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Abstract The inactivation of bioactive ingredients during
spray drying is often matrix specific. Therefore, the design
of new processes or the optimisation of existing spray dry-
ing processes is usually highly product specific and requires
numerous experiments. Rapid experimentation methods that
facilitate fast data generation are therefore desired. A novel
method for drying single droplets to mimic spray drying is
proposed. The approach involves droplet deposition on a
hydrophobic flat surface followed by controlled drying. A
heat and mass transfer model is applied to predict the drying
history of the single droplets. The approach is successfully
evaluated through studying the inactivation of 3-galactosidase
during drying. The heat and mass transfer model supple-
mented with inactivation kinetics provided reasonable predic-
tion of the residual enzyme activity after drying. In addition,
the inactivation kinetics could be directly extracted from sin-
gle droplet experiments rather than using the kinetics from
separate heating experiments. Finally, it was demonstrated
that the inactivation kinetics found with the single-drop
experiments could satisfactorily predict the residual activity
of 3-galactosidase dried with a laboratory-scale spray dryer.
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Introduction

Spray drying belongs to the most common drying techniques
for liquid food products. The fine atomisation of the product
and the subsequent fast evaporation of water make it especial-
ly suitable to formulate heat-sensitive products (Xin Huang et
al. 2006; Fang and Bhandari 2010). Despite the relative mild
conditions during drying, (partial) inactivation of bioactive
compounds such as enzymes, antioxidants and vitamins can-
not be avoided. Optimisation of the spray drying conditions
and addition of stabilizers is often required to retain maximum
activity (Ré 1998; Peighambardoust et al. 2011; Sansone et al.
2011). In practice, numerous expensive pilot-scale trials are
executed to explore different product formulations and to find
optimum drying conditions.

Modelling tools are frequently used to accelerate process
development and optimisation in spray drying. The availabil-
ity of reliable inactivation kinetics—usually highly product
specific—is a prerequisite for this. Kinetic models require
experimental data from drying experiments for parameter
calibration. Pilot-scale experiments are not ideal for this as
they are expensive, time-consuming, and involve the evalua-
tion of complex process conditions. A more efficient alterna-
tive is the application of small-scale representative drying
experiments.

Once reliable inactivation kinetics are obtained, a process
model of the dryer can be used to predict the impact of the
drying on the remaining ingredient activity. Subsequently, the
model can be used to approximate optimal drying conditions
and product formulations in a more systematic way (Wijlhuizen
et al. 1979; Luyben et al. 1982; Meerdink and van't Riet 1991;
Millgvist-Fureby et al. 1999; Coumans 2000).

Small-scale spray drying has been carried out in
laboratory-scale spray dryers (Gianfrancesco et al. 2010;
Li et al. 2010; Wu et al. 2011). However, major differences
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between laboratory and industrial spray dryers are the
smaller droplet size, caused by the different method of
atomisation, and the shorter residence time in the laboratory
spray dryer (Goula and Adamopoulos 2004; Filkova et al.
2006). Since the laboratory spray dryer can (due to its
design and dimensions) only cover a limited range of drop-
let sizes and drying times and it produces droplets with a
size distribution (not monodisperse), it is virtually impossi-
ble to extract sufficient representative experimental data to
calibrate a kinetic model.

Another approach is the drying of single droplets under
well-controlled conditions. In this approach a small droplet
is generated, immobilised, and subsequently dried by con-
tacting it with well-defined drying air. Examples are drying
of a droplet that is non-intrusively levitated using for exam-
ple acoustic, aerodynamic or electromagnetic levitation
(Adhikari et al. 2000; Sloth et al. 2006; Schiffter and Lee
2007), intrusively levitated that is in pendant or filament
(Chuchottaworn et al. 1984; Ali Al Zaitone and Tropea
2011), or that is deposited on a flat surface (Perdana et al.
2011a).

In this study, the latter method is followed (Perdana et al.
2011a). The major advantages of this method are the possibil-
ity to vary droplet size and residence time, and to dry multiple
droplets at once to obtain higher volume of sample. The
minimum droplet diameter can be adjusted to 150 pm which
is only slightly bigger than the typical droplet size in industrial
spray dryers; a comparable droplet size is critical to accurately
mimic the kinetics in spray drying (Adhikari et al. 2000;
Vehring et al. 2007). The challenge in using this approach is
the presence of the flat surface. This surface for example
affects the spherical shape of the droplet. Therefore, a hydro-
phobic surface is used to minimize the contact between the
droplet and the surface and to retain the spherical shape. Other
differences introduced by the presence of the surface are the
air flow velocity and the air temperature near the droplet,
which deviate from the bulk conditions (Schlichting and
Gersten 2000). By monitoring the air temperature near the
droplet and by modelling the air flow and heat transfer across
the drying surface, the influence of the surface on the drying
conditions can be quantified.

This study focuses on the drying of the enzyme (3-
galactosidase suspended in a maltodextrin matrix. The en-
zyme [3-galactosidase is selected as the model enzyme in
this study, because it is an industrial relevant enzyme ap-
plied for production of lactose-hydrolysed milk and whey.
Additionally, its activity can be easily determined and its
inactivation kinetics has been studied before, though under
steady-state conditions, providing strong basis for this study
(Yamamoto and Sano 1992; Yoshioka et al. 1994; Perdana
et al. 2011b). The inactivation kinetics of (3-galactosidase
from the previous studies were combined with the heat and
mass transfer model to predict the residual activity of f3-

galactosidase during the single droplet drying experiments.
Finally, the predictive value of the model was also checked by
drying of [3-galactosidase in a laboratory spray dryer system.

Modelling and Statistical Evaluation

This section consists of four parts: (1) model description for a
single droplet drying, (2) modelling temperature and air flow
distribution across the flat plate, (3) inactivation kinetics of (3-
galactosidase, and (4) parameter optimisation and statistical
evaluation.

Model Description for Single Droplet Drying

In analogy to several previous studies, a heat and mass transfer
model is used to describe the drying of a sessile single droplet
(Sloth et al. 2006; Straatsma et al. 2007; Mezhericher et al.
2008). The sessile droplet is approximated as a spherical
droplet, and it is thus assumed that the diffusion occurs only
in the radial direction. For the small droplet sizes considered,
the temperature gradient inside the droplet could be neglected.
This assumption is valid if the Biot number (Bi) <0.1. Bi is
defined as the ratio of external heat transfer (between air and
droplet) and the internal heat transfer (in the droplet, Incropera
and De Witt 1985).

 hdy

Bi=
i o

(1)

In this study, Bi is around 0.02.
The following differential equation is used to describe the
droplet mass change in time

T kAR

dmd ) MW aWPsft Poc
Ty  Pu.

(2)

where mgq is the mass of the droplet, ¢ is the time, £, is the mass
transfer coefficient, Ry is the droplet radius, M,, is the molec-
ular weight of water, R is the ideal gas constant, ay, is the water
activity, P,,*" is the saturated vapour of water at T}, T, is the
temperature of the droplet, P, is the vapour partial pressure in
the bulk air and T, is the bulk air temperature.

The developing moisture gradient inside the droplet is
described by Fickian diffusion

JCy 0 (0Cy
—L =Dya— = 3
ot d ar( or ) 3)
Where C,, is the water concentration, D, 4 is the

effective diffusion coefficient of water in the droplet and 7 is
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the radial coordinate. The boundary conditions applied
here are

t=0,0<r<Ry —y

dr
t=tr=0 “x—0
. dc, 2 My (P P
t=1t,r =Ry —Dwa g = kdnRa" g (T - rt)

The temperature change of the droplet is described by the
following enthalpy balance:
dmd

dr,
—t" = hg4nR:(Too — Ty) — —2 Hi,

(mwcpaw + mscpvs) d dt

(4)

where my is the mass of the solute, ¢, and ¢, the heat
capacity of the water and the solute respectively, /4 the heat
transfer coefficient to the droplet through convection and
H,, is the evaporation enthalpy of water.

The coupled heat and mass transfer models were solved
numerically using 100 radial layers in the droplet. In each
layer the same solute mass (ms) was calculated according to

Vao
s — 5
0= (5)

ms =
where C; is the initial solute concentration and Vy is the
initial volume of the droplet.

Since the initial solute concentration is assumed homoge-
nous, the initial solute mass distribution is approximated with
the initial volume distribution. The radial position of the /™
layer from the centre of the droplet can be calculated as
follows

e (12 o

where 7 is the total number of layers for numerical integration.
The layer thickness Ar is

ri, i=1
Ari_{ri_ri—la i>2 ™

The volume of each layer V'is then

o=t s (8)
Pw  Ps

where p,, and p; are the densities of water and solute, respec-
tively. The average water concentration is then defined as
My My

C’W:_:mw g (9)
Voot
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Reorganizing Eq. 9. results in
i} _ G (10)
Ps (1 - C—)

P

The droplet shrinks upon drying due to the evaporation of
water. This shrinkage influences the heat and mass transfer
within the droplet. The model was therefore corrected to
describe the decrease of layer thickness due to shrinkage
(Farid 2003). This correction was based on the water concen-
tration in every layer at >0 that is calculated from Eq. 3
(Crank 1990). From the water concentration, the new volume
of the layer was recalculated as

V_’Z—:<1+FICW)) (11)

The radial coordinate of every partition was corrected
using this new volume. The radius of the ith partition is

i 1/3
r= (3(20 Vl)) (12)

4z

The thickness of every partition could be recalculated
using Eq. 7. To solve the model, several closure equations
like heat and mass transfer coefficient, water activity, mois-
ture diffusion coefficient, and vapour pressure are required,
which are tabulated in Table 1.

Modelling Temperature and Air Flow Distribution
Across the Flat Plate

In this study, the droplet was deposited on a flat plate. The
drawback of this configuration is that in addition to heat
transfer from the air to the droplet, also heat is transferred
from the air to the flat plate through convection. This heat is
further transferred from the plate to the droplet through
conduction. It is of major importance to quantify the heat
transfer between the flat plate and the droplet and compare
this to the convective heat transfer via the drying air. The
conductive heat transfer between the flat plate and the
droplet is preferably as low as possible, when one wants to
mimic the drying of a droplet suspended in air. By using a
hydrophobic surface, the contact area for conductive heat
transfer has already been reduced. Furthermore, the temper-
ature in the air near the flat plate deviates from the bulk air
temperature affecting the drying process. Therefore a model
description of the temperature gradients within the plate and
in the air near the plate was developed.

To minimize turbulence (eddy formation) near the edge
of the depositing plate, a thin flat plate is used rather than a
blunt-edged plate. However, the presence of the flat plate
still influences the flow pattern of the drying air above the
plate, i.e. near the droplet (Fig. 1). A boundary layer model
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Table 1 The closure equations used in drying model

Equation name Equation

Reference

Saturated vapour pressure

tog (155) = ~7.90298 (% — 1) +5.02808 log ()

Goff and Gratch (1946)

—1.3816 - 10—7<1011.344(1,l,[i;) .

+8.1328 - 10*3(10*3-49149(%‘*1) - 1) + log(ey)

For vapour at total pressure 1 atm, T is 373.15 K

and ey is 1013.25 (in hPa)

Xo CyKy-ay

Water activity (Guggenheim-
Anderson-de Boer model)
Heat and mass transfer coefficients

h}.ﬂ —24 0.6Re0-51p033

kedy _ 0.51Qn0.33
ij =24 0.6Re""Sc

Xm ™ (1-K-ay) (1-Ky-ay+Cy Ky-ay )

For a droplet suspended in air, used in the drying
model for laboratory-scale spray dryer:

Quirijns et al. (2005)

Perdana et al. (2011b),
Ranz and Marshall (1952)

For a sessile droplet, used in the drying model

for single droplet drying:

hdg 0.24 + 0.63Re°'51Pr°'33

=

Kdu — 024 1 0.63Re"51 8033

d, d ’
where Re = £ ; Pr = ot Qo = fala
) 0

Diffusion coefficient of water
in maltodextrin solution

where £, = 4108

Diffusion coefficient of water in air

_ 35.84215X,
Dy, a.7=300c = exp(— 1+1o_2xww)

Dyg = Dw,dAT:30°CeXp(7 % (1

Dya=—2.775-10"°+4.479 - 1037 + 1.656 - 101072

Dya

Réderer et al. (2002)

7~ wmn)

Bolz and Tuve (1973)

according to Mosaad (1999) is used to describe the air flow
and temperature distribution across the flat plate: a hydrody-
namic boundary layer is defined for the air flow distribution
and a thermal boundary layer for the temperature distribution

“=3()-1() 0<z<s (13)
T-T. _ 3 (s AL _ o
Tox—Too _f(ﬁ)‘f'i(g), 0<z<é, (14)

where z is the height coordinate from the surface of the flat
plate, u is the air velocity at z, u,, is the bulk velocity of air, v

Non-uniform
air flow (7,u)

Heat
conygection Evaporation

" A

4

Uniform air
flow (7,u)

Heat,
——> convection;

D>
z Heat conduction

L.

Fig. 1 Sketch of a single droplet drying on a flat plate with the air flow
pattern and governing heat transfer processes indicated. The sessile
droplet is dried on a thin plate consisting of a hydrophobic membrane
(0.15 mm) on top of a stainless steel platform (1.00 mm)

¢--- Non-uniform heat transfer rate ----- >

is the kinematics viscosity of air, 7T}, is the temperature of
the surface of the flat plate at distance x (at the front edge of
the flat plate, x=0), T, is the bulk air temperature, ¢ is the
hydrodynamic boundary layer at distance x and &, is the
thermal boundary layer. The hydrodynamic boundary layer
for u=0.99u,, is (Schlichting and Gersten 2000)

§=5]— (15)

and d; is thermal boundary layer at distance x

Pr1/3 Pr<i1
= ? - 1
S { Pr, Pr>1 (16)

The heat transfer coefficient between the air and the flat
plate 4, is approximated by (Thirumaleshwar 2009)

hy = 0.332 2 (4e)Pr!/3; pr = el (17)

a

where A, is the thermal conductivity of air, Pr is the Prandtl
number of air, ¢, , is the heat capacity of air and p, is the
dynamic viscosity of air. The value of A,, ¢p, and p, are
temperature dependent; in Eq. 17, the value are evaluated at
T=(Ty+T.,)2.

The heat transfer coefficient decreases as a function of
the x coordinate (Eq. 17) and is calculated locally. It was

@ Springer
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estimated numerically; i.e. assuming a Ax at distance L from
the front side of the plate, the average heat transfer coeffi-
cient is obtained by integrating 4, along Ax

- la 1/3 Uo 1/2 Uso 1/2
hpave = 0664 5 PP (52) 7 — (22

(18)

where £, 4y is the average local heat transfer coefficient.

The non-uniform heat transfer rate across the plate con-
tributes to the development of a temperature gradient within
the plate. The temperature distribution within the plate is
described with a one-dimensional partial differential equation
(Kakac and Yener 1993). It is assumed that no temperature
gradient in the y direction (perpendicular to the air flow
direction) and in the z direction (within the plate; because of
the small thickness, i.e. 150 pum)

Ot pycpp \ Ox? Z2yp

where pj, is the density of the plate, Z is the thickness of the flat
plate and 4,, is the thermal conductivity of the flat plate. The
boundary layer applied here are that near the droplet the flat
plate temperature is equal to the droplet temperature and at the
edge of the flat plate (far from the droplet) the temperature
gradient of the flat plate is 0.

Equations 14 and 19 were solved numerically to estimate
the temperature distribution history within and above the flat
plate. The predictions were validated by simple temperature
measurements at different heights above the plate.

To estimate the conductive heat transfer between the
surface and the droplet and compare it to the convective
heat transfer between the air and the droplet, the conductive
heat flux Q through the contact surface of the droplet was
estimated according to

ATcond
= A,27R
Q P ez Axcond

(20)
where AT.ond/AXcong 18 the temperature gradient in the
partition layer of the flat plate that is closest the droplet. It
was found that the conductive heat flux was smaller than 5%
of the total heat transferred to the droplet regardless of its
position. Therefore, it can be safely assumed that most heat
is transferred via convective heat transfer.

Inactivation Kinetics of 3-galactosidase

The inactivation rate of the [3-galactosidase is affected by
the temperature and moisture content of the droplet, which

@ Springer

both change with time. A kinetic inactivation model for f3-
galactosidase is developed in earlier work and calibrated
using constant heating experiments (Perdana et al. 2011b).
In the latter experiments, the suspended enzyme is exposed
to various temperature—moisture value combinations for a
specific time and the remaining enzyme activity is mea-
sured. The inactivation kinetics are described by a two-
step inactivation process and the observed inactivation co-
efficient (k.ps) is described as

K
= —— 21
kuba (1 +K1)k2 ( )
where
<AAS¢LW AAHY W)
K| =exp — — :
R RTref
AAHY (11 (1= xy)
P <_R (T B T,.ef>>eXp <_ RT)
(22)

b kel ast, Aty } AHb, (11
2T PR R )P\ "R \T Ty

. Aty - AHb,, 1o (o
> R T Tw) P\ 10y

(23)

where K is the reversible unfolding equilibrium constant, k,
is the complete denaturation rate constant, AASLW:t is the
activation entropy difference between the unfolding and
refolding reactions in pure water, AAH, ”Wi is the activation
enthalpy difference between the unfolding and refolding
reactions in pure water, kg is Boltzmann’s constant, % is
the Planck’s constant, ASLWi is the activation entropy of
complete denaturation in pure water, AHz,W'"t is the activation
enthalpy in pure water, AHz’m'"t is the activation enthalpy in
pure solid form (i.e. no moisture), f describes the effect of
moisture content on conformational stability of the enzyme,
g describes the effect of moisture content on the irreversible
inactivation (second step) kinetic constant of the enzyme
and Tj, is the intercept temperature at which k, w/k; s=1.
Alternatively, the enzyme inactivation can also be regarded
as a one-step inactivation process in which the native enzyme
is irreversibly inactivated. Then
kops = ko (24)
An advantage is that this approach involves only five
parameters to fit instead of eight in the two-step model.
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The effect of the temperature is then still described using the
transitional state theory as shown in Eq. 23.

Parameter Optimization and Statistical Evaluation

To directly extract the kinetics from single droplet drying
experiments the following approach was taken:

1. The temperature and moisture content histories of sev-
eral droplets were predicted using the drying model
(Egs. 3 and 4).

2. The inactivation kinetic constants were optimised to fit
the measured residual enzyme activities after the drying
for all droplets simultaneously.

The parameter optimisation was carried out using a non-
linear least square method solved using the Levenberg—
Marquardt algorithm (Seber and Wild 2005). The confi-
dence interval of the parameters (p=0.95) were estimated
using the Hessian matrix, which was again derived from the
Jacobian matrix of the solution (Richard et al. 2005). All
calculations were performed with MATLAB version 7.10.

Materials and Methods
Sample Preparation

The enzyme, (3-galactosidase from Aspergillus oryzae (Sigma-
Aldrich, Germany) was dissolved in a buffer solution. The
solution was then filtered with a 0.2-pum Minisart sterile sieve
(Sartorius Stedim Biotech SA, Germany) and stored overnight
in a refrigerator. The maltodextrin, with DE 4-7 (Sigma-
Aldrich, Germany), was dissolved in a buffer. The buffer was
prepared from 0.2 M Na,HPO, (Sigma-Aldrich, Germany)
and 0.1 M citric acid (C¢HgO-) solutions (Sigma-Aldrich,
Germany). The pH of the buffer was adjusted to 6.00+0.01.
The feed for single droplet drying experiments was pre-
pared by mixing 600 pL 2.5% w/w enzyme solution and
2,400 uL 25% maltodextrin solution. The feed for the
laboratory-scale spray dryer was prepared by mixing 4 mL
2% w/w enzyme solution and 96 mL 20.8% w/w maltodex-
trin solution. A lower enzyme concentration is used during

Fig. 2 Schematic drawing of @
the drying tunnel, side view (S)

and top view (7) Porous
meil:lia

T and RH
measurement

the laboratory-scale spray dryer experiments. The major
reason was that a larger sample volume could be easily
obtained for performing the enzyme activity test. This is
allowed, since at low enzyme concentration, the inactivation
kinetics of 3-galactosidase is not affected by its concentra-
tion (Yamamoto and Sano 1992).

Deposited Droplet Drying Experiments

The single droplet drying experiments involved the subse-
quent steps: droplet generation, droplet drying, rehydration
and enzyme activity measurement. A micro-dispenser was
used to generate the droplet as described by Perdana et al.
(2011a). The droplet was deposited on a polypropylene
membrane (Akzo Nobel Faser Ag., The Netherlands) posi-
tioned on a platform from stainless steel slab; the thickness
of the membrane was 0.15 mm, and the stainless steel slab
was | mm. The droplet was then positioned in a drying
tunnel (Fig. 2). By guiding the drying air through a porous
medium, a uniform flow distribution could be achieved
within the tunnel. The tunnel was insulated and heated with
heating oil to ensure that the air temperature was constant.
The temperature and relative humidity of the air bulk air was
monitored using SHT75 temperature and humidity sensor
(Sensiron AG, Switzerland). The temperature near the droplet
was monitored using a thermocouple Type K (NiCr—NiAlL; RS
Component, United Kingdom) with probe diameter of
250 um. Furthermore, the setup was equipped with a pEye
1480ME CCD camera with a lens with X9 magnification ratio
(Imaging Development Systems GMBH, Germany) to moni-
tor the droplet geometry evolution during drying.

The single droplet drying experiments were performed
using dry air (RH=0.0%), preheated to a temperature between
80 and 110 °C and a bulk air velocity of 0.20 m/s. After
drying, the resulting powder particle was dissolved in 50 uL
buffer solution, stored overnight in the refrigerator, and then
the enzyme activity was measured.

Laboratory-Scale Spray Drying Experiments

The enzyme solution was dried with a Buchi B-190 spray
dryer (Buchi Labortechnik AG, Switzerland). The residence

Insulated air-feed
tunnel

CCD
camera Tand RH cco
measurement camera
Corona Porous
light source media
| ., .
] o
= o
g <
4
' 4
e \ <
: ! -
Sa>‘nple o
Firism | Corona
Bewnpia position Sy s
position L light source
AIR FLOW DIRECTION s
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time of the particle inside this small spray dryer can be as
short as 1 s. Based on the equipment specification, the
particle diameter after drying was between 2 and 25 pum.
The inlet air temperature was 180 °C, and the outlet air
temperature varied between 80 and 130 °C. Subsequently,
around 1 g of powder was taken and dried further in a
heating chamber at 105 °C for 72 h to determine the
moisture content of the powder after spray drying. Addi-
tionally, a 0.200-g powder sample was reconstituted to
3.80 mL buffer solution and analysed for its residual enzyme
activity.

Measurement of the Residual Activity of [3-galactosidase

The residual activity of 3-galactosidase was measured using an
o-nitrophenyl-3-D-galactopyranoside (ONPG) assay (Sigma-
Aldrich, Germany) according to Perdana et al. (2011b). The
absorbance of the samples incubated in ONPG solution was
immediately measured after incubation at a wavelength
420 nm using a spectrophotometer (Beckman Coulter, Inc.,
USA).

Particle Size Measurement

Approximately 1 g of the spray-dried sample was dried
further in a heating chamber at 105 °C for 72 h to reduce
the moisture content and to avoid particle agglomeration.
Afterwards, the particle size distribution of the sample was
measured using Mastersizer Scirocco 2000 (Malvern Instru-
ment LTD, England).

Results and Discussion
Droplet Geometry Evolution

Snapshots of a deposited droplet during the drying process
are shown in Fig. 3. The droplet shrinks uniformly before
30 s, and then starts to develop wrinkles. The uneven
shrinkage after 60 s suggests that a thin non-flowing layer
is developed, which cannot accommodate a homogenous
shrinkage (Walton and Mumford 1999). Instead, it collapses
which leads to an irregular shape of the particle.

Os 30s 60s 90s 120 s 150 s

Fig. 3 Droplet geometry change during a single droplet drying exper-
iment at an air temperature of 80 °C, an absolute air humidity of 0 g/kg
dry air, a bulk air velocity of 0.20 m/s, an initial droplet height of
800 pm and an initial droplet moisture content of 80% w/w

@ Springer

Drying Model

In the heat and mass transfer model, the sessile droplet is
assumed to be a perfect sphere. This assumption reduces the
complexity of the model and is acceptable since the initial
sessile droplet has a very high contact angle (>130 °C) and
also the final powder particle remains approximately spheri-
cal, as shown in Fig. 3. The predicted temperature and mois-
ture profiles are shown in Fig. 4.

The model predicts that the moisture content at the sur-
face decreases faster than in the centre of the droplet and
reaches a moisture content close to 0% at around 35 s. This
is in line with the visual observations, i.e. the occurrence of
wrinkles indicating the presence of a thin dry layer. As
shown in Fig. 4 (bottom), at r=31 s, the moisture content
gradient near the surface of the droplet is very steep, indi-
cating that a very thin layer near the droplet surface is very
dry. The model also predicts that the droplet radius does not
change any more after approximately 60 s of drying. This is
also in line with the visual observations.

The droplet temperature at the beginning (<40 s) of the
drying process is equal to the corresponding wet bulb tem-
perature of the heating air (Fig. 4, top). When the moisture
content near the surface of the droplet decreases to less than
100 kg/m?, the droplet temperature starts to increase. At this
point the water evaporation rate decreases together with the
lower vapour pressure at the droplet surface (a,,<1). While
the evaporation rate decreases, the heat transfer into the
droplet continues and causes an accumulation of heat, ob-
served as an increase in droplet temperature.

Predicting the Residual Enzyme Activity After Drying

The single droplet drying method is applied to dry (3-
galactosidase suspended in a maltodextrin matrix. The inac-
tivation kinetics of (3-galactosidase determined with inde-
pendent experimental data was combined with the heat and
mass transfer model to predict the residual enzyme activity
after drying (Perdana et al. 2011b). Subsequently, the pre-
dicted enzyme activity is compared to the drying results. In
modelling the inactivation of (3-galactosidase, the pH change
due to decreasing moisture content was neglected. This is
allowed since most of the enzyme activity loss takes place at
high moisture content where the presence of the added buffer
stabilizes the pH. Furthermore, at lower moisture content, the
enzyme activity loss is negligible at the time scale of drying
applied. The model predictions and the experimental data are
shown in Fig. 5. As shown in Fig. 5, the heat and mass transfer
model using the independent kinetic inactivation model for 3-
galactosidase is in reasonable agreement with the experimen-
tal data.

Both the predictions and the experimental data show that
the enzyme activity does not decrease during the initial
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Fig. 4 Top temperature and moisture content history of a droplet dried
during a single droplet drying experiment, 7, is the air temperature
contacting the droplet, averaged as the air temperature at half droplet
height; Ty is the droplet temperature; and x,, is the moisture content.
Middle droplet radius change during drying from the visual monitoring
(symbol) and the model (line). Bottom moisture content distribution
inside the droplet at r=32 s, the symbols show the border of the
partition for each layer. The drying is carried out at an air temperature
of 80 °C, a bulk air velocity of 0.20 m/s and an absolute air humidity of
0 kg/kg dry air. The initial moisture content is 80% w/w and the initial
droplet height is 800 pwm
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drying period (<40 s) because the temperature of the droplet,
which is near the (low) wet bulb temperature. Then, a rapid
inactivation rate is observed, which slowly declines to result
in a final enzyme activity. The subsequent rapid inactivation
can be explained by an increase in particle temperature. At
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4F ig. 5 Top the residual enzyme activity after drying of a single sessile

droplet at air temperatures of 80 °C (empty circles), 87 °C (empty
squares), 95 °C (empty triangles) and 110 °C (empty diamonds) for
an initial droplet diameter of 800 wm. Middle the effect of initial
droplet size on residual enzyme activity for an initial droplet diameter
of 800 um (empty triangles) and 1,400 um (empty circles). The error
bar shows the standard deviation of the data. The predictions (solid
line) are based on the inactivation kinetics of (3-galactosidase from the
constant heating experiments. Botfom the residual activity of f[3-
galactosidase as a function of the radial coordinate (solid line) and of
the volumetric coordinate (symbols) after drying of a droplet with an
initial diameter of 800 um at an air temperature of 95 °C for 300 s

this point the heat transfer is not compensated by sufficient
water evaporation. The increase in temperature has especial-
ly impact on the enzyme present in the centre of the droplet
as the moisture content in the centre is still high as also
reported for drying of other heat-sensitive products (Chen
and Patel 2007; Langrish 2009). After a while the enzyme
inactivation rate decreases and the residual enzyme activity
in the particle is obtained. The enzyme inactivation rate
decreases because of the decreasing moisture content, espe-
cially near the surface of the droplet and finally also in the
centre of the droplet. Most of the residual active enzyme is
located near the surface of the particle as shown in Fig. 5
(bottom). It can be concluded that the different moisture
content history at different locations in the droplet deter-
mines the large differences in residual enzyme activity
across the droplet radius. A strategy that might be followed
to retain maximum enzyme activity is to minimize the
presence of enzyme in the centre of the droplet. This can
for example be achieved by drying the enzyme in a droplet
that forms a hollow sphere upon drying (Etzel et al. 1996) or
by applying a coating of a concentrated enzyme solution on
pre-dried particles.

The results also show that the initial droplet diameter
determines the residual enzyme activity to a large extent.
Figure 5 indicates that the residual activity is higher for
smaller droplets. Although inactivation starts earlier in

a smaller droplet, the critical region is shorter (i.e. the
combination of high temperature and high moisture con-
tent in the centre of the droplet) compared to that in the
larger droplet. This implies that with respect to enzyme
inactivation, a smaller droplet size is preferred for spray

drying.

Direct Extraction of Inactivation Kinetic Parameters
from Drying Experiments

The parameters describing the specific inactivation kinetics of
[3-galactosidase in maltodextrin may be extracted directly from
the single droplet drying results. This is preferred as these
experiments are much less labour intensive and can be scaled
out to facilitate a high throughput approach. If the method is
reliable, the parameters for 3-galactosidase inactivation direct-
ly obtained from single droplet drying experiments should be
similar to the ones obtained from the separate heating experi-
ments (Perdana et al. 2011b).

Both the one-step and the two-step inactivation models
were evaluated to describe the experimental drying data.
The results of the parameter optimisation are compared to
the parameters from the earlier study (Table 2).

It can be observed that the parameters obtained from the
drying experiments differ from the parameter values from
the heating experiments (Table 2). This can be explained by
the fact that the inactivation during single droplet drying
experiments occurs primarily during a very short critical
period. This critical period is dictated by the drying history
and involves temperatures and moisture content values that
lead to rapid inactivation. Therefore, the parameter values
are optimised such that they specifically describe the inacti-
vation during this critical period. This explanation is further
confirmed by implementing the one-step inactivation model,
which is also able to describe the inactivation during drying
experiments well. The data from the heating experiments were
obtained at many different temperature and moisture content

Table 2 The parameter values
for the inactivation kinetics of
[3-galactosidase estimated from
heating experiments and from
single droplet drying

Estimated parameter®

Heating experiments®

Drying experiments

Two-step inactivation model
(Egs. 21, 22, and 23)

One-step inactivation
model (Eq. 23)

experiments

*The uncertainty of the parame-
ter is provided within 95% con-
fidence interval

®The values of the parameters
are according to Perdana et al.
(2011b)

“Reference value, not fitted
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AASF (I mol " KTh
AAHF (I mol ™)
AS, o F (T mol ' K7
AH, (T mol ™)
AH, * (J mol ™)

m

P

Tint (°C)

Trer (°C)°

1.08:10°+£0.25-10°
3.57-10°+£0.81-10°
6.75-10°+1.17-10°
3.28:10°+0.40-10°
1.28:10°£0.20-10°
2.60-10*+0.00094-10*
1.16+0.0056
33.85+0.065

68.50

1.31-10%+0.0063-10°
4.86-10°+0.023-10°
5.49-102+0.097-10?
2.76-10°+0.063-10°
1.57-10°+0.027-10°
8.92:10°+0.0010-10°
5.37+0.011
—49.65+8.80

68.50

NA
NA
1.88-10°+0.00010-10°
7.74-10°+0.00023-10°
4.77-10°+0.0010-10°
NA

5.67+0.00038
8.25+0.026

68.50
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combinations and could be varied independently. Therefore,
the values are based on a much wider data set, but having less
data in the specific range that are relevant for spray drying.

Another reason for the difference between the kinetic
parameters is that the parameter optimisation procedure
forces the model to describe the residual enzyme activity
after the drying. By doing so, any uncertainties in the heat
and mass transfer model are neglected. However, from
earlier observations, it was concluded that the heat and mass
transfer model could predict the droplet shrinkage and the
residual enzyme activity using the kinetic parameters from
the heating experiments reasonably accurate. Therefore, it is
believed that the uncertainties involved are not very large
and that the kinetic parameters of the single droplet experi-
ments remain valid. This conclusion is supported by labo-
ratory spray drying experiments.

z
=
©
©
0]
£
>
N
c
|

0 i L 1 i 3

0 60 120 180 240 300

Time (s)
d o

1.
; 0.8t (1]
=
(&)
© 0.61
g Q\(D
N
N 04}
|

0.2

O 1 1 1 L 3

0 60 120 180 240 300

Time (s)

Fig. 6 Top the fitted residual enzyme activity obtained from single
droplet drying experiments at varying air temperatures of 80 °C (empty
circles), 87 °C (empty squares), 95 °C (empty triangles) and 110 °C
(empty diamonds) for an initial droplet diameter of 800 um. Bottom the
residual enzyme activity predicted using the inactivation kinetics

In Fig. 6 (bottom), the effect of the initial droplet diameter
on the residual 3-galactosidase activity after drying is shown.
The figure shows that the model accurately predicts the ex-
perimental data. Therefore, it can be concluded that although
the values for the parameters in the model for inactivation
kinetics obtained from the drying experiments may be less
precise, the inactivation kinetics are accurate enough to pre-
dict the effect of drying on the inactivation of the enzyme.
This is because the critical drying period dictates the end
product properties.

Table 2 shows that the values of the confidence
intervals of the parameters are smaller for the one-
step inactivation compared to the two-step inactivation
model. Therefore, it may be concluded that the one-
step inactivation model is more favourable than the
two-step inactivation model to describe the effect of
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extracted from drying data at various heating air temperatures com-
pared to the drying results from different initial droplet diameter:
500 um (empty squares) and 1,400 pum (empty circles). The (3-
galactosidase inactivation is described by the two-step inactivation
model (/eft) and the one-step inactivation model (right)
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drying on enzyme activity loss. From practical point of view,
the one-step inactivation model may be sufficient to translate
the measured inactivation from single droplet experiments
into useful inactivation kinetics.

Laboratory-Scale Spray Drying

The models were also applied to predict the residual enzyme
activity after drying on a laboratory-scale spray dryer. The
results are shown in Fig. 7. These results indicate that at an
outlet air temperature below 100 °C, the enzyme is hardly
inactivated upon drying, while with an outlet air temperature
higher than 100 °C, the enzyme is increasingly inactivated
with higher temperature as also observed by Yamamoto and
Sano (1992).

The volume-weighted mean diameter (d,3) of the spray-
dried particle is 6.94 um, fed into the drying model to
predict the residual enzyme activity. By assuming that the
volumetric droplet shrinkage is equal to the amount of water
removed, the initial droplet diameter was estimated at 11.8 um
(initial moisture content 80% w/w, Langrish 2009).

The model can predict the drying results reasonably
accurate, but at temperatures between 100 and 120 °C, the
predicted value of the residual activity of [3-galactosidase is
slightly lower than the experimental results. This may be
due to the lower initial droplet size in reality due to non-
ideal shrinkage leading to more rapid drying and thus lower
inactivation (see also Fig. 3).

Furthermore, Fig. 7 shows that there is only a small differ-
ence between the two inactivation models at temperatures
larger than 100 °C. This is probably because the inactiva-

e o)
1.0 e two-step inactivation
from heating exp.
e
< 0.8}
Py
2
© 0.6
@©
[0}
g
i’ 0.4r one-step inactivation
Lﬁ from drying exp.
two-step inactivation
0.2} from drying exp.
0.0 v . : .
80 90 100 110 120

Outlet air temperature (°C)

Fig. 7 Left the residual activity of [3-galactosidase after spray drying
in a laboratory-scale spray dryer. The symbols represent the experi-
mental results at an inlet air temperature of 180 °C and varied outlet air
temperature. The lines represent the predicted enzyme activity using
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Volume fraction (%)

tion kinetic constant of the one-step inactivation model
increases more quickly with temperature. This may lead
to an overestimation of the inactivation kinetic constant at
high temperatures.

Conclusions

A newly developed, small-scale experimental setup to mim-
ic spray drying was presented which involves the drying of
single droplets deposited on a hydrophobic flat plate. This
approach ensures rapid and inexpensive trials while main-
taining key parameters similar to the process condition on
spray drying. In this study, the setup is used to evaluate the
inactivation of [3-galactosidase during drying.

To describe the physical and chemical changes during
drying, a model based on heat and mass transfer is pre-
sented. The model, combined with the inactivation kinetics
of (3-galactosidase from separate heating experiments, was
used to predict the loss in enzyme activity after drying. It is
found that the model can provide a reasonably accurate
prediction on the residual enzyme activity.

It was also shown that the inactivation kinetics of f3-
galactosidase can be directly extracted from the single droplets
drying experiments rather than using the kinetics from sepa-
rate heating experiments. The parameters that were obtained
in this way were used to predict other experimental results
both from other single droplet drying experiments and from a
laboratory-scale spray dryer. The new inactivation kinetics
provides reasonably accurate prediction on the residual en-
zyme activity for both procedures.

10¢

10° 10° 10"
Particle diameter (m)

the inactivation kinetics obtained from the single droplet drying experi-
ments and from the constant heating experiments. Right the particle
size distribution of the powder obtained from the laboratory-scale

spray dryer
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Nomenclature Nomenclature
A Area m? R Ideal gas constant (8.314) T mol™' K™
ay, Water activity - Re Reynolds number -
p Heat capacity Jkg ' K Ry Droplet radius m
C Concentration kg m™ AS* Activation entropy Jmol ' K™
C, Constant in GAB sorption model — — AAS* Activation entropy difference Tmol ' K™
d Diameter (2Rg) m between unfolding and
D Diffusion coefficient m? s refo.ldmg reaction
) . . Sc Schmidt number -
E, Arrhenius-type diffusion J mol ; Tim
activation energy ¢ s
f Parameter to describe the - T Temperature °C
effect of moisture content u Velocity ms’!
on c.0.11forrnat1onal v Volume m’
stability of the enzyme . . . di
g Parameter to describe the effect _ x Distance in Cartesian coordinate m |
of moisture content on the Xy Mass fraction of water kg kg
irreversible inac;tiva}tion Xy Moisture content kg kg ™' dry matter
(second step) kinetic Xwm Monolayer moisture content in kg kg ™' dry matter
constant of the enzyme .
N 1 GAB sorption model
h Planck’s constant Is Di i C . &
(6.626x10°%) v istance in Cartesian coordinate m
h Convective heat Js ' m2K! z Distance in Cartesian coordinate m
transfer coefficient VA Thickness m
AH,, Enthalpy of evaporation JTkg™! Greek symbols
it . . -1 .
AH Activation enthalpy J mol 5 Hydrodynamic boundary m
AAH? Activation enthalpy difference J mol ™ layer thickness
between unfolding and 0 Thermal boundary m
refolding reaction layer thickness
J Evaporation rate kgs ! A Thermal conductivity Js!'m 'K
kg Boltzmann’s constant JK! I Dynamic viscosity Pas
—23
(1.380x10°") p Density kg m>
e - -1
kobs Observed inactivation kinetic S ) Ki tic vi . 5
constant of -galactosidase v ) inematic viscosity ms
k> Irreversible complete 5! Subscript
denaturation rate constant a Air
of B-galactosidase avg Average
ke Mass transfer coefficient ms ! d Conducti
con onduction
K, Constant in GAB sorption model — —
. . - d Droplet
K, Unfolding equilibrium constant Ss .
of B-galactosidase nt Intercept
L Length m m Very dry matrix
m Mass kg obs Observed
my Parameter to describe the - p Flat plate for
effect of moisture content droplet deposition
on unfolding equilibrium ref Reference
of B-galactosidase . s Solute
M, M(()llgleli(}ilg)welght of water kg mol cat Saturated
n Number of partition - w Water
P Uncertainty of the parameters - 0 Initial
Di Parameter to describe the - ® Bulk air
effect of moisture content
on irreversible complete
denaturation rate constant Acknowledgement The authors thank Advanced Chemical Technol-
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