Skip to main content
Log in

Photoinduced hydrophilicity and self-cleaning characteristics of silicone-modified soya alkyd/TiO2 nanocomposite coating

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Nano-TiO2-dispersed polymeric coatings have been extensively studied in recent years owing to their photocatalytic-induced self-cleaning characteristics. However, durability and long-term retention of self-cleaning performance of such coatings remain a challenge for practical applications. In the present work, we report the self-cleaning properties of nano-TiO2/silicone soya alkyd-based coating formulations comprising 0.5–5 wt% of nanofiller as well as conventional additives of rutile TiO2 and BaSO4. The nanocomposites were prepared by an in situ process involving dispersion of nano-TiO2 in soya oil, soya alkyd synthesis by alcoholic process, followed by silicone modification. The coatings prepared from the nanofiller-dispersed resin showed significant UV radiation-induced hydrophilicity and photocatalytic degradation of methylene blue (MB) solution. A coating formulation with 2 wt% of nano-TiO2 loading showed a decrease in water contact angle from 87° to < 10° after 24 h of UV radiation exposure and a 50% decrease in intensity of the 664-nm absorbance peak of MB solution after 8 h of UV irradiation. Further, Fourier transform infrared spectroscopy in reflectance mode (ATR-FTIR) and thermogravimetric analysis (TGA) studies revealed minimal degradation of the host matrix after 500 h of accelerated weathering studies with retention of self-cleaning characteristics. These results imply that silicone-modified alkyd resin can be a suitable host matrix for combining the requisite properties of self-cleaning, organic contaminant degradation, photocatalytic stability, and weathering resistance for sustainable self-cleaning applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhang, L, Dillert, R, Bahnemann, D, Vormoor, M, “Photo-induced Hydrophilicity and Self-Cleaning: Models and Reality.” Energy. Environ. Sci., 6 7491–7507 (2012)

    Article  Google Scholar 

  2. Nishimoto, S, Bhushan, B, “Bioinspired Self-Cleaning Surfaces with Superhydrophobicity, Superoleophobicity, and Superhydrophilicity.” RSC Adv., 3 671–690 (2013)

    Article  CAS  Google Scholar 

  3. Anastasiadis, SH, “Development of Functional Polymer Surfaces with Controlled Wettability.” Langmuir, 29 (30) 9277–9290 (2013)

    Article  CAS  Google Scholar 

  4. Barthlott, W, Neinhuis, C, “Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces.” Planta, 202 1–8 (1997)

    Article  CAS  Google Scholar 

  5. Roach, P, Shirtcliffe, NJ, Newton, MI, “Progress in Superhydrophobic Surface Development.” Soft Matter., 4 (2) 224–240 (2008)

    Article  CAS  Google Scholar 

  6. Shirtcliffe, NJ, McHale, G, Newton, MI, “The Super Hydrophobicity of Polymer Surfaces: Recent Developments.” J. Polym. Sci. B Polym. Phys., 49 1203–1217 (2011)

    Article  CAS  Google Scholar 

  7. Li, XM, Reinhoudt, D, Crego-Calama, M, “What Do We Need for a Superhydrophobic Surface? A Review on the Recent Progress in the Preparation of Superhydrophobic Surfaces.” Chem. Soc. Rev., 36 1350–1368 (2007)

    Article  Google Scholar 

  8. Ma, M, Hill, R, “Superhydrophobic Surfaces.” Colloid Interface Sci., 11 (4) 193–202 (2006)

    CAS  Google Scholar 

  9. Wang, S, Liu, K, Yao, X, Jiangv, L, “Bio Inspired Surfaces with Superwettability: New Insight on Theory, Design, and Applications.” Chem. Rev., 115 (16) 8230–8293 (2015)

    Article  CAS  Google Scholar 

  10. Banerjee, S, Dionysiou, DD, Pillai, SC, “Self-Cleaning Applications of TiO2 by Photo-induced Hydrophilicity and Photocatalysis.” Appl. Catal B Environ., 176 396–428 (2015)

    Article  Google Scholar 

  11. Ragesh, P, Ganesh, V, Naira, SV, Nair, AS, “A Review on ‘Self-Cleaning and Multifunctional Materials.” J. Mater. Chem. A, 2 14773–14797 (2014)

    Article  CAS  Google Scholar 

  12. Xiong, Z, Lin, H, Zhong, Y, Qin, Y, Li, T, Liua, F, “Robust Superhydrophilic Polylactide (PLA) Membrane with TiO2 Nano-particles Inlayed Surface for Oil/Water Separation.” J. Mater. Chem. A, 14 1–10 (2017)

    Google Scholar 

  13. Wang, R, Sakai, N, Fujishima, A, Watanabe, T, Hashimoto, K, “Studies of Surface Wettability Conversion on TiO2 Single-Crystal Surfaces.” J. Phys. Chem. B, 103 2188–2194 (1999)

    Article  CAS  Google Scholar 

  14. Allain, E, Besson, S, Durand, C, Moreau, M, Gacoin, T, Boilot, JP, “Transparent Mesoporous Nanocomposite Films for Self-Cleaning Applications.” Adv. Funct. Mater., 17 549–554 (2007)

    Article  CAS  Google Scholar 

  15. Song, S, Jing, LQ, Li, SD, Fu, HG, Luan, YB, “Superhydrophilic Anatase TiO2 Film with the Micro- and Nanometer-Scale Hierarchical Surface Structure.” Mater. Lett., 62 (20) 3503–3505 (2008)

    Article  CAS  Google Scholar 

  16. Fateh, R, Dillert, R, Bahnemann, D, “Self-Cleaning Properties, Mechanical Stability, and Adhesion Strength of Transparent Photocatalytic TiO2-ZnO Coatings on Polycarbonate.” ACS Appl. Mater. Interfaces, 6 (4) 2270–2278 (2014)

    Article  CAS  Google Scholar 

  17. Meher, SR, Balakrishnan, L, “Sol–Gel Derived Nanocrystalline TiO2 Thin Films: A Promising Candidate for Self-Cleaning Smart Window Applications.” Mater. Sci. Semicon. Proc., 26 (1) 251–258 (2014)

    Article  CAS  Google Scholar 

  18. Munafo, P, Quagliarini, E, Goffredo, GB, Bondioli, F, Licciulli, A, “Durability of Nano-Engineered TiO2 Self-Cleaning Treatments on Limestone.” Constr. Build. Mater., 65 218–231 (2014)

    Article  Google Scholar 

  19. Sarver, T, Qaraghuli, A, Kazmerski, LL, “A Comprehensive Review of the Impact of Dust on the Use of Solar Energy: History, Investigations, Results, Literature, and Mitigation Approaches.” Renew. Sustain. Energy Rev., 22 698–733 (2013)

    Article  Google Scholar 

  20. Guzenda, A, Pietrzyk, B, Szymanowski, H, Gazicki-ipman, M, Jakubowski, W, “Photocatalytic Activity of Thin TiO2 Films Deposited Using Sol–Gel and Plasma Enhanced Chemical Vapor Deposition Methods.” Ceram. Int., 39 (3) 2787–2794 (2013)

    Article  Google Scholar 

  21. Frach, P, Gloss, D, Metzner, C, Modes, T, Scheffel, B, Zywitzki, O, “Deposition of Photocatalytic TiO2 Layers by Pulse Magnetron Sputtering and by Plasma-Activated Evaporation.” Vacuum, 80 (7) 679–683 (2006)

    Article  CAS  Google Scholar 

  22. Li, B, Wu, JM, Guo, TT, Tang, MZ, Wen, W, “A Facile Solution Route to Deposit TiO2 Nanowire Arrays on Arbitrary Substrates.” Nanoscale, 6 3046–3050 (2014)

    Article  CAS  Google Scholar 

  23. Ding, XF, Zhou, SX, Wu, LM, Gu, GX, Yang, JT, “Formation of Supra-amphiphilic “Self-Cleaning Surface Through Sun-Illumination of Titania-Based Nanocomposite Coatings.” Surf. Coat. Technol., 205 2554–2561 (2010)

    Article  CAS  Google Scholar 

  24. Yang, L, Zhou, S, Wu, L, “Preparation of Waterborne Self-cleaning Nanocomposite Coatings Based on TiO2/PMMA Latex.” Prog. Org. Coat, 85 208–215 (2015)

    Article  CAS  Google Scholar 

  25. Xu, F, Wang, T, Yu Chen, H, Bohling, J, Maurice, MA, Wu, L, Zhou, S, “Preparation of Photocatalytic TiO2-Based Self-Cleaning Coatings for Painted Surface Without Interlayer.” Prog. Org. Coat, 113 15–24 (2017)

    Article  CAS  Google Scholar 

  26. Allen, NS, Edge, M, Sandoval, G, Verran, J, Stratton, J, Maltby, J, “Photocatalytic Coating for Environmental Applications.” Photochem. Photobiol., 81 (2) 279–290 (2005)

    Article  CAS  Google Scholar 

  27. Allen, NS, Edge, M, Ortega, A, Sandoval, G, Liauw, CM, Verran, J, Stratton, J, McIntyre, RB, “Preparation of Photocatalytic TiO2 Based Self-Cleaning Coatings for Painted Surface Without Interlayer.” Polym. Degrad. Stab., 85 927–946 (2004)

    Article  CAS  Google Scholar 

  28. Burgess, KD, “Self-Cleaning Titania-Polyurethane Composites” Masters Thesis, University of Western Ontario London, Ontario, Canada (2007).

  29. Guthrie, JP, “Concerted Mechanism for Alcoholysis of Esters: an Examination of the Requirements.” J. Am. Chem. Soc., 113 3941–3949 (1991)

    Article  CAS  Google Scholar 

  30. Tschirch, J, Dillert, R, Bahnemann, D, Proft, B, Biedermann, A, Goer, B, “Photodegradation of Methylene Blue in Water, a Standard Method to Determine the Activity of Photocatalytic Coatings?” Res. Chem. Intermed., 34 381–392 (2008)

    Article  CAS  Google Scholar 

  31. Mejíaa, M, Palaciob, J, Murilloc, E, “Comb-Shaped Silicone-Alkyd Resins with High Solid Content.” Prog. Org. Coat., 105 336–341 (2017)

    Article  Google Scholar 

  32. Drelich, J, Chibowski, E, Meng, DD, Terpilowski, K, “Hydrophilic and Superhydrophilic Surfaces and Materials.” Soft Matter, 7 9804–9828 (2011)

    Article  CAS  Google Scholar 

  33. Selim, M, El-Safty, AS, El-Sockary, MA, Hashem, A, Elenien, OMA, El-Saeed, AM, Fatthalla, NA, “Smart Photo-induced Silicone/TiO2 Nanocomposites with Dominant Exposed Surfaces for Self-Cleaning Foul-Release Coatings of Ship Hulls.” Mater. Des., 101 218–225 (2016)

    Article  CAS  Google Scholar 

  34. Zuo, R, Du, G, Zhang, W, Liu, L, Liu, Y, Mei, L, Li, Z, “Photocatalytic Degradation of Methylene Blue Using TiO2 Impregnated Diatomite.” Adv. Mater. Sci. Eng., 2014 1–7 (2014)

    Article  Google Scholar 

  35. An, C, Peng, S, Sun, Y, “Facile Synthesis of Sunlight-Driven AgCl: Ag Plasmonic Nanophotocatalyst.” Adv. Mater., 22 (23) 2570–2574 (2010)

    Article  CAS  Google Scholar 

  36. Kasanen, J, Salstela, J, Suvanto, M, Pakkanen, TT, “Photocatalytic Degradation of Methylene Blue in Water Solution by Multilayer TiO2 Coating on HDPE.” Appl. Surf. Sci., 258 1738–1743 (2011)

    Article  CAS  Google Scholar 

  37. Horikoshi, S, Serpone, N, Hisamatsu, Y, Hidaka, H, “Photocatalyzed Degradation of Polymers in Aqueous Semiconductor Suspensions. 3. Photooxidation of a Solid Polymer: TiO2-Blended Poly(Vinyl Chloride) Film.” Environ. Sci. Technol., 32 (24) 4010–4016 (1998)

    Article  CAS  Google Scholar 

  38. Christensen, PA, Dilks, A, Egerton, TA, Lawson, EJ, “Photocatalytic Oxidation of Alkyd Paint Films Measured by FTIR Analysis of UV Generated Carbon Dioxide.” J. Mater. Sci., 37 4901–4909 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. M. Patri, Director, and N. M. Gokhale, Senior scientist, of Naval Materials Research Laboratory for providing guidance and encouragement to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balasubramanian Kandasubramanian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pawar, S.S., Baloji Naik, R., Rath, S.K. et al. Photoinduced hydrophilicity and self-cleaning characteristics of silicone-modified soya alkyd/TiO2 nanocomposite coating. J Coat Technol Res 17, 719–730 (2020). https://doi.org/10.1007/s11998-019-00253-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-019-00253-y

Keywords

Navigation