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Abstract The treatment of stone surfaces for their
protection from ageing caused by natural and anthro-
pogenic effects is an open issue in materials develop-
ment for Cultural Heritage. We thought interesting to
verify the suitability of a modified cellulose biofilm
filled with halloysite nanotubes as wax compatibilizers
to design a protecting layer. A hydraulic mortar was
selected as a stone prototype. To improve the physico-
chemical properties of the covering layer, wax
microparticles have been incorporated to control
transport, consolidation and wettability features. In

particular, different application protocols have been
studied, namely brushing and spraying, to assess
whether the proposed procedures can be scaled up.
Colorimetric analysis has been carried out to evidence
the applicability in terms of color alteration after the
treatment. Water adhesion was investigated by mea-
suring the contact angle values as a function of time to
obtain information on spreading and adsorption phe-
nomena. These physico-chemical properties have been
correlated to the microstructure evidenced by both
electron and optical microscopies.

Supplementary Information The online version contains sup-
plementary material available at https://doi.org/10.1007/s11998-
021-00522-9.

M. R. Caruso, L. Lisuzzo (&), G. Cavallaro,
S. Milioto, G. Lazzara
Dipartimento di Fisica e Chimica, Università degli Studi di
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Introduction

Preservation of stone artworks from ageing is one open
issue in material science.1 An ideal material should be
easy to apply as a thin film on the stone surface without
altering its aspect just after treatment and ageing as
well. Moreover, it should be functional in protecting
the stone surface from ageing caused by weathering
effects, which can be considered more critical nowa-
days due to air pollution.2,3 Besides the chemical
attack, one should also consider the growth of biolog-
ical species on the surface.4 All these factors are
enhanced if water is retained by the surface due to
spreading/adsorption phenomena, which are typically
present as a consequence of the hydrophilic nature of
the natural stones and their porosity. The latter is
actually a fundamental feature to ensure the stones
breathability that is important to keep the material dry
and, therefore, it should be kept even after a surface
cover layer is applied for protection purposes.5,6 Last
but not least, a coating layer should be durable but also
reversible. Late in the 1980s, many incompatible and
ineffective protective coatings were used and they, by
remaining on the surface subjected to continuous
ageing for a long time, regrettably generated an
irreversible damage of the stone.7

Protective layers could be: (1) superhydrophobic
coatings to guarantee low water adhesion, so that
pollutants and microorganisms are washed away
and (2) photocatalytic coatings that favor the light
induced degradation of organic deposit on the surface
and therefore they can generate self-cleaning proper-
ties.8–10 During the last decade, nanoparticles were
proposed to target the required performance of such
coatings.11–16 Silica-based resins are commercially
available and they have been deeply investigated as
the stone/resin interactions are crucial to define the
surface properties and the efficacy of the coating
layer.17,18

More recently, biopolymers are considered perspec-
tive candidates as they have been defined ‘‘intrinsically
reversible’’ because they are expected to vanish from
the stone surface once their action has ceased or to
produce nonaggressive residues, and they do not create

any issues in subsequent conservation treatments.19–22

Actually, biopolymers are widely used in restoration
protocols as thickening agents for cleaning formula-
tions and, to some extent, they have been introduced as
coatings against sulphation or to enhance water repel-
lency.23–29 Their combination with nanoparticles is a
promising strategy to further improve the physico-
chemical properties.30–33 It should be noted that
although it appears a perspective direction, the eval-
uation of biopolymeric films effectiveness in real cases
is still at a preliminary stage and it needs deeper
investigations. In particular, proper additives must be
found in order to tune the interfacial properties.

Wax, mainly beeswax, is another biomaterial that
has been used to protect marble statues. Being liquid at
high temperature (typically 50–60�C) and soluble only
in organic solvents, the main difficulty in the employ of
wax is related to its application.34 In this case, these
features make the application of covering layers not
sustainable and sometimes detrimental for the arti-
facts.35

With this in mind we thought interesting to inves-
tigate a biopolymeric matrix (hydroxypropylcellulose,
HPC) well known in the restoration protocols as
reversible consolidant, glue and for its film forming
ability with microwax particles homogeneously dis-
persed.36–38 To achieve this target, a wax in water
Pickering emulsion was prepared by using halloysite
nanotubes as stabilizing agents. The use of halloysite
natural nanotubular clay as stabilizers in Pickering
emulsion is well documented.39–42 Moreover, due to
their peculiar morphology,43–46 biocompatibility,47,48

and miscibility with biopolymer in solid films,49–51 they
are considered promising materials in different appli-
cations for consolidation and protection of Cultural
Heritage,52,53 as well as in other industrial fields such as
food packaging and pharmaceutical formulations.54–59

As stone substrate, we prepared a hydraulic mortar
with artificial ageing.

Experimental section

Materials

Halloysite nanotubes, HNTs (Al2Si2O5(OH)4Æ2H2O),
were a gift from I-Minerals Inc., and they possess ca.
9.5% of flat kaolinite particles. Hydroxypropyl cellu-
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lose (HPC) with Mw = 80 kg mol�1 and microcrys-
talline wax (mp. 45–60�C) were from Sigma-Aldrich.

Methods

Fourier transform infrared (FTIR) measurements were
taken at room temperature through a Frontier FTIR
spectrometer (PerkinElmer). The spectral resolution
was 2 cm�1 and for each analysis 64 scans in the range
between 4000 and 450 cm�1 were carried out. Scanning
electron microscopy was conducted by using an ESEM
FEI QUANTA 200F microscope coupled with an
energy-dispersive X-ray (EDX) spectrometer that pro-
vides the elemental analysis. In order to avoid electron
charging, the surface of the sample was coated with gold
in argon by means of an Edwards Sputter Coater S150A
before each measurement. The experiments were con-
ducted in high vacuum mode (< 6 9 10-4 Pa) for
simultaneous secondary electron with a beam energy
of 10 kV and a working distance of 10 mm. The polished
cross sections were prepared by embedding the mortar
samples in a transparent epoxy resin, i.e., epofix by
Struers. After resin curing, the surface to be observed
was polished bymeans of silicon carbide abrasive papers
from 320 to 4000 grit. The polished cross sections were
observed by means of a Leica MS5 stereoscopic micro-
scope, and the images have been acquired through a
Leica MD170HD camera using Leica Application Suite
v4.3. Moreover, a polished cross section was observed in
the previously described SEM using low vacuum mode,
0.4 mbar water vapor pressure, in order to avoid gilding.

Color parameters of films were measured using a
colorimeter (NH300 Colorimeter, 3NH Shanghai Co.,
Ltd.) and CQCS3 Software for data acquisition. L*
(lightness), a* (red-green) and b* (yellow-blue) param-
eters were measured and compared with an untreated
stone. To this purpose, the total color differences (DE)
were calculated.60 UV-VIS spectra of HPC film and
wax/HNTs/HPC nanocomposites were recorded by a
Specord S600 (Analytik, Jena, Germany) in the range
between 200 and 800 nm and they were analyzed in
terms of transmittance (T%).

Water contact angle was measured by means of an
optical contact angle apparatus (OCA 20, Data Physics
Instruments) equipped with a video measuring system
having a high-resolution CCD camera and a high-
performance digitizing adapter. SCA 20 software (Data
Physics Instruments) was used for data acquisition. The
contact angle (J) of water in air was measured by the
sessile dropmethod by gently placing a droplet of 12.0±
0.5 lL onto the surface. Images were collected 25 times
per second, starting from the deposition of the drop. A
minimum of 3 droplets were examined for each surface.

Stone sample materials

Stone samples were used to assess the effect of wax
microparticles on the hydroxypropyl cellulose-based

film. The sample preparation involved hydraulic lime
and silica river sand, as aggregate, mixed with water.
The mortar was placed in silicone molds, shaped as
prisms with a rectangular base, to form the samples
(591092.5 cm3). After 5 days inside the mold (UR
65%), the samples were removed and left to mature for
60 days at a temperature of 20�C and relative humidity
of 95%.

Application on stone surface

We employed both hydroxypropyl cellulose aqueous
solution (3 wt%) and wax/HNT Pickering emulsion
with HPC. In this case, the composition was 3 wt%
HPC, 0.25 wt% wax and 1.5 wt% halloysite nanotubes.
This formulation allowed us to obtain a stable system
for the application on the solid substrate. Each
dispersion was prepared according to the following
protocol. Wax and halloysite nanotubes were added to
hot water (90�C) under magnetic stirring for 1 h.
Afterwards, the system was cooled down to room
temperature whilst stirring to allow the wax to solidify
to form the microparticles. The obtained emulsion was
stable for a day at least. Hydroxypropyl cellulose was
added to the emulsion and magnetically stirred for at
least 24 h before application on the stone substrate.
The coating protocol was performed by using two
different methods: a brush and a spray application. For
each procedure, the coating was applied twice and the
second treatment was performed after 24 h from the
first treatment. The treated stone samples were kept at
ambient conditions (temperature of 25�C and a relative
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Fig. 1: Fourier transform infrared spectra for pure wax,
halloysite and wax/HNTs microparticles.
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humidity of 45%) for at least 48 h before any charac-
terization test.

Results and discussion

Preparation and morphological properties
of the protective coating

The first step of this work was the design of the wax/
HNTs Pickering emulsions, which converted into solid

Fig. 2: Wax/halloysite Pickering emulsion system in HPC after 48 h (a) Photographs of the application methods conducted
by brush (b) and spray (c).

Fig. 3: SEM images of the stone surface treated with HPC aqueous solution and wax/HNT in HPC by spray (a, c) and brush
(b, d), respectively. Scale bars are 20 lm.
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microparticles upon cooling down. This system was
characterized by FTIR spectroscopy, as reported in
Fig. 1.

As it can be observed, the main peaks of halloysite
nanotubes can be clearly distinguished in the hybrid
microparticles, and namely the two OH-stretching
bands at 3695 and 3620 cm�1 related to the vibrations
of the Al2OH groups inside the lumen.50 Similarly, the
large absorption bands between 3000 and 2800 cm-1

corresponding to the C–H stretching for the –CH3 and
–CH2 groups of paraffin are still present.61 Both signals
do not show relevant changes in terms of shifting or
splitting in the wax/HNTs microparticles. The poly-
meric structure of wax is not affected by the addition of
the nanoclays, which are physically adsorbed at the
interface of the microparticles and entrapped by the
solid core.

The preparation of the nanocomposite formulation
resulted in a stable and well-dispersed system com-
posed of halloysite/wax microparticles in HPC. The
stability could be observed for a long time frame and it
did not change even after 48 h, as reported in Fig. 2a.

Both the methods employed for the treatment of the
mortar stone, namely brushing and spraying the
surface (Figs. 2b and 2c), allowed to estimate the
effect of the application procedures on the coating
layers. In principle, the spray method guarantees a
homogeneous distribution of the solution with a
minimum quantity of product compared to the brush
method where it is difficult to control the amount of
product applied to the surface.

Once the protective coating was applied on the
surface of the hydraulic mortar, SEM analysis was
conducted. Regardless of the specific application pro-
tocol, only the cellulosic material can be clearly
observed on the mortar surface in its fibrous morphol-
ogy when the samples are treated just with HPC
aqueous solution (Figs. 3a and 3b). On the contrary, it
is noteworthy that the wax/nanotubes microparticles

can be recognized in their typical spherical shape when
the complete formulation is employed as a protective
layer (Figs. 3c and 3d). In particular, their diameter
range was estimated to be 4–7 lm by analyzing the
micrographs reported in Fig. 3. In light of these
observations, the preparation procedure of the multi-
component system, which has the melting/solidification
of wax as a crucial step, and both the application
protocols (i.e., brush and spray) allow to maintain the
morphological properties of the microparticles even
upon drying and water evaporations. The presence of
HPC and the interaction with the stone substrate do
not alter the particle stability and their proper features,
in agreement with literature.62

Afterwards, in order to estimate the efficiency of the
two methods, the polished cross sections of the treated
samples were observed. Optical microscopy allowed to
easily note that the spray application leads to a more
uniform protective coating, with a width in the order of
tens of microns, and the surface of the stone is
homogeneously covered. Contrarily to it, the brush
procedure results in a not uniform coating and some
stone grains are still exposed to the external surface
and to the air (Fig. 4).

Therefore, after treating the stone with the wax/
HNT in HPC protective biofilm by the spray method, it
is possible to clearly identify the presence of the outer
layer, which is perfectly adherent to the substrate, by
both optical and scanning electron microscopies
(Fig. 5a,b). In this case, the thickness of the coating
layer was estimated to be ca. 10 lm. Aimed at studying
the chemical nature of this external coating, an EDX
elemental analysis was performed and it revealed the
presence of high amounts of aluminum thus undoubt-
edly indicating the presence of halloysite nanotubes, as
a unique component based on Al species present in the
formulation (Figure 5c). These findings clearly indicate
the suitability of the reported protocol for the coating
of stone surfaces.

Fig. 4: Optical images of polished cross sections after treating the stone with the protective formulation by brush (a) and
spray (b) methods. The white arrow in (a) indicates a stone grain. Scale bars are 100 lm.
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Colorimetric analysis and wettability

The investigation of a protective coating in cultural
heritage must take into account also the level of aspect
alteration due to the presence of the protective film
itself. Undoubtedly, this level should be as low as
possible. With this in mind, we performed colorimetric

analysis on the stone before and after the treatment to
highlight the changes in the appearance of the surface.
The color parameters in the laboratory scale are
reported in Table 1 for all the investigated surfaces.
It is noteworthy that pure HPC does not alter the
lightness and the red-green parameter of the stone
whilst only the yellow-blue value is slightly affected,
with a total color difference (DE) that is 1.4. Since a DE
value of 2.3 up to 4 corresponds to just a noticeable
difference by human eyes, it is clear that pure HPC
(DE < 2.3) has actually no effects by the colorimetric
point of view.60,63 These findings were expected due to
the high transparency in visible light of the polymeric
matrix.64 As long as the microwax particles are
concerned, instead, their presence generates a major
alteration of the color parameters as a consequence of
the two application methods. In particular, both the
lightness and the yellow tone have been altered upon
spraying the surface with the HPC/wax microparticles
formulation. Indeed, the total color difference reaches
a value of 3.3 but still the variation cannot be clearly
perceived by human eyes. Moreover, all the colori-
metric parameters are more affected by applying the
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Fig. 5: Optical image (a), SEM micrograph (b) and EDX spectrum (c) of the stone sample cross section after treatment with
wax/HNT in HPC formulation.

Table 1: Color Parametersa

L* a* b* DE*

Untreated sample 83.844 0.716 5.396
HPC 83.844 0.768 6.848 1.4
HPC/microwax particles (spray) 80.997 0.787 7.184 3.3
HPC/microwax particles (brush) 79.523 1.271 9.548 6.0

aControl: White Paper standard, L*=97.166, a*=�0.337, b*=0.224
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Fig. 6: Water contact angle data on untreated stone and
HPC/microwax particles treated stone by spray method.
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coating using a brush. In this latter case, for instance,
the DE values increase up to 6.0. Therefore, the brush
application should be considered with particular atten-
tion due to the more significant color change it can
cause (Table 1). The UV-Vis analysis of the nanocom-
posite biofilms also gave similar results. (Spectra are
reported in Supporting Information.) In particular, the
transmittance (T%) of radiation at 700 nm is ca. 93%
and 69% for the pure HPC film and for the wax/HNTs/
HPC nanocomposite. Hence, it is clear that the
wax/nanotubes systems also affect the transparency of
the protective coating which decreases due to the
presence of the microparticles, even before the appli-
cation on the stone substrate.

Afterwards, water adhesion property on the surface
was analyzed by the time-resolved contact angle
measurements (see Fig. 6). To do it, we analyzed the
profiles of a minimum of three droplets per sample and
calculated the average values in order to provide more
robust data. The untreated stone showed a very high
water affinity with low contact angle (below 20�) just
after the drop deposition and, then, a fast decrease
until the complete droplet adsorption by the porous
stone was observed. After the treatment with HPC/wax
microparticles, instead, the initial contact angle value
was larger than the value of the bare stone. Moreover,
despite the difference between the two application
methods (i.e. spray or brush), HPC film provided a
quick decrease of the contact angle until the full water
adsorption was reached (complete curves are reported
in Fig. S2).

More interestingly, the nanocomposites containing
the wax microparticles have the best performance
providing higher initial contact angle values, due to
their more hydrophobic character compared with
untreated stone, which smoothly decrease as a function
of time. In this case, the full adsorption occurs in a
wider timeframe, as reported in Fig. 6.

For a quantitative description of the time-resolved
water contact angle data (J), we used an exponential
function65:

# ¼ hi exp �ksnð Þ ð1Þ

where (hi) is the zero-time water contact angle value, k
measures the process rate, and n is expected to assume

values between 0 and 1 depending on the spreading/
adsorption mechanism. The obtained parameters are
reported in Table 2. It should be noted that the
nanocomposite layer not only decreases the surface
hydrophilicity, represented by the hi significant
enhancement, but also the process kinetics are altered
in agreement with the morphological investigations.
For what concerns the n parameter, its variation is
referred to as a major contribution of either the
spreading (n=1) or the adsorption mechanisms (n=0).
It is clear that both the phenomena are strictly
interconnected, since the stone surface most likely
becomes more hydrophilic upon water adsorption, with
a consequent increase of the spreading contribution.

Hence, in order to enlighten these aspects and to
provide more precise details, the variation of the
droplet volume as a function of time has been focused,
by considering the droplet perfectly symmetric (Fig. 7).

It is possible to observe that, yet after 0.3 s, the
volume of the water droplet falls to ca. 35% for the
untreated stone, thus meaning that the liquid is being
adsorbed by the porous material. Similar trends have
been found for the pure HPC coating, applied by either
spray or brush, with a high rate of volume decrease as a
consequence of water adsorption. In the cases of HPC/
wax microparticles protective layers, instead, the vol-
ume reduction shows a smooth decrease over time and

Table 2: Fitting parameters from water contact angle data.

hi/� k/s-n n

Untreated sample 20.3±0.9 3.2±0.3 1.0±0.1
HPC (spray) 68±2 5.3±0.2 1.0±0.3
HPC (brush) 57±7 4.6±0.9 1.0±0.4
HPC/microwax particles (spray) 76±6 1.2±0.3 0.18±0.05
HPC/microwax particles (brush) 77±4 1.41±0.06 0.214±0.009

6
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Fig. 7: Variation of the water droplets volume on stone
before and after surface treatment as a function of time.
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the droplets can be still observed after many seconds.
This is most likely related to the importance of the
spreading contribution and to its synergistic effect with
the adsorption mechanism. Whilst the droplet spread-
ing on the surface slightly affects the total volume, the
adsorption is responsible for an important decrease of
the water amount on the surface. Therefore, even if the
droplets are slowly being adsorbed by the material, its
major tendency is to spread on it after the treatment
with the HPC/microwax formulation, regardless of the
particular application method.

Conclusions

We demonstrated that wax microparticles dispersed in
a biopolymeric matrix by using halloysite nanotubes
can generate new nanocomposite films with perspec-
tives in stone protection. The presence of microwax in
the material has a fundamental role in the coating
effectiveness as the biopolymeric film alone would not
represent a valid protective film. In particular, regard-
less of the application protocol (i.e., brush or spray),
we demonstrated the presence of wax/halloysite
microparticles on the sample surfaces of the materials
as components of the coating biofilm. Nevertheless, the
spray method leads to a more uniform coating which is
perfectly adherent to the substrate and, as a conse-
quence, more efficient.

The study of the wettability features showed that the
affinity of the stone to water is deeply affected and a
more hydrophobic surface is obtained upon treatment
with effect on the adsorption and spreading mecha-
nisms of the liquid droplet onto the solid substrate.
Moreover, the brush application alters the visual and
macroscopic aspect of the surface as the color coordi-
nates clearly indicates, contrarily to the spray method.
Therefore, the latter application protocol would be the
most suitable not only due to its efficacy but also taking
into account the possibility to scale up the process.
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