
Vol.:(0123456789)1 3

https://doi.org/10.1007/s11947-022-02772-w

REVIEW

Non‑conventional Stabilization for Fruit and Vegetable Juices: 
Overview, Technological Constraints, and Energy Cost Comparison

Giuseppe Vignali1  · Mario Gozzi2 · Massimiliano Pelacci3 · Roberta Stefanini1

Received: 24 August 2021 / Accepted: 21 January 2022 
© The Author(s) 2022, corrected publication 2022

Abstract
This study will provide an overview and a description of the most promising alternatives to conventional thermal treatments 
for juice stabilization, as well as a review of the literature data on fruit and vegetable juice processing in terms of three key 
parameters in juice production, which are microbial reduction, enzyme inactivation, and nutrient-compound retention. The 
alternatives taken into consideration in this work can be divided, according to the action mechanism upon which these are 
based, in non-conventional thermal treatments, among which microwave heating (MWH) and ohmic heating (OH), and non-
thermal treatments, among which electrical treatments, i.e., pulsed electric fields (PEF), high-pressure processing (HPP), 
radiation treatments such as ultraviolet light (UVL) and high-intensity pulsed light (PL), and sonication (HIUS) treatment, 
and inert-gas treatments, i.e., the pressure change technology (PCT) and supercritical carbon dioxide (SC-CO2) treatments. 
For each technology, a list of the main critical process parameters (CPP), advantages (PROS), and disadvantages (CONS) 
will be provided. In addition, for the non-thermal technologies, a summary of the most relevant published result of their 
application on fruit and vegetable juices will be presented. On top of that, a comparison of typical specific working energy 
costs for the main effective and considered technologies will be reported in terms of KJ per kilograms of processed product.

Keywords Non-conventional technologies · Food processing · Energy cost · Technological constraints · Vegetable and fruit 
juices

Introduction

Fruit and vegetable juices, beverages, juice blends, 
smoothies, and purees are an increasingly popular way of 
consuming fruit and fresh-like vegetables and may contribute 
to a healthy diet and healthy life. Over the last few years, the 
consumption of fruit and vegetable juices has been rapidly 
increasing, making the juice and beverage industry among 
the largest agro-based industries worldwide (Walkling-
Ribeiro et al., 2010).

Vegetable and fruit juices are traditionally preserved by 
thermal processing. Unfortunately, they might have some 

detrimental effects on the nutritional quality, impacting neg-
atively on the fresh-like characteristics. Therefore, recent 
consumer demand for safe and minimally processed foods 
with high-quality attributes have encouraged food industry 
and scientific researchers to design alternative technologies 
to produce food with a minimum of changes induced by the 
technologies themselves (Jiménez-Sánchez et al., 2017a).

For this reason, recently there has been a growing interest 
in the design of non-conventional and novel non-thermal pro-
cessing systems that minimally modify sensory, nutritional, 
and functional properties of fruit and vegetable juices and 
beverages. The non-conventional and non-thermal technolo-
gies that will be presented in this paper could meet industry  
and consumer expectations. Anyway, although non- 
conventional treatment seems less detrimental than the conven- 
tional thermal ones, the effects are strongly dependent on the 
food matrix (Alves Filho et al., 2016). Therefore, the main 
motivation for food processors is to select the most appropriate  
thermal or non-thermal technology along with validated pro-
cessing conditions to retain nutritive constituents, color, and 
flavor attributes (Koutchma et al., 2016).
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In the last few years, many studies and research about 
comparison among different technologies for fruit and veg-
etable juice treatment have been carried out (Bevilacqua 
et al., 2018; Jiménez-Sánchez et al., 2017a, b; Qazalbash 
et al., 2018; Timmermans et al., 2011; Van Impe et al., 2018; 
Vervoort et al., 2011), but to the best of our knowledge no 
report gives a comprehensive overview of the advantages, 
disadvantages, and technological constraints for their appli-
cation, or provide a comparison of their specific energy con-
sumption with the conventional thermal treatment.

Based on the above premises, as an input to processor 
choice, this paper will provide an overview of the most 
promising non-conventional technologies, specifying their 
mechanisms of action and critical process parameters, 
reporting the results of their application, and lastly, com-
paring their specific working energy costs.

Non‑conventional Technologies

Thermal Technologies

Microwave heating (MWH) and ohmic heating (OH) are 
processes based on temperature increasing into the product 
to which they are applied, but not related to conventional 
heat transmission methods (conduction and convection). 
Therefore since their effect on microbial reduction, enzy-
matic deactivation, and nutrient deterioration is still related 
to heat, they can be classified as non-conventional thermal 
technologies.

Microwave Heating

Microwave heating is a sub-category of electrical treat-
ments, where electromagnetic waves are emitted by a small-
dimension magnetron and guided through space to the target. 
Microwaves are electromagnetic waves whose frequency 
varies from 300 MHz to 300 GHz. The industrial microwave 
systems typically operate at frequencies from 915 MHz to 
2.45 GHz (Datta & Davidson, 2000).

MWH is caused by the ability of the materials to absorb 
microwave energy and convert it into heat. Microwave heat-
ing of food materials mainly occurs due to dipolar and ionic 
mechanisms. The presence of moisture or water causes 
dielectric heating due to the dipolar nature of water. There 
are many factors affecting microwave heating and its heat 
distribution, but the most important of them are the dielec-
tric properties and penetration depth (Chandrasekaran et al., 
2013).

MWH is a promising way for juice stabilization because 
of some advantages, like the reduced processing time, a good 
process control, and space savings (Salazar-González et al., 
2014). Destruction of microbes or enzymes by microwave 

or radio frequency waves at sublethal temperatures was 
explained by one or more of the following theories: selec-
tive heating, electroporation, cell membrane rupture, and 
magnetic field coupling.

The selective heating theory suggests that the microor-
ganisms are selectively heated due to microwaves and reach 
a temperature higher than that of the surrounding fluid. This 
causes the microorganisms to be destroyed more quickly. 
According to the electroporation theory, the electrical poten-
tial across the cell membrane causes pores, which results 
in the leakage of cellular materials. In the cell membrane 
rupture theory, the cell membrane is ruptured due to the 
voltage applied across the cell membrane. According to the 
magnetic field coupling theory, the internal components of 
the cell are disrupted due to the coupling of electromag-
netic energy with critical molecules such as protein or DNA 
(Kozempel et al., 1998). Although various theories sug-
gest the non-thermal effect of microwaves, it was further 
observed that in the absence of other stresses such as pH or 
heat, microwave energy did not inactivate microorganisms 
(Chandrasekaran et al., 2013).

MWH treatments are nowadays applied by some food 
industries and were found to save some costs and time 
compared to indirect heating methods. Also, food quality is 
maximized and better retained using electromagnetic energy 
rather than conventional heating. Microwave heating pro-
cesses used on fruit and vegetable juices can achieve high 
processing temperatures in shorter times; therefore, more 
nutritional and sensory properties are conserved.

Ohmic Heating

Ohmic heating (OH) applied to food products involves 
the passage of high-frequency alternating electric current 
through them, generating internal heat as a result of electri-
cal resistance — Joule effect — of the food matrix (Valero 
et al., 2010).

As outlined in Fig. 1, in the typical industrial design for 
liquid food OH treatment involves the application of a high 
electrical potential (typically around 5000 V) between the 
two flanges at the extremities of each module, using the food 
product flowing through as a resistor. The high-frequency 
electrical current (typically between 20 and 30 kHz) there-
fore passes through the food, increasing its temperature fast 
and uniformly thanks to the Joule effect, thus bypassing con-
ventional heat transfer mechanisms such as conduction and 
convection.

The heating rate is directly proportional to the square of 
the electric field strength, and the electrical conductivity of 
the product (Jiménez-Sánchez et al., 2017a).

For this reason, the efficiency of the application of OH for 
the stabilization of liquid foods strongly depends on the con-
ductivity of the product to be treated. Typical conductivity 
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value of fruit and vegetable juices is between 0.2 and 1 S/m 
at 20 °C with lower value for raw water and honey sugar and 
higher values for meat products and seafood (Zhang, 2007).

The ohmic heating technology has many benefits: for 
example, compared to the conventional heating, it reduces 
the problems of surface fouling, or over heating of the prod-
uct, it has low maintenance costs and high energy conversion 
efficiencies (Pereira & Vincente, 2010), and retain higher 
nutritional value of food product (Debbarma et al., 2021), 
but the different electrode materials during OH at different 
electrical frequencies have an influence on protein structural 
aspects (Ferreira et al., 2021).

OH is very effective in fruit and vegetable juices that 
contain water and ionic salts in abundance (Miller & Silva, 
2012). In these kinds of products OH provides uniform 
and rapid heating, resulting very efficacious for microbial 
reduction and enzyme inactivation, with a beneficial effect 
on the nutritional and organoleptic properties of processed 
products (Mercali et al., 2015). Additionally, compared to 
conventional thermal technologies, OH offers better energy 
efficiency, lower capital cost, and shorter treatment time. 
In addition, it results to be an environmentally friendly 
process, since around 97% of electrical energy provided is 
converted into heat (Lee et al., 2015). Figure 2 provides a 
typical example of liquid food product heating curves on a 
temperature over time chart, showing the faster temperature 

rising with OH in comparison with conventional indirect 
heating technologies.

Non‑thermal Technologies

The technologies that will be described in this section are 
defined as non-thermal because their effect of microbial 
reduction is not due to the increase of temperature, in con-
trast to the technologies seen so far, but is a result of differ-
ent action mechanisms, specific for each technology.

Fig. 1  OH application mechanism scheme

Fig. 2  Example of temperature rising curves for product under con-
ventional thermal and OH
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Pulsed Electric Fields

Pulsed electric field (PEF) is one of the most extensively 
studied non-thermal technologies that had been applied to 
fruit and vegetable juices for microorganism inactivation as 
well as for maintaining organoleptic and nutritional qualities 
similar to those of fresh juice.

This treatment involves the application of high-intensity 
electric field (typically between 10 and 40 kV/cm), in form 
of very short pulses (usually 5–30 μs), to a product placed 
between two electrodes. The application of PEF pulses 
induces microscopic pores — called electropores — in the 
microbiological membranes, resulting in an increase in their 
permeability. The plasma membranes of cells become hence 
permeable to small molecules, ions, and water, which will be 
able to pass from one side of the membrane to the other. This 
phenomenon is called electroporation and induces swelling 
and the rupture of the cell membrane leading to cell death 
(Jiménez-Sánchez et al., 2017a).

Although a temperature might rise due to the electric cur-
rent flowing through the liquid food (as it happens during 
ohmic heating), PEF is intended to be a non-thermal tech-
nique (Jiménez-Sánchez et al., 2017a).

In addition, even if the application of PEF at relatively 
lower temperatures to inactivate pathogens and food spoilage 
bacteria, as well as enzymes, has already been described in the 
literature, a better understanding and accurate prediction of 
inactivation levels are necessary to achieve enzymatically sta-
ble products without overprocessing (Bevilacqua et al., 2018).

High‑Pressure Processing

High-pressure processing (HPP) refers to the applica-
tion of hydrostatic pressure in the range from 100 to over 
900 MPa on pre-packaged food. During this process, the 

pressurization is applied isostatically, i.e., equally in all for 
the duration of the treatment and then released (Jiménez-
Sánchez et al., 2017a).

High pressure causes unfolding of proteins or enzymes, 
as well as considerable damage to the genetic material of 
microorganisms, due to phase transition fluidity change of 
the cell membrane, an intracellular pH change, and break-
down of ribosomes, ultimately resulting in injury and death 
of vegetative microorganisms (Qazalbash et al., 2018). On 
the other hand, this technology exerts limited effects on 
small molecules such as volatile compounds, pigments, vita-
mins, and antioxidant compounds (Stefanini et al., 2021), 
owing to its limited impacts on the covalent bonds and its 
low processing temperature (Chen et al., 2015). This led 
to the commercial adoption of this treatment for increasing 
the shelf life of juices and for manufacturing of high-quality 
products.

Figure 3 shows a schematic example of HPP technology 
application: HPP is typically applied as a batch process in 
which pre-packed products are loaded into the pressure ves-
sel. As soon as they are loaded and closed, the vessel is 
filled with pressure-transmitting fluid, by using a pressure-
generating mean. A pressure medium, water in most cur-
rent HPP equipment (Rastogi, 2013), is pumped isostatically 
from its tank into the pressure vessel and once the desired 
pressure is reached, the pump is stopped by closing the inlet 
valves (Elamin et al., 2015). The desired pressure can be 
maintained with no more energy needed to hold it (Huang 
et al., 2014). After holding the product for the required time, 
the pressure is released from the vessel by freeing out the 
pressure-transmitting fluid to return to its initial tank reser-
voir (Farkas & Hoover, 2000).

It is also important to notice that although HHP is intended 
to be a cold (totally non-thermal) technology, an inherent 
mild increase in pressurized water temperature does occur. 

Fig. 3  Example scheme of HPP 
process application
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The temperature increasing during compression is reported 
to be approximately 3 °C every 100 MPa (Timmermans et al., 
2011).

Pressure Change Technology

Pressure change technology (PCT) is an emerging process 
which has been recently proposed as an innovative approach 
for the non-thermal inactivation of microorganisms and sta-
bilization of liquid foods (Aschoff et al., 2016).

A schematic representation of PCT process application 
is provided in Fig. 4. When pressure change technology 
(PCT) is applied, the liquid product is pressurized with a 
high-pressure pump at a maximum pressure of 50 MPa and 
subsequently mixed with an inert gas (such as nitrogen, 
helium, or argon) at a slightly higher pressure (approxi-
mately 1 MPa) using an inline static mixer. During the sub-
sequent holding time, the inert gas dissolves and diffuses 
in the liquid medium in high amounts, penetrating into 
intracellular microbial liquids until reaching saturation. 
After the retention time, the pressurized product saturated 

with gas is quickly released to atmospheric pressure by a 
relief valve.

This flash decompression causes a sudden outgassing of 
the inert gas, which damages all the microbial cell structures 
into which it has penetrated but minimizes the impact on 
enzyme activity and nutritional compounds. Thus, in con-
trast to static technologies such as high-pressure processing, 
the lethal effect of PCT is achieved at the dynamic decom-
pression step instead of during the retention time (Aschoff 
et al., 2016). Therefore, the stabilization mechanism of PCT 
can be called dynamic decompression.

Ultraviolet Light Radiation

Among the non-thermal technologies developed in the last 
few decades, ultraviolet light (UVL) processing is one of 
the most promising because it is easy to use, lethal to most 
microorganisms, and it is a cold process that can be effective 
at low cost in comparison with other preservation methods 
(Gayán et al., 2012). A schematic example of industrial UVL 
technology application is provided in Fig. 5.

The wavelength range for UVL for food processing 
varies from 100 to 400 nm and is categorized as UV-A 
(320–400 nm), UV-B (280–320), and UV-C (200–280 nm). 
UV-C radiation, especially the wavelength of 254 nm, is 
considered the germicidal region in which the main bacte-
ricidal effect occurs (Gayán et al., 2012).

The inactivation of microorganisms starts with the 
microorganism’s DNA absorbing UV radiation, and then 
cross-linked pyrimidine nucleoside bases are formed caus-
ing a mutation in the DNA, mainly thymine dimmers. The 
structural damage caused by the formation of these dimmers 
inhibits the formation of new DNA, resulting in the inactiva-
tion of the affected microorganism. This reaction has been 
called the photochemical effect (Gómez-López et al., 2012).

Fig. 4  Example scheme of continuous PCT process flow diagram

Fig. 5  Example scheme of UVL 
process flow diagram
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Pulsed Light Radiation

Recently, pulsed light (PL) has been intensely investigated 
as an alternative to thermal treatments for killing pathogenic 
and spoilage microorganisms (Maftei et al., 2014). It is based 
on application of very short intense flashes of light. The 
equipment used consists of a high-energy electrical energy 
capacitor that discharges pulses of electrical energy to flash 
lamps which produce flashes of broad-spectrum light. The 
spectrum of emitted light is in the range of 200–1100 nm. 
The emitted flashes are very intense but have an extremely 
short duration (0.2–0.4 ms).

In addition to the photochemical effect previously men-
tioned for the UVL technology, exposure to PL also causes 
a membrane disruption as a result of a momentous over-
heating. This phenomenon is attributed to a difference in 
UV light absorption between the microorganism and its sur-
rounding environment, called photothermal effect. Besides, 
structural damage in microbial cells like cytoplasmic mem-
brane shrinkage was also reported, called photophysical 
effect (Ferrario et al., 2014).

Also in this case, the outline for PL treatment application 
has been provided in Fig. 6.

Supercritical Carbon Dioxide

Among the non-thermal process for liquid foods such as 
fresh juices, there is also a method called dense phase carbon 
dioxide (DPCD) or supercritical carbon dioxide (SC-CO2) 
that is able to inactivate microorganisms and enzymes using 
 CO2 in the supercritical state (Deng et al., 2020). Foods are 
subject to sub-critical or supercritical (i.e., pressurized)  CO2 
at low temperature (20–50 °C) under moderate pressure 
(below 50 MPa) for 5–30 min (Ferrentino & Spilimbergo, 
2011).  CO2 has many advantages: it is inert to oxidation 

reactions, non-flammable, non-corrosive, non-toxic, safe 
solvent, and has low critical temperature, which allows the 
development of non-thermal process, therefore minimizing 
the influence on sensorial and nutritional characteristics of 
foods (Silva et al., 2020).

The equipment for SC-CO2 processing of liquid foods is 
specific to each application and the process may be operated 
in batch, semicontinuous, or pseudo-continuous and continu-
ous operating mode (Perrut, 2012).

This technology has been investigated over the past 
50 years: its effects on various microorganisms including 
pathogens, spoilage bacteria, yeasts and molds, and differ-
ent enzymes have been demonstrated (Fleury et al., 2018). 
Several studies have been performed on the efficiency of 
SC-CO2 processing in the preservation of juices, such as 
mango (Tang et al., 2021), tomato (Zhao et al., 2019), orange 
(Niu et al., 2019), apple (Gasperi et al., 2009), guava (Plaza 
et al., 2015), and melon (Pei et al., 2018). Few studies evalu-
ated the shelf life of natural juices processed by SC-CO2 
technology, regarding microbial quality and other param-
eters (Torabian et al., 2018; Zou et al., 2016). Moreover, 
the literature regarding the effects of SC-CO2 technology on 
the sensory properties as well as the acceptance of the non-
thermally processed juices by the consumers is still scarce 
(Silva et al., 2020). This type of process, although known to 
the applied research sector, still finds little attention in the 
food industry today.

High‑Intensity Ultrasound

High-intensity ultrasound (HIUS) refers to ultrasound 
operating at frequency higher than 20 kHz: this technology 
gained success in the field of food disinfection (Afari et al., 
2016). To get the ultrasound, an electric current alternating 
is applied to a piezoelectric material fixed to the wall of a 

Fig. 6  Example scheme of PL 
process flow diagram
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container. A sonicator consists of an electricity generator, 
a converter to transform electrical energy into mechanical 
energy, and probes that amplify the produced vibration.

The mechanism of operation of the sonication is based on 
the phenomenon of cavitation, with the formation of small 
bubbles in the liquid medium that quickly alternates com-
pression and expansion and cause violent collapse. Shock 
waves with high energy densities can radiate from collaps-
ing bubbles that are strong enough to shear and break cell 
walls and membrane structures, as well as depolymerize 
large molecules (Deng et al., 2020). Therefore, this process 
is able to guarantee a bactericide effect (Gómez et al., 2011). 
Moreover, hydroxyl radicals can be formed due to the rise 
of temperature at a localized position inside a collapsing 
bubble: they can react with the DNA chain and break the 
double-strand microbial DNA (Bilek & Turantaş, 2013).

However, even if HIUS is generally considered safe, 
non-toxic, and environmentally friendly (Deng et al., 2020), 
information on its commercial application is scarce and 
more efforts are needed to develop large-scale inexpensive 
equipment for their application in the food industry.

Fruit and Vegetable Juice Stabilization 
Effectiveness

Although the effectiveness of heat treatments is well known 
and does not change significantly depending on the technol-
ogy used to apply the heat (conventional or non-conven-
tional), the results of non-thermal technologies are often 
uncertain and may differ depending on the variation in pro-
cess parameters.

In Table 1, what we consider to be the most representative 
data found in the scientific literature regarding the effec-
tiveness of the main non-thermal technologies has been 
summarized, in terms of the three key aspects of microbial 
reduction, enzymatic inactivation, and nutrient-compound 
retention for each standpoint. The results obtained and the 
process conditions applied have been reported.

Technological Constraints

Following the description and the effects of the various sta-
bilization technologies reported in the previous sections of 
this work, it is possible to summarize a list of the princi-
pal critical process parameters (CPP), advantages (PROS), 
and disadvantages (CONS) associated with each of these 
processes.

In Table 2, an overview of the above aspects is provided 
for each technology, reporting also the data source.

Working Energy Cost Comparison

Starting from the technical features, the process flow dia-
grams, and the operating mechanism of the technologies 
taken into account in this paper, the energy consumption 
per mass unit of treated product has been estimated in 
order to perform a comparison of the specific energy cost 
required by each of them. For this comparison, also an 
estimation for the conventional indirect thermal treatment 
(CITT) has been considered.

The estimation of the specific working energy consump-
tion for each technology has been carried out starting from 
the method reported by Rodriguez-Gonzalez et al. (2015), 
with the following further assumptions:

• The components of working costs considered are those 
for product stabilization treatment (i.e., energy for heat-
ing and pumping), other service fluid pumping, heat 
dissipation (i.e., for equipment cooling), and for prod-
uct cooling.

• The evaluation of energy consumption per unit mass of 
juice processed has been carried on a system boundary 
going from inlet untreated product to outlet stabilized 
product, considering both with the same temperature 
value equal to 20 °C.

• In the cases of thermal treatments, the use of a process 
temperature not exceeding 68 °C were assumed.

This latter condition was assumed in order to make the 
comparison between different technologies as fair as pos-
sible. In fact, thermal processes reaching temperatures 
higher than the herein imposed are able to reach levels of 
product stability, i.e., shelf life, often inaccessible with 
non-thermal technologies, which would nevertheless 
penalize them from an energy point of view.

Approximately 5-log reduction of Escherichia coli in 
apple-derived products was taken into consideration as tar-
get for all the stabilization technologies under consideration. 
The treatment conditions to achieve such E. coli inactivation 
levels and, therefore, utilized for specific energy cost estima-
tion for the different technologies are the following:

CITT/OH/MWH:A treatment at 68 °C for 15 s has been 
considered, since more than 5-log reduction of non-
adapted and acid-adapted E. coli O157:H7 was obtained 
at 68.1 °C for 14 s in apple cider at pH 4.1 and 11 °Brix 
(Mak et al., 2001).
HPP:A treatment at 600 MPa for 2 min has been consid-
ered, since for high-pressure treatment, literature reports 
1–5 min at 350–600 MPa to inactivate E. coli in apple 
juice (Daher et al., 2017). Also, 3 min for pressure fluid 
to come up to the desired pressure was estimated.
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PEF:A treatment with monopolar pulses of 2-μs duration 
at electric field strength of 23 kV/cm has been considered. 
In addition, it was estimated a preheating of the product 
to 44 °C and a post PEF treatment temperature of 56 °C 
at a repetition rate of 90 Hz and a flow rate of 130 L/h. 
Also energy for product preheating and cooling have been 
taken into account.
UVL/PL:For both technologies, a treatment module made 
of 24 lamps with 65-W output power each has been con-
sidered. In this study, pilot modules with a flow rate of 
approximately 20 L/min were chosen. Such parameters 
are able to achieve the desired bacterial inactivation in 
clear apple cider according to industries.
PCT:Since no data on E. coli inactivation in apple juice 
have been found in scientific literature, the energy cost 
estimation in this case has been done starting from the 
process parameters described by Aschoff et al. (2016), 
i.e., product pressure of 50 MPa, Tmax < 40 °C, and 1.3-
min holding time.

As far as the SC-CO2 and HIUS treatments are concerned, 
the literature is scarce and the data available for microbial inac-
tivation are very low in comparison to the other technologies: 
for example, only 1.3 log reduction of E. coli was reached in 
orange juice treated with HIUS (42 kHz, 60 min) (Kernou 
et al., 2021). Therefore, since the established target of 5-log 
reduction of E. coli in apple-derived products is not achieved, 
these two treatments cannot be considered in this evaluation.

For thermal treatments, i.e., CITT, OH, and MW, the 
most commonly used equation is the one related to heat 
content which considers a physical property (specific heat 
capacity or Cp) to estimate the energy required to change the 
temperature of a material. This equation is utilized in food 
materials as well as equipment materials and is an indicator 
of heat transfer by conduction (Singh & Heldman, 2001; 
Toledo, 2007):

where Eh is the specific energy for heating, Cp is the specific 
heat capacity, m is the mass to be heated, ∆T is the tempera-
ture differential, and η is the system efficiency.

This equation can be used for a valid prediction of heating 
costs also for non-conventional thermal technologies, i.e., 
OH and MWH. In this study, the efficiency values of 90%, 
97%, and 85%, respectively, for CITT, OH, and MW have 
been considered. The same equation has been referred to 
also for cooling energy cost estimation.

In addition, for the non-conventional thermal technologies, 
in which the product is heated without direct contact with hot 
surfaces, the electric energy not converted in food heating need 
to be dissipated. For this reason, an additional energy cost for 
electric equipment’s cooling system (Ed) has been considered:

Eh = (Cp × m × ΔT) × �
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The basic equation used for estimating the energy required 
to pump fluids through pipes is the following:

where Ep is the specific energy for pumping, V ̇ is the volu-
metric flow rate, and η is the pump efficiency.

The total amount of working energy consumption for ther-
mal treatments has therefore been calculated by summing the 
three contributes above described:

In the case of 65% of heat recovery, the energy savings are 
considerable in terms of both product warming and cooling, 
as well as heat dissipation.

The internal energy requirement for HPP can be estimated 
basing on process control metrics using the pressure head 
component of pump power calculation equations (Rodriguez-
Gonzalez et al., 2015):

where Es is the specific energy, P is the pressure, and ρ is the 
density. The same equation has been utilized also for PCT 
running cost estimations, being the fluids (product and inert 
gas) pumping the only energy requiring contribute.

A measure of the specific energy input for PEF process 
can be estimated using the following equation (in a thermo-
dynamic system is enthalpy, and its change as a function of 
temperature is also applicable to PEF (Heinz et al., 2003):

where Es is the specific energy for heating and E, k(T), f, and 
ṁ denotes the electric field strength, the media conductiv-
ity, the repetition rate, and the mass flow rate, respectively 
(Toepfl et al., 2007).

Ed =
(

Cp × m × ΔT
)

× (1 − �)

Ep = (P × V) × �

Etot = Eh + Ed + Ep

Es =
(

Pf − Pi

)

∕�

Es = f
1

ṁ∫
∞

0

k(T)E(t)2dt

For both UVL and PL processes, lastly, the total applied 
UV energy for treatment of a liter of liquid product in a 
continuous-flow unit can be calculated using the following 
equation, as UV output power of the n number of the UV 
sources divided by volumetric flow rate (V̇) of the treated 
fluid (Keyser et al., 2008) in (J/L).

where Es is the specific energy for heating, PUV is the output 
power, LN is the number of lamps, and V ̇ is the is the volu-
metric flow rate. The results have than been divided by the 
estimated product density ρ in order to evaluate the specific 
energy per kg.

Any eventual data missing or to be integrated have been 
obtained from the scientific papers by Gómez-López et al. 
(2012), Cacace et al. (2020), and Vollmer et al. (2020). In 
addition, information from the literature has been cross-
checked with experts from leading companies in the field 
of fruit and vegetable juice processing technology, such as 
CFT (Catelli Food Technology) and Elea Vertriebs- und 
Vermarktungsgesellschaft mbH.

All the results of the estimates have been expressed in kJ 
over kg of treated product. Both cases of no heat recovery 
and 65% of heat recovery have been reported in Tables 3 and 
4, as well as in the subsequent Figs. 7 and 8. The specific 
working energy costs resulted very high for the microwave 
heating, followed by the conventional indirect thermal treat-
ment, the ohmic heating, the high-pressure processing, and 
pulsed electric fields. On the other hand, it resulted very 
low for ultraviolet light radiation, pulsed light radiation, 
and pressure change technology. However, considering the 
65% of heat recovery, the estimated results change: HPP is 
characterized by the highest specific working energy costs, 
followed by MHW, OH, CITT, and PEF, while UVL, PL, 
and PCT continue to result as the lowest ones.

In the second graph, the specific energy consumption 
estimated for the thermal technologies and those technolo-
gies that involve a product pre-heating such as PEF are much 

Es =
(

PUV × LN
)

∕V

Table 3  Specific working energy cost estimations for thermal and non-thermal technologies with no heat recovery

Technology Treatment (heating / pressurizing  
+ pumping) (kJ/kg)

Product cooling 
(kJ/kg)

Heat dissipation 
(kJ/kg)

Total (kJ/kg)

Conventional indirect thermal treatment 
(CITT)

211.39 186.15 0 397.54

Ohmic heating (OH) 193.41 171.96 5.80 371.16
Microwave heating (MHW) 217.68 196.23 32.65 446.57
High-pressure processing (HPP) 339.94 0 0 339.94
Pulsed electric fields (PEF) 161.81 140.0 0 301.81
Ultraviolet light radiation (UVL) 26.24 0 0 26.24
Pulsed light radiation (PL) 25.15 0 0 25.15
Pressure change technology (PCT) 26.28 0 0 26.28
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Table 4  Specific working energy cost estimations for thermal and non-thermal technologies with 65% of heat recovery

Technology Treatment (heating / pressurizing  
+ pumping) (kJ/kg)

Product cooling 
(kJ/kg)

Heat dissipation 
(kJ/kg)

Total (kJ/kg)

Conventional indirect thermal treatment 
(CITT)

94.23 68.44 0 162.66

Ohmic heating (OH) 114.09 76.65 3.42 194.16
Microwave heating (MHW) 124.91 87.47 18.74 231.12
High-pressure processing (HPP) 339.94 0 0 339.94
Pulsed electric fields (PEF) 78.55 51.0 0 129.55
Ultraviolet light radiation (UVL) 26.24 0 0 26.24
Pulsed light radiation (PL) 25.15 0 0 25.15
Pressure change technology (PCT) 26.28 0 0 26.28

Fig. 7  Working energy cost 
comparison with no heat 
recovery

Fig. 8  Working energy cost 
comparison with 65% of heat 
recovery
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lower than in the second, since the energy recovery system 
allows energy saving of around 36% on the total process. 
This comparison was made by fully including the energy for 
product cooling, but cheaper alternatives (in terms of energy) 
could also be considered such as well cooling-towers to be 
recovered somewhere else in the process.

Furthermore, for OH and MWH technologies, the heat 
recovery system allows a lower overheating of the electrodes 
and magnetrons since the thermal increase that must be pro-
vided to the product would be lower. This therefore reduces 
heat dissipation and thus the energy costs for cooling the 
equipment.

Even the PEF technology, although not thermal, involves, 
as previously mentioned, a temperature increases of the 
product and therefore gains benefits in terms of energy con-
sumptions from the heat recovery system.

Completely non-thermal processes such as HPP, UVL, 
and PCT, as can be seen, do not involve any energy costs 
for product and equipment cooling, so their specific energy 
consumption is still constant in both graphs. In contrast, for 
the PL technology, a minimal energy cost for the lamps cool-
ing should always be taken into account. The high-energy 
requirements of HPP technology are due to the achievement 
of the high pressures for product treatment; therefore, no 
benefits in terms of energy consumptions could come from 
a heat recovery system.

Conclusions

This work provides an overview of some of the existing 
alternatives to conventional thermal treatments, currently 
utilized to achieve the safety and improved quality of fruit 
and vegetable juices. Thermal treatments are still the most 
commonly used methods and the only ones capable of effec-
tively inactivating spores and enzymes for the production of 
low-acid shelf stable products. Non-conventional thermal 
treatments such as OH and MWH are gaining great success 
among the producers, since they allow to reach very quickly 
the high temperatures for stabilization processes, leading in 
many cases to a better retention of the nutritional and sen-
sory properties of products.

Non-thermal approaches seem to offer the most effective 
alternative in terms of nutrients and fresh-like characteris-
tics preservation as well as working energy costs saving, 
but they also have many limits. In fact, targeting pathogen 
microorganism only, they are often able to obtain exclu-
sively the sanitary treatment, with variable effects on spoil-
age microorganisms and enzymes, leading to final products 
requiring refrigerated storage. In addition, some non-thermal  
approaches, such as PEF, HPP, and UVL, are currently 
used for industrial applications, while others, like PCT, PL, 

HIUS, and SC-CO2, are still at pilot-scale level and their 
scale-up represents a challenge.

Therefore, it is fundamental for each producer aiming 
to choose the best technology for achieving or improving 
the desired final product or production process, to take into 
consideration, compare, and possibly to further investigate 
all the various critical parameters and technical aspects pre-
sented in this overview.
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