Skip to main content
Log in

Application and Development of Electrospun Nanofibers as an Efficient Platform for the Delivery of Anthocyanin Compounds in the Food Industry

  • REVIEW
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

A Correction to this article was published on 20 November 2023

This article has been updated

Abstract

Anthocyanins, a type of phenolic compound, are found in plants. They are high-value food and pharmaceutical ingredients with improved health benefits and biological functions. However, there are certain drawbacks to using anthocyanins in the food and pharmaceutical industries, such as low stability and vulnerability to severe environmental conditions such as light, pH, temperature, and oxygen which could have a significant impact on the health-promoting properties. Encapsulation is one of the most preferred processing methods since it helps preserve the health benefits of anthocyanin. Choosing an appropriate strategy entails consideration of processing parameters, equipment availability, and application aims. Electrospun nanofibers were used as a novel platform for anthocyanin encapsulation. Because of their superior properties, they can improve the encapsulation efficiency, bioactivity, and bioaccessibility of anthocyanin. The current review examines the chemical structure of anthocyanin and the principles and advantages of electrospinning as an encapsulating method in depth. Finally, the current limitations and opportunities for advancing electrospinning in food packaging and medicine delivery are explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Change history

References

  • Abaee, A., Mohammadian, M., & Jafari, S. M. (2017). Whey and soy protein-based hydrogels and nano-hydrogels as bioactive delivery systems. Trends in Food Science & Technology, 70, 69–81. https://doi.org/10.1016/j.tifs.2017.10.011

  • Abd El-aziz, A., El-Maghraby, A., & Taha, N. A. (2017). Comparison between polyvinyl alcohol (PVA) nanofiber and polyvinyl alcohol (PVA) nanofiber/hydroxyapatite (HA) for removal of Zn2+ ions from wastewater. Arabian journal of chemistry, 10(8), 1052–1060. https://doi.org/10.1016/j.arabjc.2016.09.025

  • Abdolhosseinzadeh, E., Dehnad, A. R., Pourjafar, H., Homayouni, A., & Ansari, F. (2018). The production of probiotic scallion yogurt: Viability of Lactobacillus acidoplilus freely and microencapsulated in the product. Carpathian Journal of Food Science & Technology, 10(3).

  • Acik, G., Acik, B., & Agel, E. (2022). Layer-by-layer assembled, amphiphilic and antibacterial hybrid electrospun mat made from polypropylene and chitosan fibers. Journal of Polymers and the Environment, 30(5), 1932–1941. https://doi.org/10.1007/s10924-021-02324-x

  • Ahmadian, A., Shafiee, A., Aliahmad, N., & Agarwal, M. (2021). Overview of nano-fiber mats fabrication via electrospinning and morphology analysis. Textiles, 1(2), 206–226. https://doi.org/10.3390/textiles1020010

  • Akhavan, S., Assadpour, E., Katouzian, I., & Jafari, S. M. (2018). Lipid nano scale cargos for the protection and delivery of food bioactive ingredients and nutraceuticals. Trends in Food Science & Technology, 74, 132–146. https://doi.org/10.1016/j.tifs.2018.02.001

  • Alam, M., Islam, P., Subhan, N., Rahman, M., Khan, F., Burrows, G. E., Nahar, L., & Sarker, S. D. (2021). Potential health benefits of anthocyanins in oxidative stress related disorders. Phytochemistry Reviews, 20(4), 705–749. https://doi.org/10.1007/s11101-021-09757-1

  • Alappat, B., & Alappat, J. (2020). Anthocyanin pigments: Beyond aesthetics. Molecules, 25(23), 5500. https://doi.org/10.3390/molecules25235500

  • Alizadeh-Sani, M., Mohammadian, E., Rhim, J.-W., & Jafari, S. M. (2020). pH-sensitive (halochromic) smart packaging films based on natural food colorants for the monitoring of food quality and safety. Trends in Food Science & Technology, 105, 93–144. https://doi.org/10.1016/j.tifs.2020.08.014

  • Amal Nath, V., Vijayakumar, R., Leena, M. M., Moses, J. A., & Anandharamakrishnan, C. (2022). Co-electrospun-electrosprayed ethyl cellulose-gelatin nanocomposite pH-sensitive membrane for food quality applications. Food Chemistry, 394, 133420. https://doi.org/10.1016/j.foodchem.2022.133420

  • Aman Mohammadi, M., Hosseini, S. M., & Yousefi, M. (2020). Application of electrospinning technique in development of intelligent food packaging: A short review of recent trends. Food Science & Nutrition, 8(9), 4656–4665. https://doi.org/10.1002/fsn3.1781

  • Aman Mohammadi, M., Ramezani, S., Hosseini, H., Mortazavian, A. M., Hosseini, S. M., & Ghorbani, M. (2021). Electrospun antibacterial and antioxidant zein/polylactic acid/hydroxypropyl methylcellulose nanofibers as an active food packaging system. Food and Bioprocess Technology, 14, 1529–1541. https://doi.org/10.1007/s11947-021-02654-7

  • Aman Mohammadi, M., Dakhili, S., Mirza Alizadeh, A., Kooki, S., Hassanzadazar, H., Alizadeh-Sani, M., & McClements, D. J. (2022). New perspectives on electrospun nanofiber applications in smart and active food packaging materials. Critical reviews in food science and nutrition, 1–17. https://doi.org/10.1080/10408398.2022.2124506

  • Aslaner, G., Sumnu, G., & Sahin, S. (2021). Encapsulation of grape seed extract in rye flour and whey protein–based electrospun nanofibers. Food and Bioprocess Technology, 14(6), 1118–1131. https://doi.org/10.1007/s11947-021-02627-w

  • Aydogdu, A., Sumnu, G., & Sahin, S. (2018). A novel electrospun hydroxypropyl methylcellulose/polyethylene oxide blend nanofibers: Morphology and physicochemical properties. Carbohydrate Polymers, 181, 234–246. https://doi.org/10.1016/j.carbpol.2017.10.071

  • Aytac, Z., & Uyar, T. (2022). Electrospun Nanofibers for Drug Delivery Applications. Applications of Polymer Nanofibers, 202–254. https://doi.org/10.1002/9781119267713.ch6

  • Ayvaz, H., Cabaroglu, T., Akyildiz, A., Pala, C. U., Temizkan, R., Ağçam, E., Ayvaz, Z., Durazzo, A., Lucarini, M., & Direito, R. (2022). Anthocyanins: Metabolic digestion, bioavailability, therapeutic effects, current pharmaceutical/industrial use, and innovation potential. Antioxidants, 12(1), 48.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bahrami, A., Delshadi, R., Assadpour, E., Jafari, S. M., & Williams, L. (2020). Antimicrobial-loaded nanocarriers for food packaging applications. Advances in Colloid and Interface Science, 278, 102140. https://doi.org/10.1016/j.cis.2020.102140

  • Bassolino, L., Zhang, Y., Schoonbeek, H. J., Kiferle, C., Perata, P., & Martin, C. (2013). Accumulation of anthocyanins in tomato skin extends shelf life. New Phytologist, 200(3), 650–655. https://doi.org/10.1111/nph.12524

  • Becerril, R., Nerín, C., & Silva, F. (2021). Bring some colour to your package: Freshness indicators based on anthocyanin extracts. Trends in Food Science & Technology, 111, 495–505. https://doi.org/10.1016/j.tifs.2021.02.042

  • Branquinho Andrade, P., Grosso, C., Valentao, P., & Bernardo, J. (2016). Flavonoids in neurodegeneration: Limitations and strategies to cross CNS barriers. Current medicinal chemistry, 23(36), 4151–4174. https://doi.org/10.2174/0929867323666160809094934

  • Cai, D., Li, X., Chen, J., Jiang, X., Ma, X., Sun, J., Tian, L., Vidyarthi, S. K., Xu, J., & Pan, Z. (2022). A comprehensive review on innovative and advanced stabilization approaches of anthocyanin by modifying structure and controlling environmental factors. Food Chemistry, 366, 130611. https://doi.org/10.1016/j.foodchem.2021.130611

  • Castro-Muñoz, R., Kharazmi, M. S., & Jafari, S. M. (2023). Chitosan-based electrospun nanofibers for encapsulating food bioactive ingredients: A review. International journal of biological macromolecules, 125424.

  • Chen, M. X., Haider, M. K., Kim, I. S., & Lee, J. -S. (2023). Characterization of antioxidant Houttuynia cordata extracts loaded polyurethane nanofibers. Fashion and Textiles, 10(1), 17. https://doi.org/10.1186/s40691-023-00333-z

  • Chinnappan, B. A., Krishnaswamy, M., Xu, H., & Hoque, M. E. (2022). Electrospinning of biomedical nanofibers/nanomembranes: Effects of process parameters. Polymers, 14(18), 3719. https://doi.org/10.3390/polym14183719

  • Coelho, S. C., Estevinho, B. N., & Rocha, F. (2022). Recent advances in water-soluble vitamins delivery systems prepared by mechanical processes (electrospinning and spray-drying techniques) for food and nutraceuticals applications—A review. Foods, 11(9), 1271. https://doi.org/10.3390/foods11091271

  • Cruz, L., Basílio, N., Mateus, N., De Freitas, V., & Pina, F. (2021). Natural and synthetic flavylium-based dyes: The chemistry behind the color. Chemical Reviews, 122(1), 1416–1481. https://doi.org/10.1021/acs.chemrev.1c00399

  • Curtis, P. J., Van Der Velpen, V., Berends, L., Jennings, A., Feelisch, M., Umpleby, A. M., Evans, M., Fernandez, B. O., Meiss, M. S., & Minnion, M. (2019). Blueberries improve biomarkers of cardiometabolic function in participants with metabolic syndrome—Results from a 6-month, double-blind, randomized controlled trial. The American Journal of Clinical Nutrition, 109(6), 1535–1545.

    Article  PubMed  PubMed Central  Google Scholar 

  • Czank, C., Cassidy, A., Zhang, Q., Morrison, D. J., Preston, T., Kroon, P. A., Botting, N. P., & Kay, C. D. (2013). Human metabolism and elimination of the anthocyanin, cyanidin-3-glucoside: A 13C-tracer study. The American of Clinical Nutrition, 97(5), 995–1003.

    Article  CAS  Google Scholar 

  • de Oliveira Filho, J. G., Braga, A. R. C., de Oliveira, B. R., Gomes, F. P., Moreira, V. L., Pereira, V. A. C., & Egea, M. B. (2021). The potential of anthocyanins in smart, active, and bioactive eco-friendly polymer-based films: A review. Food research international, 142, 110202. https://doi.org/10.1016/j.foodres.2021.110202

  • Devarayan, K., & Kim, B. -S. (2015). Reversible and universal pH sensing cellulose nanofibers for health monitor. Sensors and Actuators B: Chemical, 209, 281–286. https://doi.org/10.1016/j.snb.2014.11.120

  • Diaconeasa, Z., Știrbu, I., Xiao, J., Leopold, N., Ayvaz, Z., Danciu, C., Ayvaz, H., Stǎnilǎ, A., Nistor, M., & Socaciu, C. (2020). Anthocyanins, vibrant color pigments, and their role in skin cancer prevention. Biomedicines, 8(9), 336. https://doi.org/10.3390/biomedicines8090336

  • Drosou, C. G., Krokida, M. K., & Biliaderis, C. G. (2017). Encapsulation of bioactive compounds through electrospinning/electrospraying and spray drying: A comparative assessment of food-related applications. Drying technology, 35(2), 139–162. https://doi.org/10.1080/07373937.2016.1162797

  • Drosou, C., Krokida, M., & Biliaderis, C. G. (2022). Encapsulation of β-carotene into food-grade nanofibers via coaxial electrospinning of hydrocolloids: Enhancement of oxidative stability and photoprotection. Food Hydrocolloids, 133, 107949. https://doi.org/10.1016/j.foodhyd.2022.107949

  • Duan, M., Yu, S., Sun, J., Jiang, H., Zhao, J., Tong, C., Hu, Y., Pang, J., & Wu, C. (2021). Development and characterization of electrospun nanofibers based on pullulan/chitin nanofibers containing curcumin and anthocyanins for active-intelligent food packaging. International journal of biological macromolecules, 187, 332–340. https://doi.org/10.1016/j.ijbiomac.2021.07.140

  • Dumitrașcu, L., Stănciuc, N., & Aprodu, I. (2021). Encapsulation of anthocyanins from cornelian cherry fruits using heated or non-heated soy proteins. Foods, 10(6), 1342. https://doi.org/10.3390/foods10061342

  • Ebrahimi, R., Ahmadian, A., Ferdousi, A., Zandi, S., Shahmoradi, B., Ghanbari, R., Mahammadi, S., Rezaee, R., Safari, M., Daraei, H., Maleki, A., & Yetilmezsoy, K. (2020). Effect of washing and cooking on nitrate content of potatoes (cv. diamant) and implications for mitigating human health risk in Iran. Potato Research, 63(3), 449–462. https://doi.org/10.1007/s11540-020-09450-4

  • El-Naggar, M. E., El-Newehy, M. H., Aldalbahi, A., Salem, W. M., & Khattab, T. A. (2021). Immobilization of anthocyanin extract from red-cabbage into electrospun polyvinyl alcohol nanofibers for colorimetric selective detection of ferric ions. Journal of Environmental Chemical Engineering, 9(2), 105072. https://doi.org/10.1016/j.jece.2021.105072

  • Enaru, B., Drețcanu, G., Pop, T. D., Stǎnilǎ, A., & Diaconeasa, Z. (2021). Anthocyanins: Factors affecting their stability and degradation. Antioxidants, 10(12), 1967. https://doi.org/10.3390/antiox10121967

  • Esfanjani, A. F., & Jafari, S. M. (2016). Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds. Colloids and Surfaces B: Biointerfaces, 146, 532–543. https://doi.org/10.1016/j.colsurfb.2016.06.053

  • Falsafi, S. R., Rostamabadi, H., Nishinari, K., Amani, R., & Jafari, S. M. (2022). The role of emulsification strategy on the electrospinning of β-carotene-loaded emulsions stabilized by gum Arabic and whey protein isolate. Food Chemistry, 374, 131826. https://doi.org/10.1016/j.foodchem.2021.131826

  • Fang, J.-L., Luo, Y., Yuan, K., Guo, Y., & Jin, S. -H. (2020). Preparation and evaluation of an encapsulated anthocyanin complex for enhancing the stability of anthocyanin. Lwt, 117, 108543. https://doi.org/10.1016/j.lwt.2019.108543

  • Fidan-Yardimci, M., Akay, S., Sharifi, F., Sevimli-Gur, C., Ongen, G., & Yesil-Celiktas, O. (2019). A novel niosome formulation for encapsulation of anthocyanins and modelling intestinal transport. Food Chemistry, 293, 57–65. https://doi.org/10.1016/j.foodchem.2019.04.086

  • Forghani, S., Zeynali, F., Almasi, H., & Hamishehkar, H. (2022). Characterization of electrospun nanofibers and solvent-casted films based on Centaurea arvensis anthocyanin-loaded PVA/κ-carrageenan and comparing their performance as colorimetric pH indicator. Food Chemistry, 388, 133057. https://doi.org/10.1016/j.foodchem.2022.133057

  • Francavilla, A., & Joye, I. J. (2020). Anthocyanins in whole grain cereals and their potential effect on health. Nutrients, 12(10), 2922. https://doi.org/10.3390/nu12102922

  • Gao, R., Hu, H., Shi, T., Bao, Y., Sun, Q., Wang, L., Ren, Y., Jin, W., & Yuan, L. (2022). Incorporation of gelatin and Fe2+ increases the pH-sensitivity of zein-anthocyanin complex films used for milk spoilage detection. Current Research in Food Science, 5, 677–686. https://doi.org/10.1016/j.crfs.2022.03.016

  • Ge, J., Yue, P., Chi, J., Liang, J., & Gao, X. (2018). Formation and stability of anthocyanins-loaded nanocomplexes prepared with chitosan hydrochloride and carboxymethyl chitosan. Food Hydrocolloids, 74, 23–31. https://doi.org/10.1016/j.foodhyd.2017.07.029

  • Gençdağ, E., Özdemir, E. E., Demirci, K., Görgüç, A., & Yılmaz, F. M. (2022). Copigmentation and stabilization of anthocyanins using organic molecules and encapsulation techniques. Current Plant Biology, 29, 100238. https://doi.org/10.1016/j.cpb.2022.100238

  • Ghaderpour, A., Hoseinkhani, Z., Yarani, R., Mohammadiani, S., Amiri, F., & Mansouri, K. (2021). Altering the characterization of nanofibers by changing the electrospinning parameters and their application in tissue engineering, drug delivery, and gene delivery systems. Polymers for Advanced Technologies, 32(5), 1924–1950. https://doi.org/10.1002/pat.5242

  • Ghasemnezhad, R., Razavilar, V., Pourjafar, H., Khosravi-Darani, K., & Ala, K. (2017). The viability of free and encapsulated Lactobacillus casei and Bifidobacterium animalis in chocolate milk, and evaluation of its pH changes and sensory properties during storage. Annual Research & Review in Biology, 1–8. https://doi.org/10.9734/ARRB/2017/37885

  • Giaconia, M. A., Ramos, S. D. P., Neves, B. V., Almeida, L., Costa-Lotufo, L., de Rosso, V. V., & Braga, A. R. C. (2022). Nanofibers of Jussara Pulp: A Tool to Prevent the Loss of Thermal Stability and the Antioxidant Activity of Anthocyanins after Simulated Digestion. Processes, 10(11), 2343. https://doi.org/10.3390/pr10112343

  • Gomes, V., Guimaraes, M., Goncalves, G., de Freitas, V., & Cruz, L. (2020). Bioinspired synthesis and physical-chemical properties of a new 10-methylpyrano-4′-hydroxyflavylium chloride salt. Synlett, 31(04), 334–338. https://doi.org/10.1055/s-0039-1690744

  • Gomes, V., Pires, A. S., Mateus, N., de Freitas, V., & Cruz, L. (2022). Pyranoflavylium-cellulose acetate films and the glycerol effect towards the development of pH-freshness smart label for food packaging. Food Hydrocolloids, 127, 107501. https://doi.org/10.1016/j.foodhyd.2022.107501

  • Gulden Goksen, P. N., & Ekiz, H. I. (2022). Electrospinning technology: Its process conditions and food packaging applications. Nonthermal Processing in Agri-Food-Bio Sciences: Sustainability and Future Goals, 447. https://doi.org/10.1007/978-3-030-92415-7_12

  • Guo, Y., Zhang, P., Liu, Y., Zha, L., Ling, W., & Guo, H. (2020). A dose-response evaluation of purified anthocyanins on inflammatory and oxidative biomarkers and metabolic risk factors in healthy young adults: A randomized controlled trial. Nutrition, 74, 110745.

    Article  CAS  PubMed  Google Scholar 

  • Han, T., Xia, C., Huang, Y., Sun, C., Liu, D., Xu, W., & Wang, D. (2023). An electrospun sensing label based on poly (vinyl alcohol)-Ag-grape seed anthocyanidin nanofibers for smart, real-time meat freshness monitoring. Sensors and Actuators B: Chemical, 376, 132975. https://doi.org/10.1016/j.snb.2022.132975

  • He, H., Song, Y., Li, M., Zhang, H., Li, J., Huang, H., & Li, Y. (2022). Novel anthocyanin electrospun film by caffeic acid co-pigmentation for real-time fish freshness monitoring. Analytical Methods. https://doi.org/10.1039/D2AY01434C

  • He, H., Song, Y., Li, M., Zhang, H., Li, J., Huang, H., & Li, Y. (2023). A novel anthocyanin electrospun film by caffeic acid co-pigmentation for real-time fish freshness monitoring [https://doi.org/10.1039/D2AY01434C]. Analytical Methods. https://doi.org/10.1039/D2AY01434C

  • Hornedo-Ortega, R., Rasines-Perea, Z., Cerezo, A. B., Teissedre, P. -L., & Jourdes, M. (2021). Anthocyanins: Dietary sources, bioavailability, human metabolic pathways, and potential anti-neuroinflammatory activity. In Phenolic compounds-chemistry, synthesis, diversity, non-conventional industrial, pharmaceutical and therapeutic applications. IntechOpen.

  • Hosseini, F., Miri, M. A., Najafi, M., Soleimanifard, S., & Aran, M. (2021). Encapsulation of rosemary essential oil in zein by electrospinning technique. Journal of Food Science, 86(9), 4070–4086. https://doi.org/10.1111/1750-3841.15876

  • Ibrahim, H. M., & Klingner, A. (2020). A review on electrospun polymeric nanofibers: Production parameters and potential applications. Polymer Testing, 90, 106647. https://doi.org/10.1016/j.polymertesting.2020.106647

  • Isik, B. S., Altay, F., & Capanoglu, E. (2018). The uniaxial and coaxial encapsulations of sour cherry (Prunus cerasus L.) concentrate by electrospinning and their in vitro bioaccessibility. Food Chemistry, 265, 260–273. https://doi.org/10.1016/j.foodchem.2018.05.064

  • Islam, M. S., Ang, B. C., Andriyana, A., & Afifi, A. M. (2019). A review on fabrication of nanofibers via electrospinning and their applications. SN Applied Sciences, 1(10), 1–16. https://doi.org/10.1007/s42452-019-1288-4

  • Jamar, G., Estadella, D., & Pisani, L. P. (2017). Contribution of anthocyanin‐rich foods in obesity control through gut microbiota interactions. BioFactors, 43(4), 507–516. https://doi.org/10.1002/biof.1365

  • Jovanska, L., Chiu, C.-H., Yeh, Y.-C., Chiang, W.-D., Hsieh, C.-C., & Wang, R. (2022). Development of a PCL-PEO double network colorimetric pH sensor using electrospun fibers containing Hibiscus rosa sinensis extract and silver nanoparticles for food monitoring. Food Chemistry, 368, 130813. https://doi.org/10.1016/j.foodchem.2021.130813

  • Kamsani, N. H., Haris, M. S., Pandey, M., Taher, M., & Rullah, K. (2021). Biomedical application of responsive ‘smart’electrospun nanofibers in drug delivery system: A minireview. Arabian journal of chemistry, 14(7), 103199. https://doi.org/10.1016/j.arabjc.2021.103199

  • Kara, H. H., Xiao, F., Sarker, M., Jin, T. Z., Sousa, A. M., Liu, C. K., Tomasula, P. M., & Liu, L. (2016). Antibacterial poly (lactic acid)(PLA) films grafted with electrospun PLA/allyl isothiocyanate fibers for food packaging. Journal of Applied Polymer Science, 133(2). https://doi.org/10.1002/app.42475

  • Karakaya, S., Simsek, S., Eker, A. T., Pineda-Vadillo, C., Dupont, D., Perez, B., Viadel, B., Sanz-Buenhombre, M., Rodriguez, A. G., & Kertész, Z. (2016). Stability and bioaccessibility of anthocyanins in bakery products enriched with anthocyanins. Food & Function, 7(8), 3488–3496.

    Article  CAS  Google Scholar 

  • Kay, C. D., Pereira-Caro, G., Ludwig, I. A., Clifford, M. N., & Crozier, A. (2017). Anthocyanins and flavanones are more bioavailable than previously perceived: A review of recent evidence. Annual Review of Food Science and Technology, 8, 155–180. https://doi.org/10.1146/annurev-food-030216-025636

  • Keirouz, A., Wang, Z., Reddy, V. S., Nagy, Z. K., Vass, P., Buzgo, M., Ramakrishna, S., & Radacsi, N. (2023). The history of electrospinning: Past, present, and future developments. Advanced Materials Technologies, 2201723.

  • Kerwald, J., de Moura Junior, C. F., Freitas, E. D., de Moraes Segundo, J. D. D. P., Vieira, R. S., & Beppu, M. M. (2022). Cellulose-based electrospun nanofibers: A review. Cellulose, 29(1), 25–54. https://doi.org/10.1007/s10570-021-04303-w

  • Khoo, H. E., Azlan, A., Tang, S. T., & Lim, S. M. (2017). Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & nutrition research, 61(1), 1361779. https://doi.org/10.1080/16546628.2017.1361779

  • Koosha, M., & Hamedi, S. (2019). Intelligent Chitosan/PVA nanocomposite films containing black carrot anthocyanin and bentonite nanoclays with improved mechanical, thermal and antibacterial properties. Progress in Organic Coatings, 127, 338–347. https://doi.org/10.1016/j.porgcoat.2018.11.028

  • Kossyvaki, D., Contardi, M., Athanassiou, A., & Fragouli, D. (2022). Colorimetric indicators based on anthocyanin polymer composites: A review. Polymers, 14(19), 4129. https://doi.org/10.3390/polym14194129

  • Lavefve, L., Howard, L. R., & Carbonero, F. (2020). Berry polyphenols metabolism and impact on human gut microbiota and health. Food & function, 11(1), 45–65. https://doi.org/10.1039/C9FO01634A

  • Li, Y., Zhu, J., Cheng, H., Li, G., Cho, H., Jiang, M., Gao, Q., & Zhang, X. (2021). Developments of advanced electrospinning techniques: A critical review. Advanced Materials Technologies, 6(11), 2100410. https://doi.org/10.1002/admt.202100410

  • Li, W., Sun, W., Jia, L., Dong, Y., Wu, L., Saldaña, M. D., & Sun, W. (2022a). Poly-l-lactic acid (PLLA)/anthocyanin nanofiber color indicator film for headspace detection of low-level bacterial concentration. International journal of biological macromolecules, 215, 123–131. https://doi.org/10.1016/j.ijbiomac.2022.06.034

  • Li, L., Xia, L., Xiao, F., Xiao, Y., Liu, L., Jiang, S., & Wang, H. (2023). Colorimetric active carboxymethyl chitosan/oxidized sodium alginate-Oxalis triangularis ssp. papilionacea anthocyanins film@gelatin/zein-linalool membrane for milk freshness monitoring and preservation. Food Chemistry, 405, 134994. https://doi.org/10.1016/j.foodchem.2022.134994

  • Lila, M. A., Burton-Freeman, B., Grace, M., & Kalt, W. (2016). Unraveling anthocyanin bioavailability for human health. Annual review of food science and technology, 7, 17.11–17.19. https://doi.org/10.1146/annurev-food-041715-033346

  • Lin, Y., Luo, L., Lin, H., Li, X., & Huang, R. (2021). Potential therapeutic targets and molecular details of anthocyan-treated inflammatory bowel disease: a systematic bioinformatics analysis of network pharmacology. RSC advances, 11(14), 8239–8249. https://doi.org/10.1039/d0ra09117k

  • Liu, Y., Wang, D., Sun, Z., Liu, F., Du, L., & Wang, D. (2021). Preparation and characterization of gelatin/chitosan/3-phenylacetic acid food-packaging nanofiber antibacterial films by electrospinning. International journal of biological macromolecules, 169, 161–170. https://doi.org/10.1016/j.ijbiomac.2020.12.046

  • Liu, L., Zhang, J., Zou, X., Arslan, M., Shi, J., Zhai, X., Xiao, J., Wang, X., Huang, X., Li, Z., & Li, Y. (2022). A high-stable and sensitive colorimetric nanofiber sensor based on PCL incorporating anthocyanins for shrimp freshness. Food Chemistry, 377, 131909. https://doi.org/10.1016/j.foodchem.2021.131909

  • Luo, Q., Hossen, A., Sameen, D. E., Ahmed, S., Dai, J., Li, S., Qin, W., & Liu, Y. (2021). Recent advances in the fabrication of pH-sensitive indicators films and their application for food quality evaluation. Critical reviews in food science and nutrition, 1–17. https://doi.org/10.1080/10408398.2021.1959296

  • Luo, X. E., Wang, R., Wang, J., Li, Y., Luo, H., Chen, S., Zeng, X. A., & Han, Z. (2022). Acylation of anthocyanins and their applications in the food industry: Mechanisms and recent research advances. Foods, 11(14), 2166. https://doi.org/10.3390/foods11142166

  • Luraghi, A., Peri, F., & Moroni, L. (2021). Electrospinning for drug delivery applications: A review. Journal of Controlled release, 334, 463–484. https://doi.org/10.1016/j.jconrel.2021.03.033

  • Ma, Y., Ding, S., Fei, Y., Liu, G., Jang, H., & Fang, J. (2019). Antimicrobial activity of anthocyanins and catechins against foodborne pathogens Escherichia coli and Salmonella. Food Control, 106, 106712. https://doi.org/10.1016/j.foodcont.2019.106712

  • Maftoonazad, N., & Ramaswamy, H. (2019). Design and testing of an electrospun nanofiber mat as a pH biosensor and monitor the pH associated quality in fresh date fruit (Rutab). Polymer Testing, 75, 76–84. https://doi.org/10.1016/j.polymertesting.2019.01.011

  • Mahdavi, S. A., Jafari, S. M., Ghorbani, M., & Assadpoor, E. (2014). Spray-drying microencapsulation of anthocyanins by natural biopolymers: A review. Drying technology, 32(5), 509–518. https://doi.org/10.1080/07373937.2013.839562

  • Mattioli, R., Francioso, A., Mosca, L., & Silva, P. (2020). Anthocyanins: A comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules, 25(17). https://doi.org/10.3390/molecules25173809

  • Min, T., Zhou, L., Sun, X., Du, H., Zhu, Z., & Wen, Y. (2022). Electrospun functional polymeric nanofibers for active food packaging: A review. Food Chemistry, 133239. https://doi.org/10.1016/j.foodchem.2022.133239

  • Mirza Alizadeh, A., Masoomian, M., Shakooie, M., Zabihzadeh Khajavi, M., & Farhoodi, M. (2021). Trends and applications of intelligent packaging in dairy products: A review. Critical reviews in food science and nutrition, 62(2), 383–397. https://doi.org/10.1080/10408398.2020.1817847

  • Mohammadalinejhad, S., Almasi, H., & Moradi, M. (2020). Immobilization of Echium amoenum anthocyanins into bacterial cellulose film: A novel colorimetric pH indicator for freshness/spoilage monitoring of shrimp. Food Control, 113, 107169. https://doi.org/10.1016/j.foodcont.2020.107169

  • Mohammadalinejhad, S., & Kurek, M. A. (2021). Microencapsulation of anthocyanins—Critical review of techniques and wall materials. Applied Sciences, 11(9), 3936. https://doi.org/10.3390/app11093936

  • Morton, L., & Braakhuis, A. J. (2021). The effects of fruit-derived polyphenols on cognition and lung function in healthy adults: A systematic review and meta-analysis. Nutrients, 13(12), 4273. https://doi.org/10.3390/nu13124273

  • Najafi, Z., Bildik, F., Şahin-Yeşilçubuk, N., & Altay, F. (2022). Enhancing oxidative stability of encapsulated echium oil by incorporation of saffron extract loaded nanoliposomes into electrospun pullulan-pea protein isolate-pectin. Food Hydrocolloids, 129, 107627. https://doi.org/10.1016/j.foodhyd.2022.107627

  • Neuenfeldt, N. H., de Moraes, D. P., de Deus, C., Barcia, M. T., & de Menezes, C. R. (2022). Blueberry phenolic composition and improved stability by microencapsulation. Food and Bioprocess Technology, 15(4), 750–767. https://doi.org/10.1007/s11947-021-02749-1

  • Neves, D., Valentão, P., Bernardo, J., Oliveira, M. C., Ferreira, J. M., Pereira, D. M., Andrade, P. B., & Videira, R. A. (2019). A new insight on elderberry anthocyanins bioactivity: Modulation of mitochondrial redox chain functionality and cell redox state. Journal of functional foods, 56, 145–155. https://doi.org/10.1016/j.jff.2019.03.019

  • Neves, D., Andrade, P. B., Videira, R. A., de Freitas, V., & Cruz, L. (2022). Berry anthocyanin-based films in smart food packaging: A mini-review. Food Hydrocolloids, 107885. https://doi.org/10.1016/j.foodhyd.2022.107885

  • Pereira Jr, V. A., de Arruda, I. N. Q., & Stefani, R. (2015). Active chitosan/PVA films with anthocyanins from Brassica oleraceae (red cabbage) as time–temperature indicators for application in intelligent food packaging. Food Hydrocolloids, 43, 180–188. https://doi.org/10.1016/j.foodhyd.2014.05.014

  • Pourjafar, H., Noori, N., Gandomi, H., Basti, A. A., & Ansari, F. (2018). Stability and efficiency of double-coated beads containing lactobacillus acidophilus obtained from the calcium alginate-chitosan and eudragit s100 nanoparticles microencapsulation. International Journal of Probiotics & Prebiotics, 13.

  • Pourjafar, H., Noori, N., Gandomi, H., Basti, A. A., & Ansari, F. (2020). Viability of microencapsulated and non-microencapsulated Lactobacilli in a commercial beverage. Biotechnology reports, 25, e00432. https://doi.org/10.1016/j.btre.2020.e00432

  • Pourjavaher, S., Almasi, H., Meshkini, S., Pirsa, S., & Parandi, E. (2017). Development of a colorimetric pH indicator based on bacterial cellulose nanofibers and red cabbage (Brassica oleraceae) extract. Carbohydrate Polymers, 156, 193–201. https://doi.org/10.1016/j.carbpol.2016.09.027

  • Rajanna, D., Pushpadass, H. A., Emerald, F. M. E., Padaki, N. V., & Nath, B. S. (2022). Nanoencapsulation of casein‐derived peptides within electrospun nanofibres. Journal of the Science of Food and Agriculture, 102(4), 1684–1698. https://doi.org/10.1002/jsfa.11509

  • Ramesh, M., & Muthuraman, A. (2018). Chapter 1 - Flavoring and coloring agents: Health risks and potential problems. In A. M. Grumezescu & A. M. Holban (Eds.), Natural and Artificial Flavoring Agents and Food Dyes (pp. 1–28). Academic Press. https://doi.org/10.1016/B978-0-12-811518-3.00001-6

  • Ramos, S. d. P., Giaconia, M. A., Assis, M., Jimenez, P. C., Mazzo, T. M., Longo, E., De Rosso, V. V., & Braga, A. R. (2021). Uniaxial and coaxial electrospinning for tailoring jussara pulp nanofibers. Molecules, 26(5), 1206. https://doi.org/10.3390/molecules26051206

  • Rashid, T. U., Gorga, R. E., & Krause, W. E. (2021). Mechanical properties of electrospun fibers—A critical review. Advanced Engineering Materials, 23(9), 2100153. https://doi.org/10.1002/adem.202100153

  • Rostami, M., Beheshtizadeh, N., Ranjbar, F. E., Najafi, N., Ahmadi, A., Ahmadi, P., Rostamabadi, H., Pazhouhnia, Z., Assadpour, E., & Mirzanajafi-Zanjani, M. (2022). Recent advances in electrospun protein fibers/nanofibers for the food and biomedical applications. Advances in Colloid and Interface Science, 102827. https://doi.org/10.1016/j.cis.2022.102827

  • Roy, S., & Rhim, J. -W. (2021). Anthocyanin food colorant and its application in pH-responsive color change indicator films. Critical reviews in food science and nutrition, 61(14), 2297–2325. https://doi.org/10.1080/10408398.2020.1776211

  • Sadeghi-Aghbash, M., Rahimnejad, M., Adeli, H., & Feizi, F. (2022). Wound healing: An overview of wound dressings on health care. Current Pharmaceutical Biotechnology. https://doi.org/10.2174/1389201023666220913153725

  • Salamon, I., Şimşek Sezer, E. N., Kryvtsova, M., & Labun, P. (2021). Antiproliferative and antimicrobial activity of anthocyanins from berry fruits after their isolation and freeze-drying. Applied Sciences, 11(5), 2096. https://doi.org/10.3390/app11052096

  • Saliu, F., & Della Pergola, R. (2018). Carbon dioxide colorimetric indicators for food packaging application: Applicability of anthocyanin and poly-lysine mixtures. Sensors and Actuators B: Chemical, 258, 1117–1124. https://doi.org/10.1016/j.snb.2017.12.007

  • Sapian, S., Taib, I. S., Katas, H., Latip, J., Zainalabidin, S., Hamid, Z. A., Anuar, N. N. M., & Budin, S. B. (2022). The role of anthocyanin in modulating diabetic cardiovascular disease and its potential to be developed as a nutraceutical. Pharmaceuticals, 15(11), 1344. https://doi.org/10.3390/ph15111344

  • Sayin, S., Tufani, A., Emanet, M., Genchi, G. G., Sen, O., Shemshad, S., Ozdemir, E., Ciofani, G., & Ozaydin Ince, G. (2019). Electrospun nanofibers with pH-responsive coatings for control of release kinetics. Frontiers in Bioengineering and Biotechnology, 7, 309. https://doi.org/10.3389/fbioe.2019.00309

  • Shahab, M., Roberto, S. R., Adnan, M., Fahad, S., Koyama, R., Saleem, M. H., Nasar, J., Saud, S., Hassan, S., & Nawaz, T. (2023). Phenolic compounds as a quality determinant of grapes: A critical review. Journal of Plant Growth Regulation, 1–7.

  • Sharif, N., Khoshnoudi-Nia, S., & Jafari, S. M. (2020). Nano/microencapsulation of anthocyanins; a systematic review and meta-analysis. Food research international, 132, 109077. https://doi.org/10.1016/j.foodres.2020.109077

  • Sharma, N., Tiwari, V., Vats, S., Kumari, A., Chunduri, V., Kaur, S., Kapoor, P., & Garg, M. (2020). Evaluation of anthocyanin content, antioxidant potential and antimicrobial activity of black, purple and blue colored wheat flour and wheat-grass juice against common human pathogens. Molecules, 25(24), 5785. https://doi.org/10.3390/molecules25245785

  • Shavisi, N., & Shahbazi, Y. (2022). Chitosan-gum Arabic nanofiber mats encapsulated with pH-sensitive Rosa damascena anthocyanins for freshness monitoring of chicken fillets. Food Packaging and Shelf Life, 32, 100827. https://doi.org/10.1016/j.fpsl.2022.100827

  • Silva, S., Costa, E., Calhau, C., Morais, R., & Pintado, M. (2017). Anthocyanin extraction from plant tissues: A review. Critical reviews in food science and nutrition, 57(14), 3072–3083. https://doi.org/10.1080/10408398.2015.1087963

  • Silva, H. R. D., Assis, D. D. C. D., Prada, A. L., Silva, J. O. C., Sousa, M. B. D., Ferreira, A. M., Amado, J. R. R., Carvalho, H. D. O., Santos, A. V. T. D. L. T. D., & Carvalho, J. C. T. (2019). Obtaining and characterization of anthocyanins from Euterpe oleracea (açaí) dry extract for nutraceutical and food preparations. Revista Brasileira de Farmacognosia, 29, 677–685. https://doi.org/10.1016/j.bjp.2019.03.004

  • Silva, P., Prieto, C., Andrade, C., Lagarón, J. M., Pastrana, L., Coimbra, M., Vicente, A., & Cerqueira, M. (2022). Hydroxypropyl methylcellulose-based micro-and nanostructures for encapsulation of melanoidins: Effect of electrohydrodynamic processing variables on morphological and physicochemical properties. International journal of biological macromolecules, 202, 453–467. https://doi.org/10.1016/j.ijbiomac.2022.01.019

  • Song, J., Yu, Y., Chen, M., Ren, Z., Chen, L., Fu, C., feei Ma, Z., & Li, Z. (2022). Advancement of protein-and polysaccharide-based biopolymers for anthocyanin encapsulation. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.938829

  • Sousa, D., Basílio, N., Oliveira, J., de Freitas, V., & Pina, F. (2022). A new insight into the degradation of anthocyanins: Reversible versus the irreversible chemical processes. Journal of Agricultural and Food Chemistry, 70(2), 656–668. https://doi.org/10.1021/acs.jafc.1c06521

  • Sun, X. -H., Zhou, T. -T., Wei, C. -H., Lan, W. -Q., Zhao, Y., Pan, Y. -J., & Wu, V. C. H. (2018). Antibacterial effect and mechanism of anthocyanin rich Chinese wild blueberry extract on various foodborne pathogens. Food Control, 94, 155–161. https://doi.org/10.1016/j.foodcont.2018.07.012

  • Sun, W., Liu, Y., Jia, L., Saldaña, M. D., Dong, T., Jin, Y., & Sun, W. (2021). A smart nanofibre sensor based on anthocyanin/poly‐l‐lactic acid for mutton freshness monitoring. International Journal of Food Science & Technology, 56(1), 342–351. https://publons.com/publon/10.1111/ijfs.14648 .

  • Swer, T. L., Mukhim, C., Bashir, K., & Chauhan, K. (2018). Optimization of enzyme aided extraction of anthocyanins from Prunus nepalensis L. Lwt, 91, 382–390. https://doi.org/10.1016/j.lwt.2018.01.043

  • Tarone, A. G., Cazarin, C. B. B., & Junior, M. R. M. (2020). Anthocyanins: New techniques and challenges in microencapsulation. Food research international, 133, 109092. https://doi.org/10.1016/j.foodres.2020.109092

  • Tavassoli-Kafrani, E., Goli, S. A. H., & Fathi, M. (2018). Encapsulation of orange essential oil using cross-linked electrospun gelatin nanofibers. Food and Bioprocess Technology, 11(2), 427–434. https://doi.org/10.1007/s11947-017-2026-9

  • Toriello, M., Afsari, M., Shon, H. K., & Tijing, L. D. (2020). Progress on the fabrication and application of electrospun nanofiber composites. Membranes, 10(9), 204. https://doi.org/10.3390/membranes10090204

  • Uhljar, L. É., & Ambrus, R. (2023). Electrospinning of potential medical devices (wound dressings, tissue engineering scaffolds, face masks) and their regulatory approach. Pharmaceutics, 15(2), 417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ullah, R., Khan, M., Shah, S. A., Saeed, K., & Kim, M. O. (2019). Natural antioxidant anthocyanins—A hidden therapeutic candidate in metabolic disorders with major focus in neurodegeneration. Nutrients, 11(6), 1195. https://doi.org/10.3390/nu11061195

  • Wallace, T. C., & Giusti, M. M. (2015). Anthocyanins. Advances in Nutrition, 6(5), 620–622.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S., Marcone, M. F., Barbut, S., & Lim, L. -T. (2013). Electrospun soy protein isolate-based fiber fortified with anthocyanin-rich red raspberry (Rubus strigosus) extracts. Food Research International, 52(2), 467–472. https://doi.org/10.1016/j.foodres.2012.12.036

  • Wang, X. -X., Yu, G.-F., Zhang, J., Yu, M., Ramakrishna, S., & Long, Y. -Z. (2021). Conductive polymer ultrafine fibers via electrospinning: Preparation, physical properties and applications. Progress in Materials Science, 115, 100704. https://doi.org/10.1016/j.pmatsci.2020.100704

  • Wang, Y., Khan, M. A., Chen, K., Zhang, L., & Chen, X. (2023). Electrospinning of natural biopolymers for innovative food applications: A review. Food and Bioprocess Technology, 16(4), 704–725. https://doi.org/10.1007/s11947-022-02896-z

  • Wen, P., Zong, M. -H., Linhardt, R. J., Feng, K., & Wu, H. (2017). Electrospinning: A novel nano-encapsulation approach for bioactive compounds. Trends in Food Science & Technology, 70, 56–68. https://doi.org/10.1016/j.tifs.2017.10.009

  • Westlake, J. R., Tran, M. W., Jiang, Y., Zhang, X., Burrows, A. D., & Xie, M. (2022). Biodegradable active packaging with controlled release: Principles, progress, and prospects. ACS Food Science & Technology, 2(8), 1166–1183. https://doi.org/10.1021/acsfoodscitech.2c00070

  • Williamson, G., Kay, C. D., & Crozier, A. (2018). The bioavailability, transport, and bioactivity of dietary flavonoids: A review from a historical perspective. Comprehensive Reviews in Food Science and Food Safety, 17(5), 1054–1112. https://doi.org/10.1111/1541-4337.12351

  • Wu, C., Li, Y., Du, Y., Wang, L., Tong, C., Hu, Y., Pang, J., & Yan, Z. (2019). Preparation and characterization of konjac glucomannan-based bionanocomposite film for active food packaging. Food Hydrocolloids, 89, 682–690. https://doi.org/10.1016/j.foodhyd.2018.11.001

  • Yamin, F., Naddafiun, F., & Zohoori, S. (2022). Electrospinning of eucalyptus cellulose nano fiber and improving its properties by doping nano materials. Journal of Natural Fibers, 19(13), 6770–6779. https://doi.org/10.1080/15440478.2021.1932675

  • Yang, B., & Kortesniemi, M. (2015). Clinical evidence on potential health benefits of berries. Current Opinion in Food Science, 2, 36–42. https://doi.org/10.1016/j.cofs.2015.01.002

  • Yilmaz, S. S., & Aytac, A. (2022). The effect of different compatibilizers on the properties of prepared poly (lactic acid)/polyurethane nanofibers by electrospinning. Journal of Industrial Textiles, 51(5_suppl), 8428S-8451S. https://doi.org/10.1177/15280837211029051

  • Yong, H., & Liu, J. (2020). Recent advances in the preparation, physical and functional properties, and applications of anthocyanins-based active and intelligent packaging films. Food Packaging and Shelf Life, 26, 100550. https://doi.org/10.1016/j.fpsl.2020.100550

  • Zabihzadeh Khajavi, M., Ebrahimi, A., Yousefi, M., Ahmadi, S., Farhoodi, M., Mirza Alizadeh, A., & Taslikh, M. (2020). Strategies for producing improved oxygen barrier materials appropriate for the food packaging sector. Food Engineering Reviews, 12(3), 346–363. https://doi.org/10.1007/s12393-020-09235-y

  • Zahabi, N., Golmakani, M. -T., Fazaeli, M., Ghiasi, F., & Khalesi, M. (2021). Electrospinning of glutelin-hordein incorporated with Oliveria decumbens essential oil: Characterization of nanofibers. Colloids and Surfaces B: Biointerfaces, 208, 112058. https://doi.org/10.1016/j.colsurfb.2021.112058

  • Zhang, C., Li, Y., Wang, P., & Zhang, H. (2020). Electrospinning of nanofibers: Potentials and perspectives for active food packaging. Comprehensive Reviews in Food Science and Food Safety, 19(2), 479–502. https://doi.org/10.1111/1541-4337.12536

  • Zhang, J., Huang, X., Zhang, J., Liu, L., Shi, J., Muhammad, A., Zhai, X., Zou, X., Xiao, J., Li, Z., Li, Y., & Shen, T. (2022a). Development of nanofiber indicator with high sensitivity for pork preservation and freshness monitoring. Food Chemistry, 381, 132224. https://doi.org/10.1016/j.foodchem.2022.132224

  • Zhang, T., Wang, H., Qi, D., Xia, L., Li, L., Li, X., & Jiang, S. (2022b). Multifunctional colorimetric cellulose acetate membrane incorporated with Perilla frutescens (L.) Britt. anthocyanins and chamomile essential oil. Carbohydrate Polymers, 278, 118914. https://doi.org/10.1016/j.carbpol.2021.118914

  • Zhang, H., Xu, Z., Zhao, H., Wang, X., Pang, J., Li, Q., Yang, Y., & Ling, W. (2020b). Anthocyanin supplementation improves anti-oxidative and anti-inflammatory capacity in a dose–response manner in subjects with dyslipidemia. Redox Biology, 32, 101474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, N., & Jing, P. (2022). Anthocyanins in Brassicaceae: Composition, stability, bioavailability, and potential health benefits. Critical Reviews in Food Science and Nutrition, 62(8), 2205–2220.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, L., Wu, H., Jiao, W., Yin, X., Si, Y., Yu, J., & Ding, B. (2021). Superelastic, lightweight, and flame-retardant 3D fibrous sponge fabricated by one-step electrospinning for heat retention. Composites Communications, 25, 100681. https://doi.org/10.1016/j.coco.2021.100681

Download references

Funding

This work was supported by the Shahid Beheshti University of Medical Sciences [grant number 43005519–1].

Author information

Authors and Affiliations

Authors

Contributions

M.A.M., A.M.A., M.M., E.M., S.S., H.P., and S.M.H. contributed to the preparation of the manuscript. M.A.M. and A.M.A. also prepared the figure and table. This manuscript was supervised by H.P. and S.M.H. All authors reviewed the final manuscript.

Corresponding authors

Correspondence to Hadi Pourjafar or Seyede Marzieh Hosseini.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aman Mohammadi, M., Mirza Alizadeh, A., Mohammadi, M. et al. Application and Development of Electrospun Nanofibers as an Efficient Platform for the Delivery of Anthocyanin Compounds in the Food Industry. Food Bioprocess Technol (2023). https://doi.org/10.1007/s11947-023-03251-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11947-023-03251-6

Keywords

Navigation