi
@qm

dqldqm ¼ glmdqldqm ð2Þ

@xi
@ql

@xi
@qm

¼ glm ð3Þ

Orthogonality dictates there are only three diagonal
coefficients in this metric tensor. Therefore, the length
of a vector is defined by equation (4), where h0 ið Þs are

referred to as scale factors.18 This h is not the same as
the previous h designating film thickness. Parentheses
are used on the indices of each h to associate the scale
factor with a particular coordinate and are not included
in indicial operations. Finally, each h ið Þ is calculated
according to equation (5).

ds2 ¼ h2
1ð Þds

2
1 þ h2

2ð Þds
2
2 þ h2

3ð Þds
2
3 ð4Þ

h i¼1;2;3ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

@x1

@qi

@x1

@qi
þ @x2

@qi

@x2

@qi
þ @x3

@qi

@x3

@qi

s

i ¼ n; g; h ð5Þ

Figure 7 substantiates a coordinate transformation
of (n; g; h), where h, in this context, is an angle around
the axis of rotation, to (x, y, z). The Cartesian
coordinate transformations are shown as equations

(6), (7), and (8). In the (n; g; h) system, all points are R3

are longer reachable; therefore, analysis in this system
is restricted to thin fluid films.17

x n; g; hð Þ ¼ R nð Þ � gZn nð Þð Þcosh ð6Þ

y n; g; hð Þ ¼ R nð Þ � gZn nð Þð Þsinh ð7Þ

z n; g; hð Þ ¼ Z nð Þ þ Rn nð Þg ð8Þ

If equations (6), (7), and (8) are substituted into
equation (5), the scale factors are obtained and shown
as equations (9), (10), and (11). Deriving equations

(9)–(11) relies on the identity C2 þ S2 ¼ 1; however,
equation (11) also relies on neglecting a g2 term and

the truncated binomial theorem, or
1 þ bxð Þa ¼ 1 þ abx.

h : h 3ð Þ ¼ 1 ð9Þ

g : h 2ð Þ ¼ R nð Þ � Zn nð Þg ¼ r n; gð Þ ð10Þ

n : h 1ð Þ ¼ 1 � Rn nð ÞZnn nð Þ � Zn nð ÞRnn nð Þ
� �

g

¼ 1 �Kgð11Þ ð11Þ

Scale factors are the ratio of differential distances to
differentials of the coordinate parameters.18 Once
scale factors are known, vector operators can be
derived using widely available gradient, material
derivative, and Laplacian definitions. However, unit
vectors in this surface-following system have deriva-
tives; therefore, the derivation of associated vector
operators becomes tedious.

Calculations of the unit vector derivatives were
brilliantly explained by Happel and Brenner.19 Once
derivatives of unit vectors are known, the gradient
[equation (12)], the material derivative [equation
(13)],20,21 and the Laplacian [equation (14)] 21 can be
calculated and are shown as follows.

r ¼ 1

hi

@

@qi
bqi ð12Þ

u � ru½ �i ¼
uj

hj

@ui

@qj
þ uj

hjhi
ui
@hi

@qj
� uj

@hj

@qi

� �

ð13Þ

D ¼ 1

h1h2h3

@

@q1

h2h3

h1

@

@q1

� �

þ @

@q2

h1h3

h2

@

@q2

� �

þ @

@q3

h1h2

h3

@

@q3

� �	 


ð14Þ

Fitzpatrick, ‘‘after a great deal of tedious algebra,’’21

which is an understatement, has an expanded form of
[equation (14)], that is [equation (15)].

r2A
� �

i
¼ r2Ai þ

2

hihj

1

hi

@hi
@uj

@

@ui
� 1

hj

@hj
@ui

@

@uj

� �

Aj

þ h

hih
2
j

Aj

h2
i

@hj
@ui

@

@uj

h2
i

h

� �

�Ai

h2
j

@hi
@uj

@

@uj

h2
j

h

 !" #

þAj

hi

h

h3
j

1

hj

@hj
@ui

@

@uj

h2
j

h

 !

þ h

h2
j

@

@ui

h2
j

h

 !

@

@uj

h2
j

h

 !

� @2

@ui@uj

h2
j

h

 !" #

� Ai

hih
2
j

2

hi

@hj
@ui

� �2

� @2hi

@u2
j

" #

h ¼ h1h2h3

ð15Þ

If equations (12)–(15) are substituted into a vector
form of the Navier–Stokes equations, along with
kinematic and dynamic boundary conditions, an exten-
sive nondimensionalization, and put into an inertial
framework, this is the starting point of the work of
Mogilevskii and Shkadov. However, if the n momen-
tum equation is extensively simplified according to
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previous assumptions, equation (16) is obtained, and as
seen in Fig. 7, Rn nð Þ is equal to cosh in equation (1),
thus, proving that an extensively simplified formulation
of the Navier–Stokes equations in surface-following
coordinates does indeed match the ‘‘pattern’’ seen in
the more common cylindrical and spherical coordinate
systems. Although a numerical answer can usually be
obtained from equations (1) or (16), there is the
possibility that additional physics were ignored. How-
ever, that is a complex and tedious analysis and not
covered in this work. Equation (16) is a more general
form than the equations in Table 1 since the bell
surface is no longer constrained to a coordinate axis.
Instead, it is defined by a revolved planar curve with
radial and vertical position parameterized by arc length
along the bell surface. Unfortunately, this equation
does not indicate when it fails to predict actual fluid
behaviors that result from the profile of R nð Þ and Z nð Þ.
However, it may prove useful as preliminary analysis
or a numerical check of CFD results.

d2vn
@g2

¼ qRx2

l
Rn nð Þ ð16Þ

Conclusions

An analysis of the work of Mogilevskii and Shkadov17

was humbling; however, this article was not focused on
what they did. On the other hand, it was focused on
providing additional relevant subject matter to under-
stand how they obtained results. Once deciphered,
their article positively answered the question on the
existence of a simple film model for a functionally
defined and ‘‘within reason’’ surface profile of rotary a
bell. Moreover, it provides a framework for consider-
ing analyses that are more complex. As expected, and
proved, regardless of the coordinate system, the laws of
physics should yield the same answer.
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