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Abstract In computational fluid dynamics, the mod-
eling of paint application processes by electrostatic
rotary bell sprayer is mostly performed using an Euler–
Lagrange approach. The initial conditions of the
discrete phase—position, velocity, size, and charge—
have an essential influence on the resulting film
thickness distribution and the total charge transferred
to the object. Typically, so-called injection models are
used to specify these initial conditions, whereby the
determination of the injection model coefficients is
crucial. In this paper, a framework is proposed that
combines experimental input data, an injection model,
and a metamodel-based optimization. The painting
tests for the generation of input and validation data
were carried out in a technical center in the industrial
standard. The simulations were performed using
ANSYSFluent. Initial droplet conditions could effi-
ciently be determined via the framework so that the
painting-specific objectives were achieved with reason-
able accuracy. In addition to the framework, a turbu-
lence study of the strongly swirled shaping air of this
atomizer was carried out, whereby a substantial
underestimation of the axial air velocity was found in
the turbulence models being investigated. The initial
droplet conditions were also used in this study to draw
conclusions about the accuracy of the airflow simula-
tion. The proposed framework can be adapted to other
solvers and efficiently finds injection model coefficients
for other paint applicators.

Keywords Spray painting simulation, Rotary bell
atomizer, Electrostatic painting simulation,
Metamodel

Introduction

Numerical simulations of paint application processes are
used for virtual operating trials to perform paintability
studies in early design phases, to optimize process
parameters, and to reduce the number of painting
prototypes. To reduce the computational effort and
increase the accuracy of painting simulations, both
numerical and painting-specific models and methods
must be continuously enhanced. Particularly in spray
simulations, the Euler–Lagrange approach requires
injection models to determine the initial condi-
tions—position, velocity, size, and charge of the parti-
cles. In this study, an electrostatic rotary bell sprayer
(ERBS) was used, which is being used in the automotive
industry to paint car bodies and plastic parts like
bumpers. When using ERBS, paint is stationary added
inside the bell-cup through a small orifice on the
rotation axis. Due to the rotational speed of the bell-
cup, the paint is distributed radially on the inner surface
by centrifugal forces. At the bell-edge, the paint is
atomized because of the high relative velocity between
the liquid and gaseous phases. The shaping air causes a
change in the direction of the droplet movement by a
strong axial component toward the object to be painted.
The electrostatic field between the charged bell-cup,
shaping air ring, and the grounded substrate increases
the transfer efficiency of the paint by applying an
additional force to the charged particles (see Fig. 1).

In general, rotary atomizers have been investigated
in various fields of application, such as spray drying,
spray painting, or granulate production, where differ-
ent types of disks and bell-cups both with and without
shaping air were being used. Investigations on the film
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thickness of a liquid within a rotating conical body
were performed by references (1), (2), and (3) who
derived a formula to calculate the film flow velocity on
the inner bell-cup surface. Reference (2) also showed
that the disintegration process on rotating cups could
be divided into three modes: direct drop formation,
ligament formation, and film formation. The transi-
tions between these modes were also experimentally
investigated by references (4) and (5) on a rotating disk
as well as by references (6) and (7) on a rotating bell-
cup. However, there are very few numerical works that
have investigated the primary breakup of paint liquids
by ERBS in a full computational framework, for
example, references (8) and (9). In their work, paint
film distribution on the bell cup and the primary
breakup of liquid quite close to the bell edge were
experimentally and numerically investigated, which
delivers some useful information for the particle
trajectory calculation using the Euler–Lagrange meth-
od. Due to the complex properties of paint materials
(non-Newtonian, shear-thinning, and thixotropic fluid),
the simulation of the primary atomization is only
possible with very high computational effort and well-
known material properties, which is why the Euler–
Lagrange approach is preferred for paint simulations in
the industry and industrial applied science.

Detailed spray simulations have already been per-
formed and evaluated by reference (10). The authors also
described that the spray behavior strongly depends on the
initial conditions of the discrete phase and must be
calibrated to experimental data. However, the dependen-
cies of the initial droplet conditions were not directly
shown, and no framework was derived to determine the
injection parameters. Recently published work by refer-
ence (11) presents an injection model for ERBS in which
the injection model consists of multiple rings with
different amounts of injection points, radii, angles, and
mass flow rates. It was shown that simulation results could
be improved with steeper injection angles to the object,
respectively, higher axial velocity. However, in this
model, no dependence on the charge of the droplets was
shown.Reference (12) also presents a parameter study on
an injection model by systematically investigating injec-
tion positions and velocities. The author concludes that

the axial injection position, as well as the radial and
tangential injection velocity, has no significant influence
on the spray pattern, whereas the radial position and the
axial velocity clearly affect the simulation result.

Numerical investigations on the effects of electro-
statically assisted paint application have already been
carried out by references (10), (11), (12), (13), and (14),
using different models to distribute the charge on the
droplets as a function of droplet diameter. A study on
the influence of different models of particle charge
distribution on the resulting film thickness distribution
was performed by reference (13). The authors con-
cluded that the transfer efficiency increases with
increasing charge on the droplet surface, but no
proposal to the use of a specific model was derived.

This paper proposes an injection model and a
framework to calibrate the injection model coefficients
by a metamodel-based optimization in combination
with experimental painting-specific data. Afterwards a
simulation with a complex workpiece including moving
atomizers along a robot path will be simulated with the
optimized injection parameters.

The paper is divided into sevenmain sections. First, an
overview of the entire framework is presented in
‘‘Structure and objective of the framework’’ section. ‘‘Ex-
perimental materials and methods’’ and ‘‘Numerical
methods’’ sections describe the experimental, numerical
materials and methods used in this framework. The
results of a turbulence study of the shaping air flow are
discussed in ‘‘Simulation of the airflow field’’ section. An
injection model for this ERBS is proposed in ‘‘Modeling
initial droplet conditions’’ section. The effective deter-
mination of the injection model coefficients is then
described and discussed in ‘‘Metamodel-based optimiza-
tion of injection model coefficients’’ section. The results
andprocedure are finally discussed, and a conclusionwith
an outlook on further research work is given.

Structure and objective of the framework

The considerable variation of paint properties in
combination with system-specific or customer-specific
ERBS equipment and process parameters makes it
difficult to define a generic model for the initial droplet
conditions in painting simulations. The framework is
presented using an ERBS but can also be used
efficiently for other atomizers, such as high volume
low pressure or airless atomizers. Figure 2 illustrates
the workflow of the proposed framework in form of a
high-level sketch. The majority of the workflow aims to
create metamodels. The metamodels are used in the
subsequent step of multiobjective optimization to
make the very high number of function evaluations
more efficient. First, a feasible range for the injection
model coefficients must be defined. Using a Latin-
Hypercube experiment design, a set of sampling points
is generated within the feasible space. Based on this, a
set of simulations will be carried out and evaluated
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Fig. 1: Functional principle of paint application using
electrostatic rotary bell sprayer
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with regard to the painting-specific objectives. Corre-
lation coefficients are used to identify the principal
components of the model.

The framework assumes that experimental data on
the paint material (e.g., density and solids content), as
well as process-related data (e.g., spray pattern,
discharge current, and particle size distribution), are
available. Often a large part of this data is already
available or can be generated relatively inexpensively
in paint shops.

Experimental materials and methods

This section describes the equipment and process
settings used as well as the experimental methods in
more detail.

Spray booth, atomizer, and paint material

The experimental investigations were carried out in
an environmentally controlled spray booth with an

ambient temperature of 23 �C, a relative humidity of
60%, and a vertical booth airflow of 0:3ms�1. The
ERBS picoBell HiBlow III of the company EISEN-
MANN-LACTEC with a 50mm bell-cup (no serration)
and a direct charging mechanism was chosen and
mounted on a 6-axis ABB robot. The shaping air ring
has 40 outer and 32 inner nozzles, which are referred to
in the following as SAout and SAin. The outer and inner
nozzles are oriented tangentially to the axis of rotation
but have different axial angles (see Fig. 3). The different
orientation of SAout and SAin enable a purposeful
forming of the airflow to paint complex geometries, e.g.,
bumpers, efficiently. An application setting was chosen,
which is used in industrial paint shops. In addition to the
shaping air, the process settings are determined by the
paint flow rate PF, the revolutions per minute of the
bell-cup nbell, the high voltage HV applied to the bell-
cup and the shaping air ring, and the painting distance d
(also referred as the distance to bell-edge). The paint
application process setting is shown in Table 1. A two-
component solvent-borne industrial coating with a wet

density of 1109:5 kg m�3, a dry density of

1293:8 kg m�3, and a nonvolatile content of 67:9%
was used as painting material.

Determination of shaping air velocity

The airflow velocity of the shaping air was determined
using a DANTEC 2-component fiber Laser-Doppler
Anemometry (LDA) system. As tracer particles, glyc-
erine mist was injected into the intake flow above the

Feasable Space of 
Injection Parameters

Design of Experiment
(Sampling Points)Injectionfiles

CFD Simulations

Metamodel 
Current

Metamodel 
Spraypattern

Principle Component 
Analysis

Multi-Objective 
Optimization

Experimental Input
Wet Density of Paint
Particle Size Distribution

Experimental Input
Spraypattern
Transferred Current

Injection Model

Experimental Input
Dry Density of Paint
Solid Content of Paint

Evaluation of 
Simulations

Fig. 2: High-level sketch of the framework for the
determination of the optimized initial droplet conditions.
Gray boxes indicate experimental input data are needed in
this step

SAin SAout

Bell-Cup

Shaping Air Ring

Fig. 3: Simulation-relevant components of the atomizer.
Needles were drilled into the shaping air nozzles to
visualize their orientation

Table 1: Paint application process setting

PF SAout SAin nbell HV d
ml min�1 ls min�1 ls min�1 min�1 kV mm

300 300 240 50000 65 200
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ERBS. To determine the velocity components in three
spatial directions, the flow field was scanned horizon-
tally in two spatial directions at a fixed axial distance to
the bell-edge. The scanned lines were measured
selectively in an increment of 5mm. The measurement
of a single position was stopped at the termination
criterion of 10000 particles, and the mean value and the
mean square error were calculated. The results are
used to validate a turbulence model study (See
‘‘Simulation of the airflow field’’ section) focusing
both close to the bell-cup (d ¼ 10mm) and close to the
plate (d ¼ 180mm) (Fig. 4).

Determination of particle size distribution

The volumetric particle size distribution was measured
using a SPRAYTEC RTS 5001 of the company
Malvern Instruments. To minimize evaporation effects
of the paint droplets on the result, the measurements
were carried out at a 45� angle and distance of 25mm
to the bell-edge. The optics of the device are protected
by an attached tube against contamination by paint
overspray. It is essential to keep the distance between
bell-edge and measuring volume as small as possible to
reduce evaporation effects, but it must be ensured that

the primary and secondary atomization is completed
(Fig. 5).

Determination of painting-specific data

The paint application was executed by a painting robot
moving the TCP with 180mm s�1 at a distance of
200mm parallel to the plate, which was placed hori-
zontal in the center of a table (see Fig. 6). After the
paint cured, the film thickness was measured by a
magneto-inductive device perpendicular to the direc-
tion of painting, from which the so-called dynamic
spray pattern could be obtained. At the same time, the
discharge current at the background table was mea-
sured, from which the charge per time was calculated
in the steady state.

Numerical methods

This section describes the scene, setup, and settings of
the numerical simulations.

Domain, grid and boundary settings

The numerical simulations were carried out using the
commercial computational fluid dynamics code
ANSYSFluent. For this study, the ERBS was posi-
tioned in the center of a cylindric domain
(radius ¼ 1:1m, height ¼ 0:8m) above the plate with
a radius of 0:5m. The block-structured grid of the fluid
domain contained about 17.36 million cells having a
mean first prism layer height of 30 lm around the bell-
cup and 150 lm on the top of the plate. A velocity-inlet
of 0:3ms�1 was applied to the top boundary of the fluid
domain to map the downdraft velocity of the paint
booth air, whereby the sides and the bottom of the
domain were set as pressure-outlets. The measured
volumetric flow rates of the inner and outer shaping air
were calculated into a mass flow rate using the
International Standard Atmosphere ISO2533 and were

Fig. 4: Measurement setup to determine airflow velocities
of shaping air by means of LDA

Fig. 5: Measurement setup to determine particle size
distribution by means of laser diffraction

Fig. 6: Measurement setup to determine film thickness
distribution—dynamic spray pattern

J. Coat. Technol. Res., 17 (5) 1091–1104, 2020

1094



then applied as massflow-inlets on the top of shaping
air nozzles. The rotation of the bell-cup was taken into
account by setting the angular velocity on the walls of
the bell-cup (Figs. 7 and 8).

Turbulence model and solver settings

In previous studies on ERBS, various 2-equation
turbulence models, as well as Reynolds-Stress models,
were used. In order to investigate the capability of the
turbulence models for the strongly swirled airflow, a
study using different modeling approaches was com-
pleted. The airflow results of the k-x SST model are
compared to the results of a Linear Pressure-Strain
Reynolds Stress Model (RSM), and ANSYSFluents
Improved Delayed Detached Eddy Simulation
(IDDES) using the k-x SST as a sub-model. A
second-order upwind was used as a discretization
scheme, and the SIMPLEC algorithm with a fixed
time step size of Dt ¼ 1� 10�4s was chosen as the
solver. With this time step size, a maximum CFL
number of approximately 100 close to the shaping air
nozzles was achieved on the generated grid. As the
flow at the shaping air nozzles was almost linear, the
error was not considered to be significant. However,
the time step size could not be further reduced due to
the high computational effort.

Discrete phase model: motion of particles

The motion of paint droplets were represented by inert
and spherical particles computed through ANSYSFlu-
ents discrete-phase-model (DPM) in an Euler–La-

grange framework. To capture the effects of the
interaction of the particles with the flow and the
electrostatic field, a two-way coupling was used and
implemented, respectively.10,11,14 A random walking
model was used to capture the turbulence effects on
the trajectories of the particles. As a boundary condi-
tion, the particles were reflected on the bell-cup,
trapped on the top of the plate and escaped on all
other walls, inlets and outlets. A droplet deposition
model was not used in this study because the effect on
film thickness seemed very unlikely. The modeling of
initial droplet conditions of the discrete phase are
explained in detail in ‘‘Modeling initial droplet condi-
tions’’ section.

Simulation of the airflow field

Since the airflow has a decisive influence on the
resulting spray pattern, its accurate simulation is an
essential basis for paint application simulations. The
simulation must, therefore, be able to map the typical
flow characteristics, such as vortex with backflow,
distinct stagnation point on the object, and continuous
air entrainment into the main flow field. Figure 9 shows
the airflow field without particles, which was simulated
using the k-x SST turbulence model. The mean values
were calculated over 0:5 s flow time. Qualitatively, the
result shows all flow features of an ERBS. In partic-
ular, the backflow in the center of the flow field is
characteristic of a strongly swirled shaping airflow field
of ERBSs.15 However, it is well known that 2-equation
turbulence models have limitations in predicting
swirled impinging flows. In order to evaluate the
accuracy and applicability, the results of the k-x SST
are quantitatively compared with the simulation results
of the RSM and the IDDES as well as with experi-
mental LDA data (see Fig. 10). Figure 10 shows the
axial, tangential and radial velocity components at a
distance of d ¼ 10mm and d ¼ 180mm. In general, all
turbulence models show an acceptable agreement with

velocity-inlet 

pressure-outlet 

Fig. 7: Sketch of the fluid domain including the ERBS and
the plate to be painted

Fig. 8: Block-structured grid on a cross section through
the center of the fluid domain

Mean velocity magnitude (m/s)
1.0e+00 1.0e+0250501052

Fig. 9: Mean velocity magnitude of the shaping airflow field
without droplets simulated using the k-x SST turbulence
model
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the experimental data. However, each turbulence
model has strengths and weaknesses in different flow
regions and velocity components. Thus, the k-x SST
turbulence model shows significantly higher axial and
tangential velocity than the IDDES near the bell-cup.
Close to the plate, all simulation results show substan-
tially lower axial velocity with good agreement in the
radial velocity component. If the axial to radial velocity
ratio in the experiment and the simulation are too far
apart, the particles are inevitably transported outwards
shortly before the plate, which widens the spray
pattern. It can also be seen that the tangential velocity
of RSM is overestimated in the center. As a result, the
swirl strength of the flow increases and will be forced
apart, and thus, higher radial velocities are generated,
as it can be seen in the results near the plates.

Modeling initial droplet conditions

In this section, we propose an injection model for the
initial droplet conditions—position, velocity, size, and
charge—for an ERBS.

Injection model: droplet position

This ERBS has a notably formed bell-edge, which is
often called a thick edge. Part of the paint climbs up
this thick edge so that the atomization process takes
place in a spread range of the axial position. This
spread is visualized by a high-speed image close to the

bell-cup, see Fig. 11a. It is assumed that all fluid
elements (droplets and/or ligaments) will pass the
black plane shown in Fig. 11b, and this was also
validated in the primary breakup simulation in the near
bell region [see reference (9)]. The radial offset
position roff is therefore defined at a fixed value of
roff ¼ 0:75mm from the bell-edge (end of flat part). In
this case, 180 injection points that were uniformly
distributed around the bell-cup were used. The entire
particle size distribution is injected from each point per
DPM iteration. To enhance the influence of the
position on the result, the injection position was
deliberately fixed for all particle sizes. Generally, the
injection points should be distributed randomly in
small areas to avoid overloading of the computational
cells in the injection area and thus to achieve faster
convergence.
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Fig. 10: Comparison of simulation results using three different turbulence models with experimental LDA data. The
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(a) Shadow image of disintegra-
tion process

(b) Injection positions visual-
ized by a black line; colorbar
shows airflow velocity magnitude

Velocity magnitude (m/s)
1.0e+01 1.0e+0250

Fig. 11: Visualization of the disintegration process at the
bell-edge (a) and the injection position in the simulation (b)
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Injection model: droplet velocity

In paint application processes, the disintegration mode
of the paint by ligament formation is preferred to
direct droplet formation and sheet atomization, due to
the resulting narrow, stable, and fine particle size
distribution. Typically, a spiral formation of the liga-
ments at the bell-edge occurs visually (see Fig. 12 in
green). The ligament formation begins at the bell-edge,
where a fluid element with a velocity and direction of
the vector v0;res from the bell-cup surface. In the
following time steps (visualized by dots), the bell-cup
rotates by an angle u. The straight-line direction of the
fluid element and the angular velocity of the bell-cup
create a spiral-shaped ligament. The mathematical
description of these ligaments, assuming that no forces
act on a massless fluid element, is done by a simple
geometric model. Due to the paint viscosity and the
associated internal forces in the ligament, the direction
of trajectory in the geometric model is bent. The angle
a in the injection point thus increases with increasing
internal forces and shifts the ratio of radial to tangen-
tial velocity components in the direction of the
tangential velocity.

The initial vectors at the bell-edge are defined by the
rotational speed and also by the film flow velocity on
the bell. The tangential film flow velocity v0;tan of the
paint film is calculated assuming no-slip conditions on
the surface of the bell-cup and homogeneous velocity
distribution within the film. Reference (2) derived a
formula for a simple cone to calculate the radial film
flow velocity on the bell-edge. Assuming a Newtonian
fluid and neglecting the circumferential and sinking
speed, the radial velocity v0;rad will be obtained by

v0;rad ¼ 9qx2sin bQ2

32p2gsrbell

� �1=3

ð1Þ

where Q denotes the quantity of paint delivery, x the
angular bell-cup velocity, rbell the radius of the bell-
cup, b the cone angle at the bell-edge, q the wet density
of the paint, and gs the dynamic viscosity of the paint.
Usually, paints are shear thinning and thixotropic
liquids so that the viscosity is a function of the shear

rate. Typically, automotive paint materials reach a
viscosity plateau at approximately 20mPa s at very
high shear rates16 measured through a capillary vis-
cosimeter.

As a result of the energy loss during atomization, the
ligament shape for calculating the acting forces, and
the point of droplet formation, a slipfactor is intro-
duced, which was applied to the vector v0;res. The
derivation of the slipfactor and angle a from analytical
equations as well as material and process conditions is
not trivial and is currently an unsolved problem. For
this reason, the determination of the slipfactor and a
was included in the optimization process.

Injection model: droplet size distribution

Although there is some numerical study of primary
breakup in the near bell region,9 it is still quite difficult
to simulate a fully developed droplet size distribution
for the spray painting application, since very fine cell
sizes have to be used. Instead of using the costly
Volume-of-Fluid to DPM approach, a measured par-
ticle size distribution will be used. For this paint
material, equipment, and process setting, the measured
particle size distribution shows good agreement to the
shape of a logarithmic normal distribution (see
Fig. 13). The characteristic distribution values d32
(Sauter mean diameter) and dvð50Þ (volumetric med-
ian) are in a typical range of automotive paint sprays.

Injection: droplet charge

Through the contact of paint on the inner bell-cup side,
its surface is getting charged. After the atomization
process and the resulting surface enlargement, the
charge is distributed over the paint droplets, where
currently two models are dominating in spray painting
simulations. The first model assumes that the charge is
distributed proportionally to r2 of the droplet, whereas
the second model assumes that the charge is dis-

tributed proportionally to
ffiffiffiffi
r3

p
. The latter is based on

the equation of the Rayleigh-limit, where the maxi-

(a) Ligament formation (b) Geometric model
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Fig. 12: Sketch of the geometrical velocity model
assuming ligament formation
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mum charge on a droplet is calculated before it
becomes unstable and disintegrates into smaller
droplets.

qray ¼ 8p
ffiffiffiffiffiffiffiffiffiffi
e0cr3

p
ð2Þ

In this equation, e0 denotes the permittivity of the
vacuum, c the surface tension of the paint and r the
droplet radius. The charge of the droplets in the
injection model was calculated according to the
equation of Rayleigh-limit. Since the surface charge
is only a small percentage of the Rayleigh-limit, the
Rayleigh-limit coefficient Coeffray will be introduced
and applied on the equation of Rayleigh-limit. The
Rayleigh-limit coefficient is assumed in this model to
be constant over all particle sizes. The dependence on
the radius defines the total charge on the drop.

qsim ¼ Coeffrayqray ð3Þ

From the experimentally measured discharge current,
the Rayleigh-limit can be calculated at given particle
size distribution assuming 100% paint transfer effi-
ciency. In this way, the experimentally determined
Coeffray of 1:1% was calculated from the measured

transferred charge per second of 11:37� 10�6 C s�1.
Since the transfer efficiency in the experiment for
ERBS using direct charging mechanism lies in the
range of 80% to 95%, it is meaningful to increase
Coeffray. To obtain a rough estimation of Coeffray
range, the experimentally calculated value
(Coeffray ¼ 1:1%) should be increased by 20% to
40% so that in this study the range between Coeffray ¼
1:32% and Coeffray ¼ 1:54% is assumed to be the
target range. Due to the uncertainty in the overspray
estimation and the amount of charge it contains, the
Coeffray is included in the optimization process.

Metamodel-based optimization of injection model
coefficients

In this step of the framework, a metamodel-based
optimization strategy will be used to efficiently deter-
mine the injection model coefficients.

Design of experiments: sampling points

The framework starts with the definition of a feasible
space of the injection model parameters, whereby this
should cover a wide range of the parameters. In this
design space, the axial injection position was based on
the area of atomization mentioned in ‘‘Injection
model: droplet position’’ section. The axial velocity is
also defined for negative values since the thick bell-
edge may lead to an upward flow of the paint film. The
maximum value for the axial velocity is defined as

30ms�1, which represents an overestimation due to the
small airflow velocity in that area (see Fig. 11b). Since
the internal forces in the ligament and the energy loss
during atomization are not known, the slipfactor and
the angle a are investigated over an extensive range.
Table 2 shows the design space by minimum and
maximum values of the parameters as well as constant
values. Typically, Latin-Hypercube sampling methods
are used for computer experiments to train regression
models. Particularly for practical applications, the
»maximin« method is often used, which maximizes
the minimum distance between sampling points and
therefore avoids too narrow points. This method was
also chosen to create 150 sample points for this study.

Conduction and evaluation of simulations

The simulations were performed on the cluster of the
High Performance Computing Center Stuttgart
(HLRS). To reduce the total duration time of the
simulations, a task-based parallelization is strongly
recommended. In this series, ten simulations were
performed simultaneously. In each simulation, a
presimulated mean airflow field from the turbulence
study is loaded at the beginning. Particles are then
injected over 0:75 s, whereby the first 0:25 s are not
taken into account in the evaluation, as the spray has
not reached a steady state. With very fine computa-
tional grids on the objects to be painted, the so-called
binning effects often occur in the calculation of the film
thickness. This is caused by large particle volume
deposits in a very small computing cell. For painting
simulations, it is recommended to decouple the com-
putational cells of the airflow from cells of the film
thickness. Therefore, particles deposited on the plate
are sampled calculated into the film thickness in a post-
processing step. The dynamic spray pattern can be
calculated on the one hand directly from the point
cloud of the sampled data via a kernel density
estimation (KDE) or on the other hand via an initially
calculated static spray pattern (see Fig. 14) using a new
generated structured.

In the simplest case, the conversion from static to
dynamic spray pattern can be done by integrating the
film thickness along a coordinate axis. Since binning
effects create noise within the calculated spray pattern,

Table 2: Feasible space of injection model parameters

Parameter Description Min Max Unit

Axial position AX_POS �0:5 0.5 mm
Axial velocity AX_VEL �5 30 ms�1

Slipfactor SLIPFACTOR 25 95 %
Angle a ANGLE 76.62 85 �

Coeffray COEFF_RAY 0.5 1.5 %
Constants Value Unit
Radial Position 0.75 mm
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it is recommended to average the results by rotating
the axis around the center of the static spray pattern.
An inverse Radon transformation can efficiently cal-
culate this rotatory averaging over 360 � around the
pattern center, which is why this method is preferred to
the costly KDE. Figure 15 shows the result of the three
methods discussed for calculating a dynamic spray
pattern from a static (nonmoving atomizer) simulation.

It can be seen that the inverse Radon transformation
is almost identical to the result of the integral method,
but due to the 360 � rotation, the curve is much
smoother and more symmetrical. Because of the rota-
tion, this method is suitable only for static and
horizontal simulation scenes using a flat plate. The
KDE also generates a continuous spray pattern curve,
but the maximum differs significantly from the other
two methods. This deviation can be attributed to the
known problem of choosing the kernel and the
bandwidth of the estimator. Nevertheless, KDE meth-
ods are helpful tools to calculate the film thickness on
complex 3D parts, as it is shown in reference (17).

In addition to the important spray pattern, further
painting-specific parameters are calculated and evalu-
ated from the simulations and partly included in the
optimization. These values are briefly explained in the
following enumeration:

• RESIDUAL: Sum of least squares between simu-
lated and experimental film thickness distribution

• PW50: Pattern width 50, the full width at half
maximum of the film thickness distribution

• SUM_CHARGE: Sum of the charge from the
droplets deposited on the plate

• TE_WEIGHT: Mass-based transfer efficiency, ratio
between deposited to injected mass of paint

Principle component analysis

From the results of the statistical design of experi-
ments, the correlations of the input parameters to the
objective values were calculated using a Spearman’s
correlation, which is a nonparametric measure of rank-
order correlation. The measure describes the strength
and direction of a monotonic association between two
variables. Values close to � 1 (perfect negative corre-
lation) and 1 (perfect positive correlation) represent a
strong monotonic correlation, whereas values around 0
represent a very weak monotonic relationship between
two variables.

Figure 16 shows that the correlation between axial
position and painting specific values is very weak and,
therefore, does not represent a principal component.
The same applies to the angle a. The correlation
between the COEFF_RAY and the transferred charge
and the transfer efficiency is particularly high as well as
highly linear. The well-known expansion of the spray
with increasing charge is also found in the correlation
coefficient between COEFF_RAY and the PW50 with
a moderate value of 0.43. In the following optimization
steps, only the principal model parameters AX_VEL,
SLIPFACTOR, and COEFF_RAY are considered.
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Training of metamodels

Global multiobjective optimizations often require
many function evaluations to calculate a Pareto front.
Since each function evaluation means a painting
simulation, two metamodels were created first. Meta-
models or surrogate models are compact, mathematical
approximations that map the multivariate input/output
behavior of complex systems. In this study, a meta-
model was created for two objectives—RESIDUAL
and residual of transferred charge (RESIDUAL_
CHARGE), which is the quadratic error between
simulated and measured value. For the RESIDUAL of
the spray pattern, a three-parameter Kriging model
from the »SMT—Surrogate Modeling Toolbox« Py-
thon toolbox18 was used.

In common machine learning practice, the quality of
the prediction for regression models is determined by
the coefficient of determination R2. Because of the few
available sample points, it is recommended to deter-
mine a mean R2 via the »leave-one-out cross-valida-
tion« method. In this method, the metamodel was
trained with n-1 sample points, and R2 is evaluated at
the omitted location. Afterward, a mean R2 value was
computed from all sample point evaluations. The
learning curve of the metamodel can thus be moni-
tored for the current number of sample points, see
Fig. 17. This three-parameter metamodel learns par-
ticularly active within the first 60 sample points. At 100
sample points, the metamodel reaches a constant level
above a R2[0:9, which allows acceptable predictions
to be made for this application. To accelerate perfor-
mance and to reduce computational effort, the learning
process should be terminated after reaching R2[0:9
for ten consecutive training sets.

Figure 18 visualizes the influence of the injection
model parameters on the RESIDUAL of the spray
pattern. The visualization was done by evaluating the
Kriging predictions on a uniform grid in each dimen-
sion.

The evaluation of the parameter impacting on the
spray pattern result shows a clear trend toward high
slipfactor, a Rayleigh-limit coefficient of approxi-

mately 1:4%, and a weak trend toward low axial
velocities. These results also follow the expected
theoretical properties of injection in the velocity
reduced zone of the thick bell-edge.

A simple 1D interpolation is a sufficient metamodel
for the second objective function because only the
charge on the droplet acts as a principal component.
The transferred charge on the plate scales linearly with
the charge on the droplets, so the residual is also a
quadratic function. The residual between simulated
and experimental values reaches a minimum at a
Rayleigh limit of 1:39% (Fig. 19).
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Multiobjective optimization

The Pareto optimization of the principal components
in the injection model is based on the minimization of
two objective functions and previously trained meta-
models. The first objective function f1 is to minimize
the RESIDUAL, and the second objective function f2
is to minimize the least square between measured and
simulated charge per time (discharge current) on the
plate. It is possible to define further objective func-
tions, e.g., based on LDA velocity data, which could
lead to more precise solutions. However, for an
efficient application, it is advisable to limit the objec-
tive functions to existing or easily generated charac-
teristics of the painting process.

The multiobjective optimization was performed
using the Nondominated Sorting Genetic Algorithm
III (NSGA-III) from the Python toolbox »pymoo«.19

Details on the implementation of the NSGA-III
algorithm into the »pymoo« toolbox can be found in
reference (20). The various parameters of the NSGA-
III algorithm are listed in Table 3 with the descriptions
specified in the toolbox.

Minimizing the two objective functions f1 and f2
leads to a Pareto front and a single point of Pareto-
optimal solution. Due to the different scaling for f1 and
f2, it is recommended to use a pseudo-weighted23

decision to determine the Pareto-optimal point. In this

study, the optimal initial droplet conditions were
computed for both the RSM and the k-x SST turbu-
lence model (see Table 4).

The optimized initial droplet conditions were vali-
dated by one additional simulation to evaluate the
error. In both cases, the deviation of the simulated to
the experimental charge per time is less than 2%. The
simulated spray pattern also shows an acceptable fit to
the experimentally determined result (see Fig. 20).

In particular, the axial velocity for RSM and k-x
SST differs significantly. These discrepancies relate to
the results of the turbulence study, where in both
turbulence models the axial velocity near the plate was
clearly underestimated. However, the k-x SST simu-
lations have a good agreement in the contour of the
curve and the position of the peaks, as well as in the
tangential and radial velocity. Consequently, the opti-
mization process tries to compensate for the error of
the underestimated axial velocity. For the RSM, the
underestimated axial velocity applies as well, but the
entire shaping airflow field is slightly narrower than the
k-x SST simulations so that a too narrow shaping
airflow field compensates the missing axial impulse.
Furthermore, the high initial axial velocity in the k-x
SST case leads to a lower Rayleigh-limit because the
high initial impulse forces larger particles to be
deposited on the plate. For this particular ERBS with
a thick bell-edge, it is unlikely that such a high axial
velocity is present for the initial drop conditions and is,
therefore, an indicator for incorrect air flow prediction.
However, the optimization process itself can efficiently
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Fig. 19: 1D metamodel for the residual of transferred
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Table 3: Parameter of NSGA-III

Parameter Method Value

Population size – 100
Sampling method Latin-Hypercube –
Reference points Das-Dennis21 n_partitions = 25
Crossover operation Point crossover22 n_points = 2
Mutation operation Polynomial mutation22 eta = 30, prob = 0.9
Stopping criteria Maximum generations 1000
Decision making Pseudo-weights23 f1 = 0.5, f2 = 0.5

Table 4: Optimized injection model coefficients for RSM
and k-x SST turbulence model cases using the
metamodel-based optimization framework

Parameter RSM k-x SST Unit

AX_POS 0 (fixed) 0 (fixed) mm
AX_VEL 3.5 18.6 ms�1

SLIPFACTOR 88.0 86.8 %
ANGLE 76.62 (fixed) 76.62 (fixed) �

COEFF_RAY 1.45 1.31 %
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determine the Pareto-optimum. At this point, the
physically meaningful range of initial droplet condi-
tions for different ERBS types is not established. It
must be defined by further experimental investigations
near the bell-edge as well as by the support of
additional sub-models in the injection modeling.

Discussion

The framework presented here to determine the initial
droplet conditions for ERBS simulations has been
realized using a simple injection model, experimental
data, and a metamodel-based optimization strategy.
Within the framework, uncertainties occur both in the
determination of the experimental data and in the
paint application simulation.

A statistically relevant mean value should be formed
to reduce the experimental uncertainties. Experience
has shown that variations of up to 15% can occur,
especially for spray pattern and measurement of
discharge current on the plate. However, for economic
and plant availability reasons, a sufficient number of
experiments cannot always be guaranteed, so that
there is a risk of calibrating to a spray pattern at the
boundary of the variation.

The particle size determination could alternatively
be measured using a Phase-Doppler Anemometer
(PDA) by systematically evaluating the spray point
by point and converting the obtained number distri-
bution into a volume distribution under consideration
of droplet velocities. The disadvantage of the PDA
method is that the measurements with opaque paint
materials do not work, and are, respectively, very
error-prone. Besides, under economical aspects for
industrial applications, the costs for PDA measure-
ments are many times more expensive. Therefore,
measuring methods with laser diffraction are recom-
mended to measure the particle size distribution as an
input condition for painting simulations.

The proposed injection model is a simple first-order
approximation of the highly complex processes during
primary atomization at the bell-edge. With the help of

the principal component analysis and metamodels, it is
possible to adapt further and optimize the injection
models. In particular, the initial velocity independent
from particle sizes is currently a significant weak point.
It is known that the particle relaxation times near the
bell for particle sizes larger than 100 lm are so high
that they are not distracted much and retain their
initial direction. Particle sizes smaller than 5 lm, on the
other hand, are almost strongly coupled to the flow.
The range of these initial velocities as a function of
particle size is to be included in further investigations
in the form of a crossflow submodel. In order to
determine the range of velocities, complex experiments
with optical measuring methods must be carried out in
order to investigate the correlation between particle
size and particle velocity. Furthermore, the results of
the primary break-up volume-of-fluid simulations at
the bell-edge of references (8) and (9) will be inves-
tigated and used to enhance and validate the injection
models for ERBS.

The most significant impact on the simulated result
is the correct prediction of the airflow. Modern ERBS
tend to utilize swirled shaping air to increase its range
of application. Particularly in the simulation with linear
eddy-viscosity models, overproduction of turbulence at
impinging flows is known, despite using a production
limiter. In all turbulence models, the axial velocity was
significantly underestimated. For simulations in an
industrial environment with commercial simulation
software, turbulence models such as the k-x SST will
continue to be used in the future. Since other preim-
plemented models also fail, further investigations and
adjustments of the models have to be carried out in
order to achieve high accuracy of the film thickness
prediction.

It must be assumed that further changes in the
model constants, e.g., turbulence or particle models,
will also lead to changes in the initial particle condi-
tions. In particular, the uncertainty of solvent evapo-
ration from the droplets, which was not taken into
account in the modeling, exists in this work. Particu-
larly for solvent-based paints with low solids content, a
drastic influence could be caused. The implementation
of evaporation models is very complicated in the field
of paint materials because interactions of complex
solvent mixtures have to be modeled, which creates
further hurdles in the generation of input data.
However, water-based solvents could be considered
using existing evaporation laws. A significant influence
of droplet impingement models as well as droplet
collision models film thickness distribution is currently
estimated to be very low and is therefore not consid-
ered in these painting simulations.

The metamodel-based optimization is an efficient
method to perform a multicriteria black-box optimiza-
tion with moderate computational effort. The black
box contains both the experimental input data and the
painting simulations themselves. The previously dis-
cussed errors are wholly included. If the errors, such as
the airflow field, are substantial, the optimizer will find
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solutions in the boundary area of the defined design
space. Currently, this space is not completely described
and limited by experiments, models, and assumptions,
which will be investigated in further research and
development.

From a holistic point of view, good agreement with
the objectives could be achieved through this frame-
work while painting complex parts, the alignment of
the atomizer to the part surface changes, and as a
result, the flow field is changed. Thus, the question of
the validity range of the optimized parameters remains
open. Further investigations with different distances
and angles of the atomizer to the surface should
provide clarity. However, the requirements for the
correctness of the simulated airflow are also applied
here.

Conclusions

In this paper, we have proposed a framework to
systematically address the practical problem of initial
drop conditions at ERBS for painting simulations. The
framework is a combination of experimental input
data, an injection model, and a metamodel-based
optimization. First, the determination of the experi-
mental data was discussed and its utilization in the
framework graphically outlined. Second, the numerical
cases and models were explained. A turbulence study
with three turbulence models was performed and
compared with experimental LDA data. A strong
underestimation of the axial velocity component in all
three turbulence models was clearly shown. The
tangential and radial velocity, on the other hand, were
simulated with reasonable accuracy. Furthermore, an
injection model used to determine the initial drop
conditions—position, particle velocity, particle size,
particle charge—was introduced. A metamodel-based
optimization then adjusted the model parameters. The
results of the optimization show a good agreement with
the defined painting-specific objectives. However, the
optimization revealed weak points of the underesti-
mated axial air velocity by setting high initial axial
velocities for the droplets to compensate for the
missing impulse. Further investigations will focus on
the particle size-dependent initial velocity in the
injection model and supporting the model develop-
ment and validation by experimental investigations.
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