Skip to main content
Log in

Microbial Polymers in Edible Films and Coatings of Garden Berry and Grape: Current and Prospective Use

  • Review
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Garden berries and grapes constitute an integral part of a healthy and functional diet. Reduction of post-harvest losses can maximize the shelf life of berry fruits, increasing their market value and promoting consumption. Among current storage techniques, the use of edible films is an emerging strategy for packaging and protecting the surface of small fruits. They provide the necessary barrier for berries against adverse external biotic or abiotic factors while supporting the necessary physiological processes such as moisture and gas exchange. Carbohydrate polymers are an important component of edible films. The desired mechanical strength as well as barrier properties are achieved by combining carbohydrate polymers with other bio-based compounds, such as lipids, proteins, and functional additives. Unlike plant polysaccharides, the studies and use of microbial extracellular polysaccharides (EPSs) remain scarce, especially for films and coatings of garden berries and grapes. This review summarizes the available data for currently used (xanthan, pullulan, gellan, dextran, bacterial cellulose) and prospective microbial EPSs (levan, curdlan, kefiran, bacterial alginate). Directions in future research to achieve more widespread, cost-effective, environmentally friendly production and applications of edible microbial EPS films are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Barcelos et al. (2019)

Similar content being viewed by others

Availability of Data and Material

The datasets used and/or analyzed during the current study are available from the first author on reasonable request and/or are freely accessible via the Internet.

References

  • Abdallah, M. R., Mohamed, M. A., Mohamed, H., & Emara, T. M. (2018). Application of alginate and gelatin-based edible coating materials as alternatives to traditional coating for improving the quality of pastirma. Food Science and Biotechnology., 27, 1589–1597. https://doi.org/10.1007/s10068-018-0393-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aguirre-Joya, J., De Leon-Zapata, M. A., Alvarez-Perez, O. B., Torres-León, C., Nieto-Oropeza, D. E., Ventura-Sobrevila, J. M., et al. (2018). Basic and applied concepts of edible packaging for foods. In: A.M.Grumezesku & A.M.Holban (Eds.), Food packaging and preservation (pp. 1–61). Elsevier. https://doi.org/10.1016/B978-0-12-811516-9.00001-4

  • Ahmad, M., Nirmal, N. P., & Chuprom, J. (2015). Blend film based on fish gelatine/curdlan for packaging applications: spectral, microstructural and thermal characteristics. RSC Advances, 5(120), 99044–99057. https://doi.org/10.1039/C5RA20925K

  • Ahmad, N. H., Mustafa, S., & Che Man, Y. B. (2014). Microbial polysaccharides and their modification approaches: a review. International Journal of Food Properties, 18(2), 332–347. https://doi.org/10.1080/10942912.2012.693561

    Article  CAS  Google Scholar 

  • Angelina, & Vijayendra, S. V. N. (2015). Microbial biopolymers: the exopolysaccharides. In: V. Kalia (Ed.), Microbial factories (pp. 113–125). New Delhi: Springer.

  • Alizadeh-Sani, M., Ehsani, A., Moghaddas, K. E., & Khezerlou, A. (2019). Microbial gums: introducing a novel functional component of edible coatings and packaging. Applied Microbiology and Biotechnology, 103(17), 6853–6866. https://doi.org/10.1007/s00253-019-09966-x

  • Arancon, R. A. D., Lin, C. S. K., Chan, K. M., Kwan, T. H., & Luque, R. (2013). Advances on waste valorization: new horizons for a more sustainable society. Energy Science & Engineering, 1(2), 53–71. https://doi.org/10.1002/ese3.9

  • Avramescu, S. M., Butean, C., Popa, C. V., Ortan, A., Moraru, I., & Temocico, G. (2020). Edible and functionalized films/coatings—performances and perspectives. Coatings, 10(7), 687. https://doi.org/10.1080/10942912.2012.693561

    Article  CAS  Google Scholar 

  • Azeredo, M. C., Barud, H., Farinas, C. S., Vasconcellos, V. M., & Claro, A. M. (2019). Bacterial cellulose as a raw material for food and food packaging applications. Frontiers in Sustainable Food Systems, 3, 7. https://doi.org/10.3389/fsufs.2019.00007

  • Baicu, A. A., & Popa, M. E. (2018). Trends in prolonging the post-harwest life of strawberries – a review. Food Technology, 42(1), 9–16.

    CAS  Google Scholar 

  • Banks, N. H., Dadzie, B. K., & Cleland, D. J. (1993). Reducing gas exchange of fruits with surface coatings. Postharvest Biology and Technology, 3(3), 269–284.

    Article  CAS  Google Scholar 

  • Barcelos, M. C. S., Vespermann, K. A. C., Pelissari, F. M. & Molina, G. (2019). Current status of biotechnological production and applications of microbial exopolysaccharides. Critical Reviews in Food Science and Nutrition, 60(9), 1475– 1495. https://doi.org/10.1080/10408398.2019.1575791

  • Barone, J. R., & Medynets, M. (2007). Thermally processed levan polymers. Carbohydrate Polymers, 69(3), 554–561. https://doi.org/10.1016/j.carbpol.2007.01.017

    Article  CAS  Google Scholar 

  • Baraiya, N. S., Ramana, R. T. V., & Thakkar, V. R. (2016). composite coating as a carrier of antioxidants improves the postharvest shelf life and quality of table grapes (Vitis vinifera l. var. Thompson seedless). Journal of Agricultural Science and Technology, 18(1), 93–107.

  • Becker, A. (2015). Challenges and perspectives in combinatorial assembly of novel exopolysaccharide biosynthesis pathways. Frontiers in Microbiology, 6, 687. https://doi.org/10.3389/fmicb.2015.00687

  • Bostan, M. S., Mutlu, E. C., Kazak, H., Keskin, S., Öner, E. T., & Eroglu, M. S. (2014). Comprehensive characterization of chitosan/PEO/levan ternary blend films. Carbohydrate Polymers, 102, 993–1000. https://doi.org/10.1016/j.carbpol.2013.09.096

  • Cazon, P., Velazquez, G., Ramirez, J. A., & Vazquez, M. (2017). Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocolloids, 68, 136–148. https://doi.org/10.1016/j.foodhyd.2016.09.009

  • Chen, X., Gao, H., & Ploehn, H. J. (2014). Montmorillonite-levan nanocomposites with improved thermal and mechanical properties. Carbohydrate Polymers, 101, 565–573. https://doi.org/10.1016/j.carbpol.2013.09.073

    Article  CAS  PubMed  Google Scholar 

  • Combie, J., & Öner, E. T. (2018). From healing wounds to resorbable electronics, levan can fill bioadhesive roles in scores of markets. Bioinspiration & Biomimetics, 14, 011001. https://doi.org/10.1088/11748-319

    Article  Google Scholar 

  • Crater, J. S., & Lievense, J. C. (2018). Scale-up of industrial microbial processes. FEMS microbiology letters, 365(13), fny138. https://doi.org/10.1093/femsle/fny138

  • Davidović, S., Miljković, M., Tomić, M., Gordić, M., Nešić, A., & Dimitrijević, S. (2018). Response surface methodology for optimisation of edible coatings based on dextran from Leuconostoc mesenteroides T3. Carbohydrate Polymers, 184, 207–213. https://doi.org/10.1016/j.carbpol.2017.12.061

    Article  CAS  PubMed  Google Scholar 

  • De Souza, E. L., Lundgren, G. A., Oliveira, K. Á. R., Berger, L. R. R., & Magnani, M. (2019). An analysis of the published literature on the effects of edible coatings formed by polysaccharides and essential oils on postharvest microbial control and overall quality of fruit. Comprehensive Reviews in Food Science and Food Safety, 18(6), 1947–1967. https://doi.org/10.1111/1541-4337.12498

  • Devi, G. K., & Alamu, A. (2013). Production of biopolymer levan by Bacillus subtilis using non-ionic surfactants. Asian Journal of Pharmacy and Technology, 3(4), 149–154.

    Google Scholar 

  • Dhaka, R., & Upadhyay, A. (2018). Edible films and coatings: a brief overview. The Pharma Innovation, 7(7), 331–333.

    Google Scholar 

  • Diab, T., Biliaderis, C. G., Gerasopoulos, D., & Sfakiotakis, E. (2001). Physicochemical properties and application of pullulan edible films and coatings in fruit preservation. The Journal of the Science of Food and Agriculture, 81(10), 988–1000. https://doi.org/10.1002/jsfa.883

  • El-Badawy, H. E. M., Baiea, M. H. M., Eman, A. A., & El-Moneim, A. (2012). Efficacy of propolis and wax coatings in improving fruit quality of ‘Washington’ navel orange under cold storage. Research Journal of Agriculture and Biological Sciences, 8(5), 420–428.

    CAS  Google Scholar 

  • El-Ramady, H. R., Domokos-Szabolcsy, E., Abdalla, N. A., Taha, H. S. & Fári, M. (2015). Postharvest management of fruits and vegetables storage, In: E. Lichtfouse (Eds.), Sustainable Agriculture Reviews Volume 15 (pp. 65–152). Springer. https://doi.org/10.1007/978-3-319-09132-7_2

  • Eroglu, E., Torun, M., Dincer, C., & Topuz, A. (2014). Influence of pullulan-based edible coating on some quality properties of strawberry during cold storage. Packaging Technology and Science, 27(10), 831–838. https://doi.org/10.1002/pts.2077

  • Fereydoon, M., & Ebnesajjad, S. (2013). Development of high barrier films for food packaging. In S. Ebnesajjad (Ed.), Plastic films in food packaging (pp. 671–692). Elsevier.

    Google Scholar 

  • Gahlawat, G., & Srivastava, A. K. (2017). Model-based nutrient feeding strategies for the increased production of polyhydroxybutyrate (PHB) by Alcaligenes latus. Applied Biochemistry and Biotechnology, 183(2), 530–542. https://doi.org/10.1007/s12010-017-2482-8

    Article  CAS  PubMed  Google Scholar 

  • Ghasemlou, M., Khodaiyan, F., Oromiehie, A., & Yarmand, M. S. (2011). Development and characterisation of a new biodegradable edible film made from kefiran, an exopolysaccharide obtained from kefir grains. Food Chemistry, 127(4), 1496–1502.

    Article  CAS  Google Scholar 

  • Galgano, F., Condelli, N., Favati, F., Di Bianco V., Perretti G., & Caruso M. C. (2015). Biodegradable packaging and edible coating for fresh-cut fruits and vegetables. Italian Journal of Food Science, 27, 1–20. https://doi.org/10.14674/1120-1770%2Fijfs.v27i1.70

  • Galus, S., Arik, K., Emine, A., Gniewosz, M., & Krasniewska, K. (2020). Novel materials in the preparation of edible films and coatings—A review. Coatings, 10(7), 674–688. https://doi.org/10.3390/coatings10070674

  • Gaston, A., Osorio, S., Denoyes, B., & Rothan, C. (2020). Applying the Solanaceae strategies to strawberry crop improvement. Trends in Plant Science, 25(2), 130–140. https://doi.org/10.1016/j.tplants.2019.10.003

  • Giampieri, F., Tulipanim S., Alvarez-Suarez, J. M., Quiles, J. L., Mezzetti, B., & Battino, M. (2012). The strawberry: Composition, nutritional quality, and impact on human health. Nutrition, 28(1), 9–19. https://doi.org/10.1016/j.nut.2011.08.009

  • Gil-Giraldo, E. Y., Duque-Cifuentes, A. L., & Quintero-Castaño, V. D. (2018). Obtaining minimally processed strawberry (Fragaria x ananassa) products and their physicochemical, microbiological, and sensory characterization by using edible coatings. Dyna, 85, 183–191.

    Article  Google Scholar 

  • Golly, M. K., Ma, H., Sarpong, F., Dotse, B. P.,Oteng-Darko, P., & Dong,Y. (2019). Shelf-life extension of grape (Pinot noir) by xanthan gum enriched with ascorbic and citric acid during cold temperature storage. Journal of Food Science and Technology, 56(11), 4867–4878. https://doi.org/10.1007/s13197-019-03956-7

  • González Sandoval, D. C., Luna Sosa, B., Martínez-Ávila, G. C. G., Rodríguez Fuentes, H., Avendaño Abarca, V. H., & Rojas, R. (2019). Formulation and characterization of edible films based on organic mucilage from Mexican Opuntia ficus-indica. Coatings, 9(8), 506. https://doi.org/10.3390/coatings9080506

  • Guerreiro, A. C. (2015). Innovative edible coatings to improve storage of small fruits and fresh cut. Ph D Thesis, Universidade do Algarve. https://core.ac.uk/download/pdf/84111522.pdf

  • Hagenmaier, R. D. (2005). A comparison of ethane, ethylene and CO2 peel permeance for fruit with different coatings. Postharvest Biology and Technology, 37(6), 56–64. https://doi.org/10.1016/j.postharvbio.2005.02.012

  • Hannum, S. M. (2004). Potential impact of strawberries on human health: A review of the science. Critical Reviews in Food Science and Nutrition, 44(1), 1–17. https://doi.org/10.1080/10408690490263756

  • Hassan, B., Chatha, S. A. S., Hussain, A. I., Zia, K. M., & Akhtar, N. (2018). Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. International Journal of Biological Macromolecules, 109, 1095–1107. https://doi.org/10.1016/j.ijbiomac.2017.11.097

  • Hing, Y., Li, W., Wang, Q., Li, X., Xu, Q., Guo, X., Bi, X., et al. (2019). Antimicrobial nanoparticles incorporated in edible coatings and films for the preservation of fruits and vegetables. Molecules, 24(9), 1695–1725. https://doi.org/10.3390/molecules24091695

    Article  CAS  Google Scholar 

  • Huber, A. E., Kaplan, D. L., & Viney, C. (1994). Liquid crystallinity of levan/water/starch solutions. Journal of Polymers and the Environment, 2(4), 195–199. https://doi.org/10.1007/bf02067445

    Article  CAS  Google Scholar 

  • Janjarasskul, T., & Krochta, J. M. (2010). Edible packaging materials. Annual Review of Food Science and Technology, 1(1), 415–448. https://doi.org/10.1146/annurev.food.080708.100836

  • Jindal, N., & Khattar, S. (2018). Microbial polysaccharides in food industry In: A.M.Grumezesku & A.M.Holban (Eds.) Biopolymers for Food Design (pp. 95–123). Elsevier. https://doi.org/10.1016/B978-0-12-811449-0.00004-9415448

  • Kahramanoğlu, İ, Okatan, V., & Wan, C. (2020). Biochemical composition of propolis and its efficacy in maintaining postharvest storability of fresh fruits and vegetables. Journal of Food Quality, 2020, e8869624.

    Google Scholar 

  • Kambourova, M., Oner, E.T., & Poli, A. (2015). Exopolysaccharides from prokaryotic microorganisms – promising sources for white biotechnology, In: A.Pandey, R. Höfer. Ch. Larroche,M. Taherzadeh & M. Nampoothiri (Eds.), Industrial biorefineries & white biotechnology (pp. 523–554). Elsevier. https://doi.org/10.1080/10942912.2012.693561

  • Kolesovs, S., & Semjonovs, P. (2020). Production of bacterial cellulose from whey - current state and prospects. Applied Microbiology and Biotechnology, 104(18):7723–7730. https://doi.org/10.1007/s00253-020-10803-9

  • Krasniewska, K., Galus, S., & Gniewosz, M. (2020). Biopolymers-based materials containing silver nanoparticles as active packaging for food applications—a review. International Journal of Molecular Sciences, 21(3), 698.

    Article  CAS  Google Scholar 

  • Kumar, A. S., Mody, K., & Jha, B. (2007). Bacterial exopolysaccharides – a perception. Journal of Basic Microbiology, 47(2), 103–117. https://doi.org/10.1002/jobm.200610203

    Article  CAS  PubMed  Google Scholar 

  • Kumar, P., & Sethi, S. (2018). Edible coating for fresh fruit: A review. International Journal of Current Microbiology and Applied Sciences, 7(5), 2619–2626. https://doi.org/10.20546/ijcmas.2018.705.303

  • Kumar, N., & Neeraj (2019). Polysaccharide-based component and their relevance in edible film/coating: A review. Nutrition & Food Science, 49(5), 793–823. https://doi.org/10.1108/nfs-10-2018-0294

  • Kwon, K. Y., Lee, J. S., Ko, G. J., Sunwoo, S. H., Lee, S., Jo, Y. J., et al. (2018). Biosafe, eco-friendly levan polysaccharide toward transient electronics. Small, 32, e1801332. https://doi.org/10.1002/smll.201801332.

  • Lacroix, M. L., & Tien, C. L. (2005). Edible films and coatings from nonstarch polysaccharides. In: H. Jung (Ed.) Innovations in Food Packaging (pp. 338–361). Elsevier. https://doi.org/10.1016/B978-012311632-1/50052-8

  • Lakshmi Bhavani, A., & Nisha, J. (2010). Dextran—the polysaccharide with versatile uses. International Journal of Pharma and Bio Sciences, 1(4), 569–573.

    CAS  Google Scholar 

  • Leite, B. S. F., Borges, C. D., Carvalho, P. G. B., & Botrel, N. (2015). Revestimento comestível à base de goma xantana, compostos lipofílicos e/ou cloreto de cálcio na conservação de morangos. Revista Brasileira De Fruticultura, 37(4), 1027–1036. https://doi.org/10.1590/0100-2945-228/14

    Article  Google Scholar 

  • Li, L., Sun, J., Gao, H., Shen, Y., Li, Ch., Yi, P., He, X., et al. (2017). Effects of polysaccharide-based edible coatings on quality and antioxidant enzyme system of strawberry during cold storage. International Journal of Polymer Science, 2017(3), 1–8. https://doi.org/10.1155/2017/9746174

  • Liston, A., Cronn, R., & Ashman, T. L. (2014). Fragaria: A genus with deep historical roots and ripe for evolutionary and ecological insights. American Journal of Botany, 101(10), 1686–99. https://doi.org/10.3732/ajb.1400140

  • Lule, V. K., Singh, R., Pophaly, S. D., Poonam, S. K., & Tomar, S. K. (2016). Production and structural characterisation of dextran from an indigenous strain of Leuconostoc mesenteroides BA08 in whey. International Journal of Dairy Technology, 69(4), 520–531. https://doi.org/10.1111/1471-0307.12271

    Article  CAS  Google Scholar 

  • Luzi, F., Torre, L., Kenny, J., & Puglia, D. (2019). Bio - and fossil-based polymeric blends and nanocomposites for packaging: structure–property relationship. Materials, 12(3), 471–520. https://doi.org/10.3390/ma12030471

  • Mantovan, J., Bersaneti, G. T., Faria-Tischer, P. C., Celligoi, M. A., & Mali, S. (2018). Use of microbial levan in edible films based on cassava starch. Food Packaging and Shelf Life, 18, 31–36. https://doi.org/10.1016/J.FPSL.2018.08.003

    Article  Google Scholar 

  • Marangoni Junior, L., Vieira, R. P., & Anjos, C. A. R. (2020). Kefiran-based films: fundamental concepts, formulation strategies and properties. Carbohydrate Polymers, 246, 116609. https://doi.org/10.1016/j.carbpol.2020.116609.

  • Maringgal, B., Hashim, N., Mohamed Amin Tawakkal, I. S., & Muda Mohamed, M. T. (2020). Recent advance in edible coating and its effect on fresh/fresh-cut fruits quality. Trends in Food Science & Technology, 96, 253–267. https://doi.org/10.1016/j.tifs.2019.12.024

  • Mohamed, S. A. A., El-Sakhawy, M., & El-Sakhawy, M. A. Monem. (2020). Polysaccharides, protein and lipid - based natural edible films in food packaging: A review. Carbohydrate Polymers, 238, 116178. https://doi.org/10.1016/j.carbpol.2020.116178

  • Mohite, B. V., Koli, S. H., Narkhede, C. P., Patil, S. N., & Patil, S. V. (2017). Prospective of microbial exopolysaccharide for heavy metal exclusion. Applied Biochemistry and Biotechnology, 183(3), 582–600. https://doi.org/10.1007/s12010-017-2591-4

  • Mohsin, A., Zaman, W. Q., Guo, M., Ahmed, W., Khan, I. M., Niazi S., et al. (2020). Xanthan-Curdlan nexus for synthesizing edible food packaging films. International Journal of Biological Macromolecules, 162, 43–49. https://doi.org/10.1016/j.ijbiomac.2020.06.008

  • Moncayo-Martínez, D. (2013). Desarrollo de un recubrimiento comestible a partir de un biopolímero para prolongar la vida útil de frutas frescas. Tesis de maestría, Universidad Nacional de Colombia. http://www.bdigital.unal.edu.co/44864/1/24336979.2013.pdf.

  • Müller, K., Scheuerer, Z., Florian, V., Skutschik, T., & Sängerlaub, S. (2017). Comparison of test methods for oxygen permeability: Optical method versus carrier gas method. Polymer Testing, 63, 126–132. https://doi.org/10.1016/j.polymertesting.2017.08.006

  • Nair, M. S., Tomar, M., Punia, S., Kukula-Koch, W., & Kumar M.(2020). Enhancing the functionality of chitosan - and alginate-based active edible coatings/films for the preservation of fruits and vegetables: A review. International Journal of Biological Macromolecules, 164, 304–320. https://doi.org/10.1016/j.ijbiomac.2020.07.083

  • Nešić, A., Cabrera-Barjas, G., Dimitrijević-Branković, S., Davidović, S., Radovanović, N., & Delattre, C. (2019). Prospect of polysaccharide-based materials as advanced food packaging. Molecules, 25(1), 135–170. https://doi.org/10.3390/molecules25010135

  • Nielsen, J., & Keasling, J. D. (2016). Engineering cellular metabolism. Cell, 164(6), https://doi.org/10.1016/j.cell.2016.02.004

  • Niu, B., Shao, P., Chen, H., & Sun, P. (2019). Structural and physiochemical characterization of novel hydrophobic packaging films based on pullulan derivatives for fruits preservation. Carbohydrate Polymers, 208, 276–284. https://doi.org/10.1016/j.carbpol.2018.12.070

  • Nwodo, U., Green, E., & Okoh, A. (2012). Bacterial exopolysaccharides: functionality and prospects. International Journal of Molecular Sciences, 13(11), 14002–14015. https://doi.org/10.3390/ijms131114002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olivas, G. I., & Barbosa-Cánovas, G. V. (2005). Edible coatings for fresh-cut fruits. Critical Reviews in Food Science and Nutrition, 45(7–8), 657–670. https://doi.org/10.1080/10408690490911837

  • Olivas, G. I., Dávila-Aviña, J., Salas-Salazar, N. A., & Molina, F. J. (2008). Use of edible coatings to preserve the quality of fruits and vegetables during storage. Stewart Postharvest Review, 4(3), 1–10. https://doi.org/10.2212/spr.2008.3.6

  • Onilude, A. A., Olaoye, O., Fadahunsi, I. F., Owoseni, A., Garuba, E. O., & Atoyebi, T. (2013). Effects of cultural conditions on dextran production by Leuconostoc spp. International Food Research Journal, 20(4), 1645–1651.

    Google Scholar 

  • Palou, L., Valencia-Chamorro, S. A., & Pérez-Gago, M. B. (2015). Antifungal edible coatings for fresh citrus fruit: A review. Coatings, 5, 962–986.

    Article  CAS  Google Scholar 

  • Panahirad, S., Dadpour, M., Peighambardoust, S. H., Soltanzadeh, M., Gullón, B., Alirezalu, K., & Lorenzo, J. M. (2021). Applications of carboxymethyl cellulose – and pectin-based active edible coatings in preservation of fruits and vegetables: A review. Trends in Food Science & Technology, 110, 663–673. https://doi.org/10.1016/j.tifs.2021.02.025

    Article  CAS  Google Scholar 

  • Park, H. J. (1999). Development of advanced edible coatings for fruits. Trends in Food Science & Technology, 10(8), 254–260.

    Article  CAS  Google Scholar 

  • Pascall, M. A., & Lin, S. J. (2013). The application of edible polymeric films and coatings in the food industry. Journal of Food Processing and Technology, 4, e116. https://doi.org/10.4172/2157-7110.1000e116

  • Piermaria, J., Bosch, A., Pinotti, A., Yantorno, O., Garcia, M. A., & Abraham, A. G. (2011). Kefiran films plasticized with sugars and polyols: Water vapor barrier and mechanical properties in relation to their microstructure analyzed by ATR/FT-IR spectroscopy. Food Hydrocolloids, 25(5), 1261–1269. https://doi.org/10.1016/j.foodhyd.2010.11.024

    Article  CAS  Google Scholar 

  • Pina-Barrera, A. M., Alvarez-Romanm R., Baez-Gonzalez, J. G., Amaya-Guerra, C. A., Rivas-Morales, C., et al. (2019). Application of a multisystem coating based on polymeric nanocapsules containing essential oil of Thymus Vulgaris L. to increase the shelf life of table grapes (Vitis Vinifera L.). IEEE Transactions on NanoBioscience, 18(4), 549–557. https://doi.org/10.1109/TNB.2019.2941931

  • Pobiega, K., Igielska, M., Walodarczyk, P., & Gniewosz, M. (2020). The use of pullulan coatings with propolis extract to extend the shelf life of blueberry (Vaccinium corymbosum) fruit. Journal of Food Processing and Technology, 56(2),1013–1020. https://doi.org/10.4172/2157-7110.1000e116

  • Quezada Gallo, J., Gramin, A., Pattyn, C., Díaz Amaro, M. R., Debeaufort, F., & Voilley, A. (2005). Biopolymers used as edible coating to limit water transfer, colour degradation and aroma compound 2-pentanone lost in Mexican fruits. Acta Horticulturae, 682, 1709–1716. https://doi.org/10.17660/ActaHortic.2005.682.228

  • Radev, R., & Pashova, S. (2020). Application of edible films and coatings for fresh fruit and vegetables. Acces La Success, 21(177), 108–112.

    Google Scholar 

  • Ramesh, H. P., & Tharanathan, R. N. (2003). Carbohydrates – the renewable raw materials of high biotechnological value. Critical Reviews in Biotechnology, 23(2), 149–173. https://doi.org/10.1080/713609312

    Article  CAS  PubMed  Google Scholar 

  • Ramos, Ó. L., Reinas, I., Silva, S. I., Catalão, J., Cerqueira, M., Pereira, R. N., et al. (2013). Effect of whey protein purity and glycerol content upon physical properties of edible films manufactured therefrom. Food Hydrocollids, 30(1), 110–122. https://doi.org/10.1016/j.foodhyd.2012.05.001

    Article  CAS  Google Scholar 

  • Ribeiro, A. M., Estevinho, B. N., & Rocha, F. (2020). Preparation and incorporation of functional ingredients in edible films and coatings. Food and Bioprocess Technology. https://doi.org/10.1007/s11947-020-02528-4

    Article  Google Scholar 

  • Roca, C., Alves, V. D., Freitas, F., & Reis, M. A. (2015). Exopolysaccharides enriched in rare sugars: bacterial sources, production, and applications. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2015.00288

    Article  PubMed  PubMed Central  Google Scholar 

  • Sadh, P. K., Duhan, S., & Duhan, J. (2018). Agro-industrial wastes and their utilization using solid state fermentation: A review. Bioresources and Bioprocessing, 5, 1. https://doi.org/10.1186/s40643-017-0187-z

    Article  Google Scholar 

  • Saklani, P., Siddnath Das, S. K., & Singh, S. M. (2019). A review of edible packaging for foods. International Journal of Current Microbiology and Applied Sciences, 8(7), 2885–2895. https://doi.org/10.20546/ijcmas.2019.807.359

  • Saleem, M. S., Ejaz, S., Anjum, M. A., Nawaz, A., Naz, S., Hussain, S., Ali, S. & Canan, I. (2020). Postharvest application of gum arabic edible coating delays ripening and maintains quality of persimmon fruits during storage. Journal of Food Processing and Preservation, 44(8), e14583. https://doi.org/10.1111/jfpp.14583

  • Salehi, F. (2020). Edible coating of fruits and vegetables using natural gums: A review. International Journal of Fruit Science, 2020, 1–20. https://doi.org/10.1080/15538362.2020.1746730

    Article  Google Scholar 

  • Shao, P., Niu, B., Chen, H., & Sun, P.(2018). Fabrication and characterization of tea polyphenols loaded pullulan-CMC electrospun nanofiber for fruit preservation. International Journal of Biological Macromolecules, 107(Pt B), 1908–1914. https://doi.org/10.1016/j.ijbiomac.2017.10.054

  • Shit, S. C., & Shah, P. M. (2014). Edible polymers: Challenges and opportunities. Journal of Polymers, 2014(427259), 1–13. https://doi.org/10.1155/2014/427259

  • Semjonovs, P., Shakirova, L., Broks, R., Kistkins, S., & Zikmanis, P. (2017). Influence of environmental factors on extracellular fructan and oligosaccharide production by Gluconobacter nephelii. Research Journal of Microbiology, 12, 33–41. https://doi.org/10.3923/jm.2017.33.41

    Article  CAS  Google Scholar 

  • Sengupta, D., Datta, S., & Biswas, D. (2018). Towards a better production of bacterial exopolysaccharides by controlling genetic as well as physico-chemical parameters. Applied Microbiology and Biotechnology, 102(4), 1587–1598. https://doi.org/10.1007/s00253-018-8745-7

    Article  CAS  PubMed  Google Scholar 

  • Senturk Parreidt, T., Schott, M., Schmid, M., & Müller, K. (2018a). Effect of presence and concentration of plasticizers, vegetable oils, and surfactants on the properties of sodium-alginate-based edible coatings. International Journal of Molecular Sciences, 19(3), 742. https://doi.org/10.3390/ijms19030742

    Article  CAS  PubMed Central  Google Scholar 

  • Senturk Parreidt, T., Müller, K., & Schmid, M. (2018b). Alginate-based edible films and coatings for food packaging applications. Foods, 7(10), 170–208. https://doi.org/10.3390/foods7100170

    Article  CAS  Google Scholar 

  • Shahbazi, Y., Shavisi, N., & Karami, N. (2020). Development of edible bioactive coating based on mucilages for increasing the shelf life of strawberries. Journal of Food Measurement and Characterization. https://doi.org/10.1007/s11694-020-00638-3

    Article  Google Scholar 

  • Sharma, P., Shehin, V. P., Kaur, N., & Vyas ,P. (2019). Application of edible coatings on fresh and minimally processed vegetables: a review. International Journal of Vegetable Science, 25(3), 295–314. https://doi.org/10.1108/NFS-08-2018-0246

  • Siracusa, V, Rocculi, P., Romani, S., & Dalla Rosa, M. (2008). Biodegradable polymers for food packaging: a review. Trends in Food Science & Technology, 19(12), 634–643. https://doi.org/10.1016/j.tifs.2008.07.003

  • Skrovankova, S., Sumczynski, D., Mlcek, J., Jurikova, T., & Sochor, J. (2015). Bioactive compounds and antioxidant activity in different types of berries. International Journal of Molecular Sciences, 16(10), 24673–24706. https://doi.org/10.3390/ijms161024673

  • Souza, B. W. S., Cerqueira, M. A., Teixeira, J. A., & Vicente, A. A. (2010). The use of electric fields for edible coatings and films development and production: A review. Food Engineering Reviews, 2(4), 244–255. https://doi.org/10.1007/s12393-010-9029-x

  • Stroescu, M., Isopencu, G., Busuioc, C., & Stoica-Guzun, A. (2018). Antimicrobial food pads containing bacterial cellulose and polysaccharides. In: Md. I. H. Mondal (Ed.) Cellulose-based superabsorbent hydrogels, polymers and polymeric composites: A reference series (pp. 1 – 36). Springer International Publishing AG. https://doi.org/10.1007/978-3-319-76573-0_3-1

  • Tabasum, S., Noreen, A., Maqsood, M. F., Umar, H., Akram N, Nazli, Z. -i. -H., et al. (2018). A review on versatile applications of blends and composites of pullulan with natural and synthetic polymers. International Journal of Biological Macromolecules, 120(Pt A), 603–622. https://doi.org/10.1016/j.ijbiomac.2018.07.154

  • Tahir, H. E., Xiaobo, Z., Mahunu, G. K., Arslan, M., Abdalhai, M., & Zhihua, L. (2019). Recent developments in gum edible coating applications for fruits and vegetables preservation: A review. Carbohydrate Polymers, 224, 115141. https://doi.org/10.1016/j.carbpol.2019.115141

    Article  CAS  PubMed  Google Scholar 

  • Tan, K. X., Chamundeswari, V. N., & Loo, S. C. J. (2020). Prospects of kefiran as a food-derived biopolymer for agri-food and biomedical applications. RSC Advances, 10(42), 25339–25351. https://doi.org/10.1039/D0RA02810J

    Article  Google Scholar 

  • Tiwari, O. N., Sasmal, S., Kataria, A. K., & Devi, I. (2020). Application of microbial extracellular carbohydrate polymeric substances in food and allied industries. 3 Biotech, 10(5), 221. https://doi.org/10.1007/s13205-020-02200-w

  • Tomadoni, B., Moreira, M. R., Pereda, M., & Ponce, A. G. (2018). Gellan-based coatings incorporated with natural antimicrobials in fresh-cut strawberries: Microbiological and sensory evaluation through refrigerated storage. LWT - Food Science and Technology, 97, 384–389. https://doi.org/10.1016/j.lwt.2018.07.029

    Article  CAS  Google Scholar 

  • Tomulescu, C., Stoica, R., Sevcenco, C., Casarica, A., Moscovici, M., & Vamanu, A. (2016). Levan-a mini review. Scientific Bulletin. Series F. Biotechnologies, 20, 309–317.

    Google Scholar 

  • Totad, M. G., Sharma, R. R., & Verma, M. A. (2019). Effect of edible coatings on ‘Misty’ blueberry (Vaccinium corymbosum) fruits stored at low temperature. Acta Physiologiae Plantarum, 41, 183. https://doi.org/10.1007/s11738-019-2973-z

    Article  CAS  Google Scholar 

  • Treviño-Garza, M. Z., García, S., del Socorro Flores-González, M., & Arévalo-Niño, K. (2015). Edible active coatings based on pectin, pullulan, and chitosan increase quality and shelf life of strawberries (Fragaria ananassa). Journal of Food Science, 80(8), M1823–M1830. https://doi.org/10.1111/1750-3841.12938

    Article  CAS  PubMed  Google Scholar 

  • Tsang, Y. F., Kumar, V., Samadar, P., Yang, Y., Lee, J., Ok, Y. S., et al. (2019). Production of bioplastic through food waste valorization. Environment International, 127, 625–644. https://doi.org/10.1016/j.envint.2019.03.076

    Article  CAS  PubMed  Google Scholar 

  • Urtuvia, V., Maturana, N., Acevedo, F., Peña, C., & Díaz-Barrera, A. (2017). Bacterial alginate production: an overview of its biosynthesis and potential industrial production. World Journal of Microbiology & Biotechnology. https://doi.org/10.1007/s11274-017-2363-x

    Article  Google Scholar 

  • Wang, K., Du, L., Zhang, C., Lu, Z., Lu, F., & Zhao, H. (2019). Preparation of chitosan/curdlan/carboxymethyl cellulose blended film and its characterization. Journal of Food Science and Technology, 56(12), 5396–5404. https://doi.org/10.1007/s13197-019-04010-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitfield, C., Wear, S. S., & Sande, C. (2020). Assembly of bacterial capsular polysaccharides and exopolysaccharides. Annual Review of Microbiology, 74, 521–543. https://doi.org/10.1146/annurev-micro-011420-075607

  • Widyaningrum, D., & Meindrawan, B. (2020). The application of microbial extracellular polymeric substances in food industry. IOP Conference Series: Earth and Environmental Science, 426, 012181.

    Article  Google Scholar 

  • Zambrano-Zaragoza, M. L., Quintanar-Guerrero, D., Del Real, A., & González –Reza, R. M., Cornejo-Villegas, M. A. & Gutiérrez-Cortez, E. . (2020). Effect of nano-edible coating based on beeswax solid lipid nanoparticles on strawberry’s preservation. Coatings, 10(3), 253–264. https://doi.org/10.3390/coatings10030253

    Article  CAS  Google Scholar 

  • Zhang, Y., Zhou, L., Zhang, C., Show, P. L., Du, A., Fu, J., & Ashokkumar, V. (2020). Preparation and characterization of curdlan/polyvinyl alcohol/ thyme essential oil blending film and its application to chilled meat preservation. Carbohydrate Polymers, 247, 116670. https://doi.org/10.1016/j.carbpol.2020.116670

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Z., Vriesekoop, F., Yuan, Q., & Liang, H. (2014). Effects of nisin on the antimicrobial activity of d-limonene and its nanoemulsion. Food Chemistry, 150, 307–312. https://doi.org/10.1016/j.foodchem.2013.10.160

    Article  CAS  PubMed  Google Scholar 

  • Zhu, J., Wang, Q., Han, L., Zhang, C., Wang, Y., Tu, K., et al. (2021). Effects of caprolactam content on curdlan-based food packaging film and detection by infrared spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 245, 118942. https://doi.org/10.1016/j.saa.2020.118942

    Article  CAS  Google Scholar 

  • Zikmanis, P., Kolesovs, S., & Semjonovs, P. (2020a). Production of biodegradable microbial polymers from whey. Bioresources and Bioprocessing, 7, 36. https://doi.org/10.1186/s40643-020-00326-6

  • Zikmanis, P., Brants, K., Kolesovs, S., & Semjonovs, P. (2020b). Extracellular polysaccharides produced by bacteria of the Leuconostoc genus. World Journal of Microbiology & Biotechnology, 36, 161. https://doi.org/10.1007/s11274-020-02937-9

Download references

Funding

This study was supported by the Ministry of Agriculture and Rural Support Service of the Republic of Latvia (grant number 19–00-A01612-000004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavels Semjonovs.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zikmanis, P., Juhņeviča-Radenkova, K., Radenkovs, V. et al. Microbial Polymers in Edible Films and Coatings of Garden Berry and Grape: Current and Prospective Use. Food Bioprocess Technol 14, 1432–1445 (2021). https://doi.org/10.1007/s11947-021-02666-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-021-02666-3

Keywords

Navigation