Skip to main content
Log in

Developing Baking-Stable Red Raspberries with Improved Mechanical Properties and Reduced Syneresis

  • Original Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

This work identified new treatments to develop red raspberries for baking applications for better consumer appeal. Fresh or frozen fruits are often incorporated in baked products such as muffins and pies. These baked products are very popular due to their fresh, fruity flavor. Raspberries are used as an ingredient in many foods due to their delicious flavor. However, the incorporation of red frozen raspberries turns the baked product red due to syneresis during baking. In this study, we developed baking-stable red raspberries to minimize syneresis during baking. We applied three treatments to the red raspberries: vacuum impregnation with low methoxyl pectin and calcium chloride at 20 °C and a vacuum level of 50.8 kPa, for 7 min; partial dehydration using hot air at a dry bulb temperature of 65 °C until the final water content of 0.65 g H2O/g fruit was reached; and edible coatings at different concentrations. Treated berries were stored in a freezer at − 35 °C for 2 months. We determined the mechanical properties, drip loss, and visual integrity of the frozen-thawed red raspberries before baking to select appropriate coatings. Raspberry muffins were then baked to 204 °C for 20 min. We determined the syneresis from the baked fruit using an image analyzer. Findings indicate that sodium alginate coating on red raspberries at 0.4% (w/v) resulted in minimal syneresis in baked muffins at 13.9%, while commercially frozen raspberries showed syneresis at 62.9%. The maximum force (FM) and gradient (GC) values as firmness indicators were improved from control berries (7.45 N and 2.06 N/mm, respectively) to treated berries (21.16 N and 7.06 N/mm, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aditi, M., Shashirekha, M. N., & Sudha, M. L. (2016). Characterization and bake stability of dry fruits fillings in dehydrated chiku (Manilkara zapota L.P. Royen) incorporated biscuit. Journal of Texture Studies, 48(3), 231–240. https://doi.org/10.1111/jtxs.12232.

    Article  PubMed  Google Scholar 

  • Agudelo, A., Varela, P., Sanz, T., & Fiszman, S. (2014). Formulating fruit fillings. Freezing and baking stability of a tapioca starch-pectin mixture model. Food Hydrocolloids, 40, 203–213.

    Article  CAS  Google Scholar 

  • Basu, A., Rhone, M., & Lyons, T. (2010). Berries: emerging impact on cardiovascular health. Nutrition Reviews, 68(3), 168–177.

    Article  Google Scholar 

  • Basu, S., & Shivhare, U. S. (2010). Rheological, textural, micro-structural and sensory properties of mango jam. Journal of Food Engineering, 100(2), 357–365.

    Article  CAS  Google Scholar 

  • Ben Haj Said, L., Bellagha, S., & Allaf, K. (2016). Dehydrofreezing of apple fruits; freezing profiles, freezing characteristics, and texture variation. Food and Bioprocess Technology, 9(2), 252–261.

    Article  CAS  Google Scholar 

  • Bolling, B. W., DiMarco, D. M., Lainas, K., & Kranz, S. (2016). Raspberry juice. In F. Shahidi & C. Alasalvar (Eds.), Handbook of functional beverages and human health (pp. 527–534). Boca Raton: CRC Press Taylor & Francis Group.

    Google Scholar 

  • Bowen-Forbes, C., Zhang, Y., & Nair, M. (2010). Anthocyanin content, antioxidant, anti-inflammatory and anticancer properties of blackberry and raspberry fruits. Journal of Food Composition and Analysis, 23(6), 554–560.

    Article  CAS  Google Scholar 

  • Cropotova, J., Tylewicz, U., Dellarosa, N., Laghi, L., Romani, S., & Dalla Rosa, M. (2016). Effect of freezing on microstructure and degree of syneresis in differently formulated fruit fillings. Food Chemistry, 195, 71–78.

    Article  CAS  Google Scholar 

  • Cropotova, J., & Popel, S. (2013a). Influence of different hydrocolloids on physicochemical and heat-stable properties of fruit fillings. The Annals of the University Dunarea De Jos of Galati. Fascicle VI. Food Technology, 37, 59–67.

    CAS  Google Scholar 

  • Cropotova, J., & Popel, S. (2013b). A way to prevent syneresis in fruit fillings prepared with gellan gum. Scientific Papers, Series D. Animal Science, 56, 326–329.

    Google Scholar 

  • de Vries, J. (2004). Hydrocolloid gelling agents and their applications. In P. A. Williams & G. O. Phillips (Eds.), Gums and stabilizers for the food industry 12 (pp. 23–31). Cambridge: Royal Society of Chemistry.

    Google Scholar 

  • Draget, K., Skjåk-Bræk, G., & Smidsrød, O. (1997). Alginate based new materials. International Journal of Biological Macromolecules, 21(1-2), 47–55.

    Article  CAS  Google Scholar 

  • Draget, K., Moe, S., Skjak-Broek, G., & Smidsrød, O. (2006). Alginates, In: Food polysaccharides and their applications. In A. Stephen, G. Phillips, & P. Williams (Eds.), Food Science and Technology (Vol. 1995, 2nd ed., pp. 245–286). Boca Raton: CRC/Taylor & Francis.

    Google Scholar 

  • Hernandez-Muñoz, P., Almenar, E., Del Valle, V., Velez, D., & Gavara, R. (2008). Effect of chitosan coating combined with postharvest calcium treatment on strawberry (Fragaria x ananassa) quality during refrigerated storage. Food Chemistry, 110(2), 428–435. https://doi.org/10.1016/j.foodchem.2008.02.020.

    Article  CAS  PubMed  Google Scholar 

  • James, C., Purnell, G., & James, S. (2014). A critical review of dehydrofreezing of fruits and vegetables. Food and Bioprocess Technology, 7(5), 1219–1234.

    Article  Google Scholar 

  • Jiang, H., Sun, Z., Jia, R., Wang, X., & Huang, J. (2016). Effect of chitosan as an antifungal and preservative agent on postharvest blueberries. Journal of Food Quality, 39(5), 516–523.

    Article  CAS  Google Scholar 

  • Maestrelli, A., Lo Scalzo, R., Lupi, D., Bertolo, G., & Torreggiani, D. (2001). Partial removal of water before freezing: cultivar and pre-treatments as quality factors of frozen muskmelon (Cucumis melo, cv reticulatus Naud.). Journal of Food Engineering, 49(2-3), 255–260.

    Article  Google Scholar 

  • Martínez-Monzó, J., Baret, J. M., González-Martínez, C., Chiralt, A., & Fito, P. (2000). Changes in thermal properties of apple due to vacuum impregnation. Journal of Food Engineering, 43(4), 213–218.

    Article  Google Scholar 

  • Miller, M., & Shukitt-Hale, B. (2012). Berry fruit enhances beneficial signaling in the brain. Journal of Agricultural and Food Chemistry, 60(23), 5709–5715.

    Article  CAS  Google Scholar 

  • Mizrahi, S. (2010). Syneresis in food gels and its implications for food quality. In L. H. Skibsted, J. Risbo, & M. L. Andersen (Eds.), Chemical deterioration and physical instability of food and beverages (pp. 324–348). Cambridge: Woodhead Publishing, Ltd..

    Chapter  Google Scholar 

  • Murray, J. C. (2009). Cellulosics. In G. O. Phillips & P. A. Williams (Eds.), Handbook of hydrocolloids (2nd ed., pp. 710–722). Boca Raton: Publishing Limited.

    Chapter  Google Scholar 

  • Nadim, Z., Ahmadi, E., Sarikhani, H., & Amiri Chayjan, R. (2015). Effect of methylcellulose-based edible coating on strawberry fruit’s quality maintenance during storage. Journal of Food Processing and Preservation, 39(1), 80–90.

    Article  CAS  Google Scholar 

  • Pátkai, G. (2012). Fruit and fruit products as ingredients. In N. Sinha, J. Sidhu, J. Barta, J. S. Wu, & M. Cano (Eds.), Handbook of fruits and fruit processing (2nd ed., pp. 270–274). Hoboken: John Wiley & Sons.

    Google Scholar 

  • Pavlath, A., & Orts, W. (2009). Edible films and coatings: why, what and how? In K. C. Huber & M. E. Embuscado (Eds.), Edible films and coatings for food applications (pp. 16–19). Springer New York: New York.

    Google Scholar 

  • Quintanilla, A., Mencia, A., Powers, J., Rasco, B., Tang, J., & Sablani, S. S. (2018). Vacuum impregnation of firming agents in red raspberries. Journal of the Science of Food and Agriculture, 98(10), 3706–3714. https://doi.org/10.1002/jsfa.8878.

    Article  CAS  PubMed  Google Scholar 

  • Quintanilla, A., Mencia, A., Powers, J., Rasco, B., Tang, J., & Sablani, S. S. (2020). Developing vacuum-impregnated dehydrofrozen red raspberries with improved mechanical properties. Drying Technology Journal, 1–11. https://doi.org/10.1080/07373937.2020.1789654.

  • Radziejewska-Kubzdela, E., Bieganska-Marecik, R., & Kidon, M. (2014). Applicability of vacuum impregnation to modify physico-chemical, sensory and nutritive characteristics of plant origin products–A review. International Journal of Molecular Sciences, 15(9), 16577–16610.

    Article  Google Scholar 

  • Ramallo, L. A., & Mascheroni, R. H. (2010). Dehydrofreezing of pineapple. Journal of Food Engineering, 99(3), 269–275.

    Article  Google Scholar 

  • Reyes-Avalos, M. C., Minjares-Fuentes, R., Femenia, A., Contreras-Esquivel, J. C., Quintero-Ramos, A., Esparza-Rivera, J. R., & Meza-Velazquez, J. A. (2019). Application of an alginate-chitosan edible film on figs (Ficus carica): Effect on bioactive compounds and antioxidant capacity. Food and Bioprocess Technology, 12(3), 499–511.

    Article  CAS  Google Scholar 

  • Rodriguez, A., Bruno, E., Paola, C., Campaoñe, L., & Mascheroni, R. (2019). Experimental study of dehydration processes of raspberries (Rubus idaeus) with microwave and solar drying. Ciência e Tecnologia de Alimentos, 39(2), 336–343.

    Article  Google Scholar 

  • Sette, P., Salvatory, D., & Schebor, C. (2016). Physical and mechanical properties of raspberries subjected to osmotic dehydration and further dehydration by air- and freeze-drying. Food and Bioproducts Processing, 100, 156–171.

    Article  Google Scholar 

  • Sherer, G. W. (1989). Mechanics of syneresis I. Theory. Journal of Non-Crystalline Solids, 108(1), 18–27.

    Article  Google Scholar 

  • Sormani, A., Maffi, D., Bertolo, G., & Torreggiani, D. (1999). Textural and structural changes of dehydrofreeze-thawed strawberry slices: Effects of different dehydration pretreatments/Cambios texturales y estructurales de rodajas de fresa deshidratadas y descongeladas: efectos de diferentes pretratamientos de deshidratación. Food Science and Technology International, 5, 479–485.

    Article  Google Scholar 

  • Tapia, M., Rojas-Graü, M. A., Carmona, A., Rodriguez, F. J., Soliva-Fortuni, R., & Martin-Belloso, O. (2008). Use of alginate-and gellan-based coatings for improving barrier, texture and nutritional properties of fresh-cut papaya. Food Hydrocolloid, 22(8), 1493–1503.

    Article  CAS  Google Scholar 

  • Vargas, M., Albors, A., Chiralt, A., & González-Martinéz, C. (2006). Quality of cold-stored strawberries as affected by chitosan-oleic acid edible coatings. Postharvest Biology and Technology, 41(2), 164–171. https://doi.org/10.1016/j.postharvbio.2006.03.016.

    Article  CAS  Google Scholar 

  • Xie, J., & Zhao, Y. (2004). Use of vacuum impregnation to develop high quality and nutritionally fortified frozen strawberries. Journal of Food Processing and Preservation, 28(2), 117–132.

    Article  Google Scholar 

  • Yang, H., Wu, Q., Ng, L. Y., & Wang, S. (2017). Effects of vacuum impregnation with calcium lactate and pectin methylesterase on quality attributes and chelate-soluble pectin morphology of fresh-cut papayas. Food and Bioprocess Technology, 10(5), 901–913.

    Article  CAS  Google Scholar 

  • Yang, Z., Zou, X., Li, Z., Huang, X., Zhai, X., Zhang, W., Shi, J., & Haroon, E. (2019). Improved postharvest quality of cold stored blueberry by edible coating based on composite gum arabic/roselle extract. Food and Bioprocess Technology, 12(9), 1537–1547.

    Article  CAS  Google Scholar 

  • Young, N. W., Kappel, G., & Bladt, T. (2003). A polyuronan blend giving novel synergistic effects and bake-stable functionality to high soluble solids fruit fillings. Food Hydrocolloids, 17(4), 407–418. https://doi.org/10.1016/S0268-005X(03)00032-8.

    Article  CAS  Google Scholar 

  • Zhu, D., Guo, R., Li, W., Song, J., & Cheng, F. (2019). Improved postharvest preservation effects of Pholiota nameko mushroom by sodium alginate-based edible composite coating. Food and Bioprocess Technology, 12(4), 587–598.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The first author gratefully acknowledges the support and generosity of CONACYT, without which the present study could not have been completed.

Funding

This research was funded in part by the Washington State Department of Agriculture Specialty Crop Block Grant Program #K1772.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyam S. Sablani.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quintanilla, A., Zhang, H., Powers, J. et al. Developing Baking-Stable Red Raspberries with Improved Mechanical Properties and Reduced Syneresis. Food Bioprocess Technol 14, 804–816 (2021). https://doi.org/10.1007/s11947-021-02599-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-021-02599-x

Keywords

Navigation