Skip to main content
Log in

Antioxidant activity of unmodified kraft and organosolv lignins to be used as sustainable components for polyurethane coatings

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

The antioxidative capacity of four different kraft lignins (KL) and one additional organosolv lignin (OSL) was studied using the Folin–Ciocalteu (FC) assay. To do so, the corresponding FC assay procedure was adapted and optimized to be appropriate for lignin analysis. Different solvents were tested, and DMSO and saturated sodium carbonate (Na2CO3) for pH adjustment showed the best results. The absorption wavelength of 740 nm was chosen due to highest determination coefficients. Continuous calibration is recommended on a daily basis to guarantee accuracy. The antioxidant capacity and related radical scavenging activity of various lignins were correlated with the biomass nature (soft wood vs grasses) and pulping methods (kraft vs organosolv). The results show higher antioxidant activity for kraft vs organosolv lignins. First lignin-derived polyurethane coatings were prepared using the unmodified kraft lignin. The films, prepared via spin coating, show a high flexibility and transparency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

AFM:

Atomic force microscopy

BHT:

Butyl hydroxy toluene

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

FC:

Folin–Ciocalteu

GAE:

Gallic acid equivalent

KL:

Kraft lignin

LCF:

Lignocellulose feedstock

MDI:

4,4-Diphenylmethanediisocyanate

OSL:

Organosolv lignin

PEG:

Polyethylene glycol

PU:

Polyurethane

SEC:

Size exclusion chromatography

TEA:

Triethylamine

TEM:

Transmission electron microscopy

TPC:

Total phenol content

References

  1. Kamm, B, Kamm, M, Hirth, T, Schulze, M, “Lignocelluloses Based Chemical Products and Product Family Trees.” In: Kamm, M, Kamm, B, Gruber, PC (eds.) Biorefineries-Industrial Processes and Products, pp. 97–150. Wiley-VCH, Weinheim, Germany (2006)

    Google Scholar 

  2. Alzagameem, A, El Khaldi-Hansen, B, Kamm, B, Schulze, M, “Lignocellulosic Biomass for Energy, Biofuels, Biomaterials, and Chemicals.” In: Vaz, S, Jr (ed.) Biomass and Green Chemistry, pp. 95–132. Springer, Basel (2018) https://doi.org/10.1007/978-3-319-66736-2

    Chapter  Google Scholar 

  3. Rinaldi, R, Jastrzebski, R, Clough, MT, “Paving the Way for Lignin Valorisation: Recent Advances in Bioengineering, Biorefining and Catalysis.” Angew. Chem. Int. Ed., 55 2–54 (2016). https://doi.org/10.1002/anie.201510351org

    Article  Google Scholar 

  4. Witzler, M, Alzagameem, A, Bergs, M, ElKhaldi-Hansen, B, Klein, SE, Hielscher, D, Kamm, B, Kreyenschmidt, J, Tobiasch, E, Schulze, M, “Lignin-Derived Biomaterials for Drug Release and Tissue Engineering.” Molecules, 23 1885 (2018). https://doi.org/10.3390/molecules23081885

    Article  CAS  Google Scholar 

  5. Schutyser, W, Renders, T, Van den Bosch, S, Koelewijn, SF, Beckham, GT, Sels, BF, “Chemicals from Lignin: An Interplay of Lignocellulose Fractionation, Depolymerisation, and Upgrading.” Chem. Soc. Rev., 47 852–908 (2018). https://doi.org/10.1039/c7cs00566k

    Article  CAS  Google Scholar 

  6. Laurichesse, S, Avérous, L, “Chemical Modification of Lignins: Towards Biobased Polymers.” Prog. Polym. Sci., 39 1266–1290 (2014). https://doi.org/10.1016/j.progpolymsci.2013.11.004

    Article  CAS  Google Scholar 

  7. Dong, X, Dong, M, Lu, Y, Turley, A, Jin, T, Wu, C, “Antimicrobial and Antioxidant Activities of Lignin from Residue of Corn Stover to Ethanol Production.” Ind. Crop. Prod., 34 1629–1634 (2011). https://doi.org/10.1016/j.indcrop.2011.06.002

    Article  CAS  Google Scholar 

  8. Baba, SA, Malik, SA, “Evaluation of Antioxidant and Antibacterial Activity of Methanolic Extracts of Gentiana Kurroo Royle.” J. Biol. Sci., 21 (5) 493–498 (2014). https://doi.org/10.1016/j.sjbs.2014.06.004

    Article  Google Scholar 

  9. Amzad Hossain, M, Shah, M, “A Study on the Total Phenols Content and Antioxidant Activity of Essential Oil and Different Solvent Extracts of Endemic Plant Merremia Borneensis.” Arab. J. Chem., 8 (1) 66–71 (2015). https://doi.org/10.1016/j.arabjc.2011.01.007

    Article  CAS  Google Scholar 

  10. Alzagameen, A, ElKhaldi-Hansen, B, Büchner, D, Larkins, M, Kamm, B, Witzleben, S, Schulze, M, “Lignocellulosic Biomass as Source for Lignin-Based Environmentally Benign Antioxidants.” Molecules, 23 2664–2688 (2018). https://doi.org/10.3390/molecules23102664

    Article  CAS  Google Scholar 

  11. Obama, P, Ricochon, G, Muniglia, L, Brosse, N, “Combination of Enzymatic Hydrolysis and Ethanol Organosolv Pretreatments: Effect of Lignin Structures, Delignification Yields and Cellulose-to-Glucose Conversion.” Bioresource Technol., 112 156 (2012). https://doi.org/10.1016/j.biortech.2012.02.080

    Article  CAS  Google Scholar 

  12. Hansen, B, Kamm, B, Schulze, M, “Qualitative and Quantitative Analysis of Lignin Produced from Beech Wood by Different Conditions of the Organosolv Process.” J. Polym. Environ., 24 85–97 (2016). https://doi.org/10.1007/s10924-015-0746-3

    Article  CAS  Google Scholar 

  13. Pan, X, Saddler, JN, “Effect of Replacing Polyol by Organosolv and Kraft Lignin on the Property and Structure of Rigid Polyurethane Foam.” Biotechnol. Biofuels, 6 12–21 (2013). https://doi.org/10.1186/1754-6834-6-12

    Article  CAS  Google Scholar 

  14. Klein, SE, Rumpf, J, Kusch, P, Albach, R, Rehahn, M, Witzleben, S, Schulze, M, “Unmodified Kraft Lignin isolated at room temperature from aqueous solution for Preparation of Highly Flexible Transparent Polyurethane Coatings.” RSC Adv, 8 40765 (2018). https://doi.org/10.1039/c8ra08579j

    Article  CAS  Google Scholar 

  15. ISO International Standard 14900 (2001), Plastics—Polyols for use in the Production of polyurethane—Determination of hydroxyl number, Reference number ISO 14900:2001 (E)

  16. García, A, González Alriols, M, Spigno, G, Labidi, J, “Lignin as Natural Radical Scavenger. Effect of the Obtaining and Purification Processes on the Antioxidant Behaviour of Lignin.” Biochem. Eng., 67 173–185 (2012). https://doi.org/10.1016/j.bej.2012.06.013

    Article  CAS  Google Scholar 

  17. dos Santos, PSB, Erdocia, X, Gatto, DA, Labidi, J, “Characterisation of Kraft Lignin Separated by Gradient Acid Precipitation.” Ind. Crops Prod., 55 149–154 (2014). https://doi.org/10.1016/j.indcrop.2014.01.023

    Article  CAS  Google Scholar 

  18. Kiewning, D, Wollseifen, R, Schmitz-Eiberger, M, “The Impact of Catechin and Epicatechin, Total Phenols and PPO Activity on the Mal d 1 Content in Apple Fruit.” Food Chem., 140 99–104 (2013). https://doi.org/10.1016/j.foodchem.2013.02.045

    Article  CAS  Google Scholar 

  19. Apak, R, Capanoglu, E, Shahidi, F (eds.), Measurement of Antioxidant Activity & Capacity, 1st ed. Hoboken, Wiley (2017). https://doi.org/10.1002/9781119135388. ISBN 9781119135388

    Google Scholar 

  20. Vivekanand, V, Chawade, A, Larsson, M, Larsson, A, Olsson, O, “Identification and Qualitative Characterization of High and Low Lignin Lines from an Oat TILLING Population.” Ind. Crops Prod., 59 1–8 (2014). https://doi.org/10.1016/j.indcrop.2014.04.019

    Article  CAS  Google Scholar 

  21. Azadi, P, Inderwildi, OR, Farnood, R, King, DA, “Liquid Fuels, Hydrogen and Chemicals from Lignin: A Critical Review.” Renew. Sustain. Energ. Rev., 21 506–523 (2013). https://doi.org/10.1016/j.rser.2012.12.022

    Article  CAS  Google Scholar 

  22. Ponomarenko, J, Lauberts, M, Dizhbite, T, Lauberte, L, Jurkjane, V, Telysheva, G, “Antioxidant Activity of Various Lignins and Lignin-Related Phenylpropanoid Units with High and Low Molecular Weight.” Holzforschung, 69 1–12 (2015). https://doi.org/10.1515/hf-2014-0280

    Article  CAS  Google Scholar 

  23. Sanchez-Rangel, JC, Benavides, J, Heredia, JB, Cisneros-Zevallosc, L, Jacobo-Velázquez, DA, “The Folin–Ciocalteu Assay Revisited: Improvement of Its Specificity for Total Phenolic Content Determination.” Anal. Methods, 5 5990–5999 (2013). https://doi.org/10.1039/C3AY41125G

    Article  CAS  Google Scholar 

  24. Tai, A, Sawano, T, Yazama, F, Ito, H, “Evaluation of Antioxidant Activity of Vanillin by Using Multiple Antioxidant Assays.” Biochim. Biophys. Acta, 1810 170–177 (2011). https://doi.org/10.1016/j.bbagen.2010.11.004

    Article  CAS  Google Scholar 

  25. Dizhbite, T, Telysheva, G, Jurkjane, V, Viesturs, U, “Characterization of the Radical Scavenging Activity of Lignins—Natural Antioxidants.” Bioresour. Technol., 95 309–317 (2004). https://doi.org/10.1016/j.biortech.2004.02.024

    Article  CAS  Google Scholar 

  26. Agbor, GA, Vinson, JA, Donnelly, PE, “Folin–Ciocalteu Reagent for Polyphenolic Assay.” IJFS, 3 (8) 147–156 (2014), (ISSN 2326-3350)

    Article  CAS  Google Scholar 

  27. Rover, MR, Brown, RC, “Quantification of Total Phenols in Bio-oil Using Folin–Ciocalteu Method.” J. Anal. Appl. Pyrol., 104 366–371 (2013). https://doi.org/10.1021/acs.energyfuels.6b01242

    Article  CAS  Google Scholar 

  28. Duval, A, Lawoko, M, “A Review on Lignin-Based Polymeric, Micro- and Nano-structured Materials.” Reactive Funct. Polym., 85 78–96 (2014), (ISSN 1381-5148, E-ISSN 1873-166X)

    Article  CAS  Google Scholar 

  29. Patil, ND, Tanguy, NR, Yan, N, In: Sain, M, Faruk, O (eds.) Lignin in Polymer Composites, pp. 27-47, Elsevier, Kidlington, Oxford, UK, Waltham, MA (2016) ISBN: 978-0-08-096532-1

  30. Huang, D, Ou, B, Prior, RL, “The Chemistry Behind Antioxidant Capacity Assays.” J. Agricult. Food Chem., 53 1841–1856 (2005). https://doi.org/10.1021/jf030723c

    Article  CAS  Google Scholar 

  31. Lupoi, JS, Singh, S, Parthasarathi, R, Simmons, BA, Henry, RJ, “Recent Innovations in Analytical Methods for the Qualitative and Quantitative Assessment of Lignin.” Renew. Sust. Energ. Rev., 49 871–906 (2015). https://doi.org/10.1016/j.rser.2015.04.091

    Article  CAS  Google Scholar 

  32. Faustino, H, Gil, N, Baptista, C, Duarte, AP, “Antioxidant Activity of Lignin Phenolic Compounds Extracted from Kraft and Sulphite Black Liquors.” Molecules, 15 9308–9322 (2010). https://doi.org/10.3390/molecules15129308

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Federal Ministry of Education and Research (BMBF) program “IngenieurNachwuchs” project LignoBau (03FH013IX4). The authors gratefully acknowledge Zellstoff- und Papierfabrik Rosenthal GmbH (Blankenstein, Germany, MERCER group) for providing the black liquor. We gratefully thank Manuela Schebera, Bonn-Rhein-Sieg University of Applied Sciences, performing the AFM measurements, and Christian Rüttiger, Technical University of Darmstadt for TEM studies. Erasmus-Mundus Avempace-II and Bonn-Rhein-Sieg University/Graduate Institute for scholar ship (Abla Alzagameem).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margit Schulze.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klein, S.E., Rumpf, J., Alzagameem, A. et al. Antioxidant activity of unmodified kraft and organosolv lignins to be used as sustainable components for polyurethane coatings. J Coat Technol Res 16, 1543–1552 (2019). https://doi.org/10.1007/s11998-019-00201-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-019-00201-w

Keywords

Navigation