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Abstract A manual scratch test to measure the
scratch resistance of coatings applied to a certain
substrate is usually used to test the adhesion of a
coating. Despite its significant amount of subjectivity,
the crosscut test is widely considered to be the most
practical measuring method for adhesion strength with
a good reliability. Intelligent software tools help to
improve and optimize systems combining chemistry,
engineering based on high-throughput formulation
screening (HTFS) technologies and machine learning
algorithms to open up novel solutions in material
sciences. Nevertheless, automated testing often misses
the link to quality control by the human eye that is
sensitive in spotting and evaluating defects as it is the
case in the crosscut test. In this paper, we present a
method for the automated and objective characteriza-
tion of coatings to drive and support Chemistry 4.0
solutions via semantic image segmentation using deep
convolutional networks. The algorithm evaluated the

adhesion strength based on the images of the crosscuts
recognizing the delaminated area and the results were
compared with the traditional classification rated by
the human expert.

Keywords Characterization, Surface integrity,
Coating, Chemistry 4.0, Crosscut test, Deep learning,
Image segmentation

Introduction

Organic coatings are commonly applied to protect
working surfaces from corrosion, abrasion, and ero-
sion1 or impart an aesthetic appearance.2 These coat-
ings act as barriers covering the underlying substrate
from the environmental impact and promise long-life
durability. The most critical failures are caused by
delamination or other surface defects and result in
malfunction of the workpiece or disfigurement. Thus,
adhesion is the minimum requirement for the devel-
opment of new lacquers or paints. Moreover, durability
is expected through weathering, hot–cold temperature
cycles, mechanical strain and chemical exposure over a
long period.3,4

The simplest manner for rating the destruction of
the coating is the visual control by humans during lab
tests under conditions being required for the applica-
tion. Many characterization methods have moved to
more empirical values, e.g., indentation testing5 or
gloss reduction after abrasion,6 in an attempt to
overcome the subjective estimation. However, other
procedures described by DIN EN ISO or ASTM
standards still rely on evaluation by the operator.7–10

Even though the significance of the rating might differ
between experts, fine distinctions can rarely be recog-
nized excluding the human control. For some tech-
niques, the implementation of automated processes
requires a quicker response without user interference.
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This automation is applied in the quality control as in-
line methods11 of the manufacturing and also more and
more in the lab development of new coating materi-
als.12

With high-throughput equipment (HTE) the coating
preparation and testing is fully automated for faster
screening of formulations.13 Robots are introduced to
execute repetitive tasks like dosing, mixing, application
on the substrate, and characterization of the hardened
surface with a high accuracy for more than hundred
samples a day. Because surface control by imaging is
an established part on HTE, a reliable recognition of
any kind of surface defect and delamination would be
beneficial for such innovative trends in material
development.

One important procedure is the crosscut test9

evaluating the delamination of coatings by comparing
the pattern of the damage being closely related to the
delaminated area. Another method is the the pulloff
test,13 but since it requires gluing a dolly onto the
surface which highly increases the difficulty of the test
with automated sampling, the crosscut test is more
common. Previous work has targeted a quantitative
evaluation of the test,14 however automating the
suggested method is not feasible and computational
approaches for image segmentation are potentially
more efficient. Online imaging is a fast quality control
that is already used in post-processing of industrial
manufacturing.15,16 An automated image recognition
valuing the defect of the crosscutting would be desir-
able for a faster throughput with no interference of the
human operator. The differences between intact sur-
face and the damage need to be recognized even in
case of small optical deviations between some combi-
nations of substrates and coatings (e.g., clear coating
on glass substrate).

Computer algorithms operating state-of-the-art ma-
chine learning are established for several applications
in image detection and classification.17 Machine learn-
ing enables computers to address problems by learning
from data. Deep learning (DL) is a type of machine
learning that uses a hierarchical recombination of
features to extract relevant information and then learn
the patterns represented in the data. For over a decade,
DL has been increasingly applied to a wide variety of
chemical challenges, like improving computational
chemistry to drug and materials design and synthesis
planning.

High-throughput formulation screening (HTFS)
represents one feasible opportunity for systematic
study of chemical systems using advanced robotic
systems.18 Here, many experiments can be carried
out under controlled and repeatable conditions pro-
viding valuable, good data. A more sophisticated
approach is the use of machine learning algorithms
running the analysis right on time, directly linked to
the responses (measured output data) and suggesting
new experiments based on the digital model uncer-
tainty created from the actual data.19 In the future,
machine learning algorithms will automatically control

the HTFS equipment and conduct experimental pro-
cesses independently and automatically and propose
new experiments on the basis of the results of previous
runs. An important step toward the goal to fully
automate complete chemical processes is the auto-
mated characterization of samples as part of the
comprehensive machine learning process. The combi-
nation of data collection from HTFS and analysis with
machine learning fulfills requirements of Chemistry
4.0. The term Chemistry 4.0 describes the digital
transformation of the chemical industry20 and sepa-
rates its historical development into four periods with
the perspective of a higher degree of automation in the
future by applying methods of big data and self-
monitoring systems.

In this work, we utilize convolutional neural net-
works (CNNs) to evaluate samples based on visual
data. The development of CNNs has led to a series of
scientific breakthroughs to promote artificial intelli-
gence; they were successfully applied to image recog-
nition tasks for example on the ImageNet dataset21–23

and for face recognition,24 image segmentation tasks
that are very important in autonomous driving25 and
biological applications26 and generative adversarial
networks27 that can generate new random samples
with the same statistics as the training data. We
focused on the automated evaluation of delamination
by crosscutting. The cutting itself was performed by an
automated system handling incoming test panels with
several kinds of soft and hard material as the substrate.
The pattern of damage was imaged and evaluated by a
deep learning algorithm segmenting delaminated and
intact area. As a result, the delamination could be
traditionally rated as described by standard procedures
or be determined based on the exact ratio between
delaminated and intact area, which is a more rigorous
and objective approach. Since other kinds of defects
like scratch or abrasion tests are usually optically rated
by the area of the damage, this technique can be easily
introduced into these testing procedures giving scal-
able numbers rather than applying user-defined classi-
fications.

Background

Neural networks

Feed forward neural networks or multilayer percep-
trons (MLPs)17 belong to the family of supervised
learning algorithms and can approximate any function
with arbitrary precision given there is enough hidden
layers and units.28 They are inspired by biological
neurons and in their simplest form they belong to the
class of generalized linear discriminants where the
equation of the output of the network is calculated
from the input x (Fig. 1):
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ŷMLPðx;w; bÞ ¼a

 Xn
i¼0

wixi þ b

!
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¼ 1

1þ expð�xÞ

ð1Þ

where wi, the corresponding weight factor, and b, the
bias term, are learnable parameters. a(x) is called
activation function and adds nonlinearity to the
network to increase the expressibility of the model;
in equation (1) the sigmoid function is used, which is
the most common activation function. In this form, a
MLP can easily be extended to perform
multidimensional linear regression and multiclass
classification. However, the expressiveness of neural
networks is based on the extension to multiple hidden
layers. Addition of hidden layers and extension of the
number of classes to k change the equation for the
prediction to:

ŷkðx;w; bÞ ¼ að2Þ Xn2
j¼0

w
ð2Þ
kj a

ð2Þ

 Xn1
i¼0

w
ð1Þ
ij xi þ b1

!
þ b2

!
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The number of hidden neurons in each layer can be
selected arbitrarily, such that the corresponding weight
matrices and bias vectors W; b ¼�
Wð1Þ; bð1Þ; . . . ;Wnlbnl

�
are obtained. The number of

hidden layers and the size of each layer represent
typical hyperparameters for the architecture selection
of the model. Learning occurs via a loss function J that
calculates the deviation of the model’s prediction ŷ
from the ground truth vector t. A commonly used loss
function is represented by the binary crossentropy loss
(BCE), which optimizes the model for binary
classification (i.e., foreground vs background
segmentation of a pixel in images):

JBCEðt; ŷÞ ¼ � 1

n

XN
i¼0

ti logðŷiÞ þ ð1� tiÞ logð1� ŷiÞ ð3Þ

where n represents the number of data points and ti
represents the i-th element of the ground truth vector.
The selection of a loss function is crucial and depends
heavily on the task to be solved. A series of loss
functions was implemented in this work which will be
covered later. In order to minimize this loss function,
one utilizes the backpropagation algorithm29 which
calculates partial derivatives with respect to the
weights. The most basic approach for optimization is
stochastic gradient descent (SGD), where one iteration
of the algorithm updates the learnable parameters w
and b in the following way:

w
ðsþ1Þ
ij ¼ w

ðsÞ
ij � a

@Jðw; bÞ
@wij

bðsþ1Þ ¼ bðsÞ � a
@Jðw; bÞ

@b

ð4Þ

The hyperparameter a is called learning rate and
controls the learning by scaling the obtained gradients,
which is an important factor for effective learning.
Training a neural network often leads to local minima,
which can be avoided by choosing an appropriate value
for a. Other optimization algorithms, like Adam,30

have more sophisticated mechanisms to deal with the
learning rate; thus, we applied Adam for our applica-
tion.

Convolutional neural networks and image
segmentation tasks

Convolutional neural networks (CNN) have attracted a
lot of interest recently. Compared to conventional
supervised machine learning methods, deep learning
methods do not depend on hand-crafted features, but
automatically learn a hierarchy of increasingly complex
features directly from data.17 Because images are large,
often with several hundred variables (pixels), a fully
connected first layer with hundreds of hidden units
would already contain several tens of thousands
of weights. Such a large number of parameters
increases the cognitive capacity of the system, and
not only requires a larger training set, but rules out
certain memory limitations to store so many weights.
However, the main deficiency of plain MLPs for
images is the lack of built-in invariance with respect
to translations or local distortions of distinctive fea-
tures in input objects. In CNNs, as described below,
shift invariance is automatically obtained by forcing
the replication of weight configurations across space.
Secondly, a deficiency of fully connected architectures
is the ignorance towards topology of the input, because
visual data has a strong 2D local structure: pixels that
are spatially or temporally nearby are highly correlated
(e.g., edges, corners, etc.). CNNs force the extraction of

w2

w1

wnxn

x2

x1

Input
signals

Synaptic
weights

Summing

Σ a

b
Bias

Output
y

Activation
function

Fig. 1: Single neuron MLP, image adopted from reference
(28, p. 6)
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local features by restricting the receptive fields of
hidden units to be local.31

The linear mathematical 2D convolution operation
addresses these problems and together with the pool-
ing operation, they form the basic building blocks of
CNNs and leverage neural networks by three impor-
tant ideas: sparse interaction, parameter sharing and
equivariant representations.17 A first CNN called
LeNet was presented by LeCun;31 important contribu-
tions where made through AlexNet22 and the VGG
architecture.21 A nice visualization of the effect of
convolutions along the hierarchy of the network
architecture was given by Zeiler and Fergus32 (see
Fig. 2b). The figure displays from left to right the
increasing granularity of the feature extraction, from
coarse edges to fine-grained shapes to complete sub-
parts of the target patterns. These inital CNN archi-
tectures outperformed all previously existing methods
for image classifiation by a large margin.22

Another important contribution was the implemen-
tations of residual connections by He et al.23 A residual
block can be thought of as a shortcut in the network
that allows the effective propagation of gradients to the
earliest layers during backpropagation (Fig. 3a). While
one could have formulated the evaluation of the
crosscut test as a classification task, the novelty and
effectiveness of this work is that the problem is

approached as a segmentation task. In semantic
segmentation one aims to label each image pixel with
predefined category labels (Fig. 3b), which in this case
includes delamination and intact coating areas.

Solution approach and experimental setup

Sample preparation

For the preparation of samples several coatings and
substrates have been combined creating a data set
covering all possible categories of the crosscut test,
where the coating was applied to the substrates via
scrambling. In order for the model to better generalize
to unseen data, it is advantageous to create a diverse
dataset that contains a high degree of variance in the
patterns it aims to learn. We used four types of
coatings with diverse colors and degrees of gloss as well
as four types of substrates (steel, electrogalvanized,
phosphated, and glass) to create samples with differing
appearances. For details of the coatings used and the
various combinations of coating and substrate, please
refer to supplementary information (see Supplemental
Material S II). While the steel, electrogalvanized, and
the glass substrate would be first cleaned with n-butyl

0
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n3 units
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n2 channelsn1 channelsn1 channels
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Neural network
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Fig. 2: (a) Architecture of CNNs [Source: Sumit Saha, via http://towardsdatascience.com (CC0)]; (b) effect of multiple
convolutional layers, taken from reference (32)
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acetate, the phosphated substrates were directly used
for coating application. The resin and the hardener of
the two-component polyurethane system were mixed
at 4:1, 2:1 and 1:1 according to the functional groups to
achieve different crosslinking ratios. In this way, we
created samples with not only good, but also bad
adhesion between the coating and the substrate. Then,
the mixed coatings were drawn down to 80 lm for each
type of substrate. The polyurethane coated substrates
as well as the one-component waterborne alkyd resin
were allowed to dry at room temperature with a
relative humidity of (50%� 5) for two weeks. For all
samples the achieved dry file thickness lies between 40
and 60 lm based on different types of coatings.
According to ISO 2409:2020, the crosscut test was
carried out with a 1 mm pattern on the coated samples.
The gloss of the coating varies from matt to glossy
according to the different coatings types.

Automated crosscutting

The crosscut and imaging have been carried out with
an automated high-throughput equipment, that han-
dles coated test panels and cuts, scratches or brushes
the surface, controlled by an embedded computer. The
device was set up comparable to other automated
platforms processing such destructive mechanical test-
ing being available off-the-shelf.33 In addition to the
referenced commercial devices, it possesses an indus-
trial camera system and a linear motor table, which
serves as an interchange position for coated panels.
This allows integration of the mechanical testing into
large scale high-throughput equipment, that formulates
lacquers, applies them by spraying or draw-down, and
stores the samples under controlled atmospheric con-
ditions for hardening and further testing.34 The auto-
matic rating of the pictures by the computer algorithm
and the exchange of coated samples facilitates a full
cycle of sample generation and characterization in an
experimental screening design or the analysis with
adaptive learning strategies by the computer-assisted
system.34 A rail-system moves the panels from the
storage location to the testing and imaging station. Two
z1; z2-linear servo drives with clamping systems can be
mounted with tools like a Wolfram needle for cutting,

and a brush to remove delaminated material. The
pattern of the cut and reciprocal strokes with the brush
removing delaminated coat were accessible due to the
maneuverability of the automation. Furthermore, the
force resulting in a pressure of the two tools on the
surface was controlled during the movement and
achieved comparable destruction regardless of the
hardness of the coated surface. The controlled force
of the tools also allows mechanical tests like the scratch
resistance35 that require different loads identifying the
point of material failure. All samples for this study
were first cut with a force of 5 Newton and then
brushed with a force of 8 Newton. Three crosscuts were
carried out on each panel for the evaluation of the
delamination. The imaging was performed with an
optical setup for a balanced illumination of the sample
avoiding artifacts from reflections or other side effects
(Fig. 4).

Data preprocessing

The dataset contains 217 images, which have been
taken with a camera under constant conditions and
with no further changes to the camera and crosscut test
parameters, to ensure objectivity of the process. The
images have then been cropped to contain only the
’cutted-on’ area, where the grid has been applied to the
substrate. Subsequently, a graphics editor was used to
define the ground truth as a binary mask, i.e., manually
labeling each pixel location with a value of 255 for
areas in which there is no coating left and 0 for pixel
locations that still show a coating on the surface. In
addition, the image is transformed from RGB color
space into grayscale. The manual segmentations have
been used as the ground truth in both segmentation
model training and final segmentation performance
evaluation. This process is illustrated in Fig. 5, where
the center and right picture form one of the input data
points for the training of the algorithm.

The goal of the model is to reproduce the existing
and nonexisting coating locations for each pixel when
given a new, previously unseen sample image. To
relate to DIN EN ISO 2409,9 the percentage of the
remaining coating was calculated to characterize the
adhesion strength of a certain sample in an automated

x

(x) + x
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+

(x)
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Grass
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Trees
Sky
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relu

Weight layer
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Fig. 3: (a) Residual block taken from reference (23); (b) Semantic segmentation [Source: Fei-Fei et al., via http://www.stanf
ord.edu/ (CC0)]
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manner. There is large consent that successful training
of deep networks requires many thousand annotated
training samples.17 While this may be true for the
traditional classification tasks, where you have one
target for an entire image, it is different for segmen-
tation tasks. Here, each pixel location of the image
serves as a target (either 0 or 255), which is why the
network can adapt much easier as there is more ground
truth available to learn from reference (26). The
dataset is divided into a training, validation, and
testing set:

• 174 training points, where each data point consists
of a grayscale image with a resolution of 256 by 256
pixels and a binary mask of the same resolution,

• 35 data points for validation during training, and
• The remaining 8 data points were kept to form a

test set combined with 23 selected points from the
validation set to contain 31 points for evaluation.

Data augmentation

Data augmentation can help to improve the network
performance by intentionally producing more training
images from the original images using linear transfor-
mations.21,22 In this study, a set of data augmentation
methods summarized in Table 1 has been applied.
Simple transformation such as flipping, rotation, shift,
and zoom can result in displacement fields to images,
but will not create training samples with very different
shapes. Shear and zoom operations can slightly distort
the global shape. When an image is shifted by 20%,
there is some free space which is filled as in fill mode.

Architectures

The basic idea of U-net-like architectures follows an
encoder-decoder style, where the model first contracts
the input by convolution and pooling operations as in
usual CNNs. The feature maps are then upsampled
again using the deconvolution operation resulting in an

(a)

(e)

(b)

(c)

(d)

(f)

Fig. 4: Images of the automated crosscut testing equipment. The tools for cutting (a) and brushing (b) are connected to the
x, y, z-linear motors. Pressure air (c) removes delaminated coating shreds before imaging under ring light (d). A linear
motorized table moves the substrate from the transfer point to the automated tools. Inset picture (f): View of the complete
setup with a computer screen for the imaging and analysis

(b) (c)(a)

Fig. 5: (a) original image; (b) cropped image; (c) manually labeled image
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output with the same shape as the input. The output is
of the same shape as the input, because ultimately the
goal of the model is to reproduce a correct binary label
for each pixel (see Fig. 5c) of a previously unseen new
image (see Fig. 5b). While a convolution goes from
higher to lower resolution, the deconvolution opera-
tion (also called transposed convolution) goes in the
opposite direction. The other important feature is the
usage of skip connections (see Fig. 3a) to combine the
high-level semantic feature maps from the decoder and
corresponding low-level detailed feature maps from
the encoder (dashed lines in Fig. 6). U-net++ andU-net
3+ differ from the original U-net by a reorganization of
these skip connections. U-net++ also implemented a
series of nested dense convolutional blocks to bridge
the semantic gap between the feature maps of the
encoder and decoder. U-net 3+ differs from this version
by omitting these dense convolutional blocks and just
reorganizing skip connections yielding a model that
captures fine-grained details and coarse-grained
semantics in full scales. These three different model
architectures have been used in our study and are
illustrated in Fig. 6. Each model architecture has been
slightly modified from the original versions in refer-
ences (26, 36, 37). First, the implementation was
transformed from PyTorch to TensorFlow/Keras, as
the latter is currently the more popular and more
efficient machine-learning framework. For the U-net++
and U-net 3+ models, we have removed ‘Deep Super-
vision’ which basically enables supervision at each
decoder stage. Our model corresponds to what the
authors call ‘U-net w/o DS’ in their papers. No

additional adaptations to U-net++ and U-net 3+ have
been made, but the training was performed with
different loss functions (see next subsection). The
original U-net architecture is the oldest model (2015)
and several modifications were performed to improve
the performance. The implementation details can be
found in supplemental material (S-I).

Loss functions

Each of the presented models (Fig. 6) can be paired
with a different loss function. As mentioned earlier, the
choice of a loss function is crucial as it influences the
training heavily. The loss function defines the opti-
mization criteria which is evaluated for each batch of
data and thereby computing gradients, which are back-
propagated for each individual weight in the network.
In recent years, several optimization criterion (also
called metrics) have been introduced to evaluate the
accuracy of segmentation approaches leading to a list
of multiple different loss functions.38 The best metric in
terms of interpretability is the Intersection-over-Union
(IoU),39 also called Jaccard distance (JD), which
basically computes the ratio of correctly predicted
pixel locations, i.e., True Positives*, over the sum of all
target locations and incorrectly predicted locations.
During the training usually no ’firm’ pixels, but the
output probabilities (ŷi) for each location are assigned.

Table 1: Summary of the applied data augmentation methods

Method Parameter

Rotation ± 20�

Shift Both horizontal and vertical with 5% probability
Shear 5� shear angle in counter-clockwise direction
Zoom 5% range for random zoom in any direction
Flip Random horizontal and vertical flip inputs with 50% probability
Fill-mode ‘Nearest’ fill the area with the nearest pixel and stretching it

out out out

U-net ++

Convolution block Skip-connectionDown-samplingUp-sampling

U-net 3+U-net

In In In

Fig. 6: UNET Architectures (a) Modified U-net; (b) U-net++; (c) U-net 3+ (Color figure online)

* TP = True Positives, TN = True Negatives, FP = False
Positives, FN = False Negatives
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In order to use the IoU, one introduces a smoothing
factor s to avoid numeric issues, which is omitted here
as it is an implementation detail. The Jaccard distance
loss is defined by:

IoU ¼ TP

TPþ FPþ FN
IoUðt; ŷÞ ¼

Pn
i¼1ðŷitiÞPn

i¼1 ŷi þ ti � ŷiti

ð5Þ

JJDðt; ŷÞ ¼ ð1� IoUðt; ŷÞÞ ð6Þ

where ŷ denotes the vectorized prediction, t the target
vector and n the number of pixels. Another important
metric is called the Dice coefficient,40 which is
equivalent to the F1-Score (harmonic mean of recall
and precision):

Dice ¼ 2TP

2TPþ FPþ FN
Diceðt; ŷÞ ¼

Pn
i¼1 ŷitiPn

i¼1 ŷi þ ti

ð7Þ

JDiceðt; ŷÞ ¼ 1�Diceðt; ŷÞ ð8Þ

The binary crossentropy (BCE) Loss and the Dice loss
can be paired to form a logarithmic version JHybrid:

JHybridðt; ŷÞ ¼ JBCEðt; ŷÞ � logð1� JDiceðt; ŷÞÞ ð9Þ

In reference (41), the authors propose a novel loss
function that addresses problems of the Dice
coefficient such as the equal weighting of FN and FP.
It generalizes the Dice loss by introducing
hyperparameters which can fine-tune the model. The
Tversky Index (TI) is defined by:

TI ¼ TP

TPþ aFPþ ð1� aÞFN

TIðt; ŷÞ ¼
Pn

i¼1 tiŷiPn
i¼1 tiŷi þ a

Pn
i¼1ð1� tiÞŷi þ ð1� aÞ

Pn
i¼1 tið1� ŷiÞ

ð10Þ

where a ranges from 0 to 1, which in our approach was
set to 0.7. The Focal Tversky Loss is then defined as:

JFTðt; ŷÞ ¼ ð1� TIÞc ð11Þ

where the hyperparameter c was set to 0.75 in our
implementation. In this setting, the model can optimize
itself even when the loss is low encouraging it to learn
more details about the images.

Evaluation

Training

The deep convolutional network’s training and testing
were performed on a system running Ubuntu 20.04
with a AMD EPYC 7502P CPU @ 2.50 GHz (32 cores)
with 256 GB of RAM and NVIDIA Quadro RTX 8000
(4608 Cuda cores) with a graphics memory of 48 GB.
On the software side Python 3.8.5, TensorFlow 2.3.0,
CUDA 10.1 and libcudnn 7.6 were used. The Adam
optimizer with initial learning rate of 0.0001 and a
batch size of 4 were chosen and each architecture was
trained with the four losses introduced in the last
section using the dice coefficient as the metric to
evaluate the performance on the validation data during
training and trained every model for 100 epochs.

Results

As mentioned before, we have set up a test set with 31
data points, where some of these data points have been
used for validation during training, however the
information of these points was not back-propagated
and thus can be regarded as ‘unseen’. In the following,
first a table is presented containing the mean dice
coefficient (mDC) and its standard deviation evaluated
on the test set for the three models paired with each
loss function as well as the inference time for the
output and the number of parameters for each model.
A confusion matrix aggregated overall 31 test images
(see Table 2), i.e., 31� 2562 ¼ 2031616 pixels in total
are presented. The segmentation approach is further
visualized by highlighting true positive, true negative,
false positive or false negative (see Fig. 7) on a specific
sample, where the visualization was created with the
U-net architecture trained on the BCE loss function for
only 10 epochs. It is evident that the segmentation
already performed very well, and errors occur only at
the boundaries between fore- and background, which
are not of significant importance for the final percental
classification.

Finally, the image classification was directly com-
pared with the results of human ratings by a group of
lab technicians (see Table 3), because traditionally the
human user estimates the delamination and classifies
the defect manually. The fraction of pixels accounting
for the sole crosscut was determined to be approxi-
mately 25%. The ratio of fore- and background was
rescaled and converted to a categorical value via the
ranges defined in Table S-III (Supplemental Material)
in accordance to the standard9 applying the aforemen-
tioned heuristic. Table 3 illustrates one sample for each
level, respectively, and the comparison for the overall
test samples is shown in the supplemental information
(S-IV).
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Discussion

It is evident that the U-net 3+ BCE and the U-net 3+
Hybrid model outperform all other implementations.
With a misclassification rate of less than 3%, they can
evaluate samples for the crosscut test with more
precision than required by the DIN ISO Norm.9 The
U-Net++ and U-net 3+models can solve the problem to
a sufficient degree even without ‘Deep Supervision’.

The standard deviations for the mDCs are rather high
(see Table 4). This can be traced back to a few test
images where the model performs poorly. Those
samples consist of a bright coating applied to a metal
substrate, the bad model performance is due to the fact
that these types of samples were under-represented in
the training set. The manual labeling to create a binary
mask for each data point is tedious and needs to be
done with much care and may have led to a slight loss
of performance due to lack of detail in labeling. Some
of the errors of the model can be traced back to
ambiguous regions in the original image.

In the future, we will use methods such as laser-
scanning microscopy with a higher resolution that will
help to achieve a higher accuracy in labeling. Addi-
tionally, the image size, which was chosen to be 256�
256 due to hardware limitations, is low and can be
increased. We have not used any noise reduction in the
dataset, which is a fairly easy task and will be
implemented in a future work. We will also apply a
histogram equalization to the images in order to
eliminate the influence of illumination inspiration.
Furthermore, other model architectures can and
should be taken into consideration. Table 2 shows the
separation in the two domains of delaminated and
intact area. The separation and its ratio allows the
computational evaluation of the crosscut, which can be
the continuous percental ratio or a discrete classifica-
tion in accordance to the evaluation scale of the
standard procedure.9 The continuous value should be
favored for the purpose of a subsequent computational
data analysis of an experimental design, but the
confidence of such a scale requires further statistical
analysis since its use is so far uncommon.

The legitimacy of the image recognition by the U-net
3+ model trained with the Hybrid loss function was
examined via comparison of the computational with

Table 2: Confusion matrices of the various models being applied for the segmentation into delaminated and intact
area

Model TP TN FP FN MC (%)

U-net BCE-Loss 1038613 826275 119540 47188 8.2
U-net Hybrid-Loss 1015222 833869 111946 70579 9
U-net JD-Loss 1044455 824061 121754 41346 8
U-net FT-Loss 1067902 796155 149660 17899 8.2
U-net++ BCE-Loss 1078702 743299 202516 7099 10.3
U-net++ Hybrid-Loss 1071194 757005 188810 14607 10
U-net++ JD-Loss 1069129 808316 137499 16672 7.6
U-net++ FT-Loss 1076982 798863 146952 8819 7.7
U-net 3+ BCE-Loss 1059228 929381 16434 26573 2.1
U-net 3+ Hybrid-Loss 1060248 928031 17784 25553 2.1
U-net 3+ JD-Loss 1064279 906687 39128 21522 3
U-net 3+ FT-Loss 1079253 816668 129147 6548 6.7

Each pixel in the output of the segmentation was examined to be either true positive (TP), true negative (TN), false positive
(FP) or false negative (FN). The overall fraction of false predictions is given through the misclassification rate (MC)

Bold indicates the model with lowest misclassification rate

Fig. 7: Image of a crosscut and analysis of the
segmentation in analogy to the confusion matrix
(Table 2). The colored area depicts true and false
segmented pixels of the image into the two labeled intact
(positive) and delaminated (negative) areas. Cyan—True
Negative, gray—True Positive, yellow—False Positive,
magenta—False Negative
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the human rating of the 31 test images (see Table S-
IV). The model does not calculate an average value,
but outputs a definite value for adhesion of the sample
and therefore there is no associated standard deviation
available, because there is only a single value for each
sample. However, in the evaluation we discuss the

misclassification rate of individuals pixels in detail,
which one may regard as a general uncertainty of the
method. The user ratings deviate analogously to the
precision of the procedure given by the standard,6 but
the standard does not differ between the error origi-
nated by the sample handling and the subjective rating.

Table 3: Comparison between human and algorithmic rating for samples selected across all six levels defined in the
norm9

Input image Prediction Intact area (%) Algorithmic rating Human rating

76.5 0 0 ± 0

72.23 1 1 ± 0.51

69.68 2 1 ± 0.45

60.3 3 2 ± 0.29

46.43 4 5 ± 0

0.1 5 5 ± 0

The first two columns show the input and the predictions calculated by the U-net 3+ architecture trained on the Hybrid Loss
function. The fraction of pixels corresponding to the undamaged coating is obtained by the prediction and classified with
respect to the standard procedure
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The standard deviation is low for values at the upper
and lower bound of the scale since the rating is
unambiguous if the coating is visibly fully delaminated
or intact. If the coating is partly delaminated, the
evaluation almost always includes a standard deviation
between 0.29 and 0.95, which is in line with the
conclusion of the standard, that recommends a differ-
ence not bigger than one or two levels for repeatability
and reproducibility.6 Thus, the benchmark for the
image classification by the algorithm should be at least
within this recommended limitation of the method.
The comparison of the results in Table S-IV between
the human and computational rating fulfills these
demands. Therefore, the fully automated process
including the computational evaluation also provides
valid results regarding the traditional crosscut classifi-
cation. Again, the continuous value of the delaminated
area should be favored for the evaluation of the
adhesion strength since the statistical error of the
traditional rating is high and misses precision in
research studies due to the assumed deviation of �1
class.

Conclusions

In this paper, we have shown that the crosscut test can
be performed by an automated system being able to
control the force of the cutting tool depending on the
hardness and bending properties of the substrate. With
fully 3-dimensional control of the system, any mechan-
ical stress (e.g., scratch or abrasion) can be operated
with this tool including automated imaging of the area
of interest. The deep learning algorithm is able to
recognize the difference between intact surface and
ablations and segments the picture transferring only
the information of importance for evaluation of the
defect and thus increases objectivity of the whole
process. The adhesion strength can be evaluated by the
percentage of delaminated area being recognized and
also classified according to the norm for the crosscut
test.9

The corresponding evaluation by human operators
is presented and compared. The major advantage of
the segmentation approach over classification is the
introduction of a continuous value, which is a crucial
feature to compute gradients for data analysis with
computational methods. Moreover, this segmentation
method can be expanded to other applications in which
optical inspections are common. For instance, this

could be brittle fracture of a scratch or blistering and
pinholes,6,7 which are usually evaluated by the average
size of one defect or the overall affected area.
Furthermore, similar applications of automated testing
and image recognition can be applied in the quality
control of manufacturing processes improving the data
quality of a various number of processes related to
Chemistry 4.0.
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