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Abstract Propensity score matching is a semi-parametric method of balancing co-
variates that estimates the causal effect of a treatment, intervention, or action on
a specific outcome. Propensity scores are typically estimated using parametric mod-
els for binary outcomes, such as logistic regression. Therefore, model specification
may still play an important role, even if the causal effect is estimated nonpara-
metrically in the matched sample. Methodological research indicates that incorrect
specification of the propensity score equation can lead to biased estimates. Augment-
ing the propensity score equation with terms that represent potential nonlinearity and
nonadditivity, as proposed by Dehejia and Wahba and more recently by Imbens and
Rubin, represents a means of avoiding such bias. Here, we conduct a Monte Carlo
simulation and show that the misspecification bias is rather small in many situa-
tions. However, when the propensity score equation and/or the outcome equation
are characterized by strong nonlinearity and nonadditivity, the misspecification bias
can be severe. Augmentation is shown to reduce this bias, often substantially. The
Dehejia-Wahba (2002) algorithm performs better than the Imbens-Rubin algorithm,
especially when the outcome equation is strongly nonlinear and nonadditive.
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Erweiterung der Propensity Score Gleichung zur Vermeidung von
Fehlspezifikationen? Eine Monte Carlo Simulation

Zusammenfassung Propensity Score Matching ist eine semi-parametrische Metho-
de zur Drittvariablenkontrolle bei der Schätzung kausaler Effekt eines Treatments,
einer Intervention oder einer Handlung auf eine bestimmte Zielvariable. Propensity-
Scores werden typischerweise unter Verwendung parametrischer Modelle für binäre
Ergebnisse geschätzt, etwa der logistischen Regression. Daher stellt sich trotzdem
die Frage der korrekten Modellspezifikation, selbst wenn der kausale Effekt in der
gematchten Stichprobe nichtparametrisch geschätzt wird. Studien zeigen, dass eine
falsche Spezifikation der Propensity-Score-Gleichung zu verzerrten Schätzungen
führen kann. Um solche Verzerrungen zu vermeiden, haben Dehejia und Wahba
und kürzlich Imbens und Rubin Algorithmen zur Anreicherung der Propensity-
Score-Gleichung mit Termen vorgeschlagen, welche eine potenzielle Nichtlineari-
tät und Nichtadditivität in der Modellspezifikation abbilden sollen. In der vorlie-
genden Arbeit wird eine Monte-Carlo-Simulation durchgeführt und es zeigt sich,
dass die Verzerrung aufgrund von Fehlspezifikation in vielen Situationen eher klein
ist. Wenn jedoch die Propensity-Score-Gleichung und/oder die Outcome-Gleichung
durch starke Nichtlinearität und Nichtadditivität gekennzeichnet sind, kann die Fehl-
spezifizierungs-Vorspannung schwerwiegend sein. Anreicherungsalgorithmen redu-
zieren solche Verzerrungen oft erheblich. Der Dehejia-Wahba Algorithmus scheint
hierzu besser geeignet als der Algorithmus von Imbens-Rubin (2015), insbesondere
dann, wenn auch die Ergebnisgleichung stark nichtlinear und nichtadditiv ist.

Schlüsselwörter Causal inference · Propensity score matching · Propensity score
stratification · Misspecification bias · Monte carlo simulation

1 Introduction

Propensity score matching was developed by Rosenbaum and Rubin (1983a, 1983b)
and closely follows Rubin’s (1974) framework of potential outcomes. Matching es-
timators are intended to adjust a given sample of treated and untreated individuals
to mimic a random assignment of individuals to a treatment and control group1.
Therefore, when applying matching techniques, researchers are conducting a “hy-
pothetical randomized experiment” (Rubin 1986). Nevertheless, statistics does not
provide guidelines as to whether the sociological subject matter lends itself to such
an interpretation; the researcher and reader must make this decision, and different
research traditions may come to different conclusions (see also the discussion in
Holland 1986). Matching estimators have been successfully applied to a variety of
research questions, including those in sociology, economics, and other social science
fields. Propensity score matching is one of the most commonly applied matching
estimators in the field.

1 For clarity, we focus on the binary case; however, matching estimators have also been generalized to
non-binary treatments (cf., Imai and van Dyk 2004).
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In contrast to regression methods, propensity score matching is considered a non-
parametric method because it does not require the choice of a functional form.
Indeed, as in randomized experiments, only a comparison of means is needed after
matching on the propensity score. However, in most applications, the true propensity
score is unknown and must be estimated from the data. Because the true propensity
score is typically estimated using parametric estimators of treatment participation,
such as probit and logit models, some scholars refer to propensity score matching as
a semi-parametric method (Huber et al. 2012). As demonstrated by recent method-
ological studies, incorrect specification of the propensity score equation can lead to
serious bias. Zhao (2008) investigated the effects of over- and under-specifying the
propensity score equation on bias and found that, in either case, the causal effect
“is insensitive to specification of the propensity score” (Zhao 2008, p. 313). How-
ever, Zhao’s own findings do not fully support this claim; rather, they indicate that
matching without replacement on an under-specified propensity score induces bias
in two out of three cases. In a Monte Carlo simulation, Millimet and Tchernis (2009)
find that over-specifying does not induce bias, but under-specifying the propensity
score equation does. In an additional empirical application using real data, Millimet
and Tchernis found that the causal effect was sensitive to the specification of the
propensity score.

Because the true propensity score is unknown in most applications, there is no
way for applied researchers to know whether a model is misspecified. For example,
applied researchers seldom acknowledge that estimating the propensity score by lo-
gistic regression follows a different set of rules than employing logistic regression
to test hypotheses. Whereas applied researchers appear to believe that the estimating
the propensity score coincides with explaining the choice for or against participation
in the treatment group, methodologists Dehejia and Wahba (2002: 161) note that
“the role of the propensity score is only to reduce the dimensions of the condi-
tioning; as such it has no behavioral assumptions attached to it”. Thus, the usual
goodness-of-fit tests do not provide meaningful information on how well the match-
ing eliminates the influence of covariates2 (Rubin 2004). In fact, variable selection
based on goodness-of-fit tests or model-building algorithms (e. g., forward step-wise
regression) often lead to inefficient estimates (Brookhart et al. 2006). Similarly, cer-
tain caveats regarding, e. g., multicollinearity do not apply, and tests for significance
are only marginally informative on whether to include a covariate in the estimation
(c.f., Harding 2003; Rubin 2004). However, because specific guidelines regarding
model specification in the context of propensity score matching are scarce, the topic
is rarely addressed in applied research. The point we wish to make refers to an even
more subtle aspect of model specification than which covariates to include. Here,
we draw attention to the issue of correctly specifying the propensity score equation,
rather than to the consequences of including or excluding specific covariates.

2 Rubin (2004, p. 855) distinguishes between “diagnostics for the successful prediction of probabilities
and parameter estimates underlying those probabilities, possibly estimated using logistic regression” (e. g.,
goodness-of-fit tests), and “diagnostics for the successful design of observational studies based on esti-
mated propensity scores, possibly estimated using logistic regression” (e. g., balancing tests). The former
convey no meaningful information on the quality of the matching procedure, whereas the latter are “a crit-
ically important activity” when conducting a propensity score matching analysis.
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With this paper, we hope to contribute in several ways to the methodological lit-
erature on misspecification of the propensity score. First, whereas most methodolog-
ical research focuses on the effect of misspecification on propensity score weighting
(e. g. Setoguchi et al. 2008), our focus is on propensity score matching. Second,
we specifically focus on investigating the performance of an algorithm proposed
by Dehejia and Wahba (2002) that is intended to help applied researchers avoid
misspecification of the propensity score equation. After its first implementation in
the context of propensity score stratification, the algorithm has been severely crit-
icized. In this paper, we propose a modified version in the context of propensity
score matching. We argue that these modifications should eliminate the weaknesses
of the algorithm while retaining its strengths; that is, it provides researchers with
an easy-to-implement way of reducing the danger of bias due to misspecification.
Third, we conduct a Monte Carlo simulation to test the performance of the modi-
fied Dehejia and Wahba (DW) algorithm. To our knowledge, the algorithm has not
been tested in this way. In the Monte Carlo simulation, we compare two alternative
proposals, a propensity score stratification approach proposed by Hong (2010) and
an alternative augmentation algorithm proposed by Imbens and Rubin (2015).

The paper is structured as follows. Sect. 2 describes propensity score matching
and underscores the importance of balancing tests. Sect. 3 introduces the Dehejia
and Wahba (2002) algorithm and discusses its weaknesses. Sect. 4 introduces a mod-
ified version of the Dehejia–Wahba (2002) algorithm and two alternative estimators
that also aim to avoid misspecification bias. Sect. 5 describes a Monte Carlo simu-
lation performed to determine whether the modified DW algorithm avoids bias from
misspecified propensity score equations. Sect. 5 presents the results, and Sect. 6
concludes the paper.

2 The propensity score tautology and the importance of balancing tests

In a randomized experiment, individuals are distributed into treatment and control
groups, irrespective of their characteristics. Although randomized experiments are
becoming increasingly common in many fields of research (e. g., Jackson and Cox
2013), they are often not feasible for reasons ranging from ethical problems to prac-
tical issues. In observational data, however, we must eliminate all other causally
relevant factors of the outcome ex post to arrive at an unbiased comparison of out-
comes from treated and untreated individuals. In other words, we must eliminate
the bias introduced by confounding variables to ensure that the observed difference
between the treatment and control groups reflects a causal effect. Regression es-
timators ideally address confounders by including them as conditioning variables
and imposing functional form assumptions (e. g., linearity). Matching estimators are
an alternative method of addressing confounders without imposing functional form
assumptions3.

The simplest and most intuitive matching estimators rely on exact matching.
For each treatment individual, an untreated individual must be identified (and vice

3 See Harding (2003, p. 687 f) for a short overview of the main advantages of propensity score matching.
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versa). In exact matching, both individuals are characterized by identical values of
the covariate vector, i. e., the vector of confounding variables, which is denoted x
hereinafter. Given that the subsequent analysis disregards all individuals for whom no
matches can be found, exact matching clearly provides researchers with subsamples
in which covariates are distributed equally in the treated and untreated groups.
Thereafter, the treatment and control groups are considered “balanced”.

Exact matches are more difficult to obtain as more variables are controlled for
and become impossible if at least one variable is continuous. Matching solely on the
propensity score, rather than the confounders themselves, was developed by Rosen-
baum and Rubin (1983a, 1983b) to solve this “curse of dimensionality” (Heckman
et al. 1998). The propensity score collapses the information from several variables
into a single scalar metric. Here, we focus on the average treatment effect on the
treated (att), for which the matching estimator can be expressed as a weighted dif-
ference in means (Smith and Todd 2005a):

cat t D bı D 1

n1

X

i2I1\CS

t1i � 1

n1

X

i2I1\CS

X

j2I0\CS

w.i; j /t0j ;

where t is a binary treatment indicator; t = 1 denotes the treatment status, and t =
0 denotes the control status. I1 and I0 are individuals in the treatment and control
groups, respectively; CS denotes the region of common support in the propensity
score distributions of both groups; n1 is the number of individuals in the treatment
group within the region of common support; and w.i; j / is the weight given to ob-
servation j when it is matched to observation i . Different versions of the matching
estimators can be built, depending on the choice of w.i; j /. Single nearest-neighbor
matching (SNNM) is the most intuitive matching algorithm. In SNNM without re-
placement, observation j is chosen as a match for observation i when it is closest to
i in terms of the absolute distance between their propensity scores jp.xi /�p.xj /j.
SNNM then weighs the outcome of observation j , whose propensity score is closest
to that of observation i , with w.i; j / D 1 and assigns a weight of w.i; j / D 0 to
all other control observations, and the causal effect is then calculated. In multiple
nearest-neighbor matching (MNNM), a weighted average of two or more observa-
tions j is built for each treatment individual. Often, a maximum acceptable distance
(caliper) is set to avoid matches in which p.xj / is extremely far from p.xi /, even
though it is the nearest neighbor. Observations not in the CS, i. e., treatment group
individuals for whom no matching partner is found and control group individuals
that are not used as matching partners, are excluded from the analysis.

The propensity score is defined as the true probability of being in the treatment
group, conditional on all confounding variables. However, the true propensity score
is generally unknown and is often estimated using logistic regression (or a similar
binary outcome model):

bpi .xi / D bpi .ti D 1jxi / D
�

1 C exp
�

�
�

x’ibˇ
����1

For the matching estimator to be unbiased, conditional independence must hold;
i. e., the vector x must contain all variables that simultaneously influence treatment
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probability and the outcome of interest (“selection on observables”). Additionally,
we need to know which variables to include, and if we rely on an estimated propen-
sity score, the propensity score equation must be specified correctly with regard to
the functional form (Ho et al. 2007: 218). Because the true propensity score equation
is often unknown, it is difficult to correctly specify the functional form. However,
Ho et al. note the so-called “propensity score tautology”. They argue that a correctly
specified score will eliminate differences in the distributions of covariates, even if
the estimated propensity score cannot be proven to be correctly specified a priori.
If we conduct a balancing test and find the sample to be sufficiently balanced after
matching on the propensity score, we have found the correct specification. Thus,
balancing tests, rather than goodness-of-fit tests, are of the utmost importance when
using propensity score matching.

There are several ways to determine whether a sample obtained from propensity
score matching is sufficiently balanced. For example, one can test the equality of
means between the treatment and control groups with a t-test, as originally proposed
by Rosenbaum and Rubin (1985). However, this approach has a major disadvantage
in that t-tests depend on sample size. Matching often reduces sample size, and differ-
ent procedures lead to different sample sizes. Thus, non-significant test results after
matching may occur because the sample has been balanced; moreover, they may
occur if matching reduced the sample size but the sample remains imbalanced. Bal-
ancing tests based on significance are also criticized because balancing is a property
of the specific sample under consideration, rather than the population. If a differ-
ence in means in the sample is not significant, it can still be large and therefore
lead to bias (Ho et al. 2007)4. Another common balancing test involves carrying
out the matching procedure and then re-estimating the propensity score equation
for the matched sample. If the matching procedure has successfully balanced the
covariates, the pseudo-R2 should be near zero and non-significant. Similar to t-tests,
this measure depends on sample size. Large differences between the treatment and
control groups can be statistically non-significant in small samples, whereas there
is a high probability that even small differences will become statistically significant
in large samples.

Computing the standardized difference after matching (Rosenbaum and Rubin
1985) is also a common balancing test. This measure, which is not affected by
sample size, is expressed as follows:

sd iff D NxtD0 � NxtD1
q

�

s2tD0 C s2tD1

� � 0.5

where NxtD0 � NxtD1 is the difference in the mean for covariate x between the
treatment and control groups and s2 indicates the sampling variance for this covariate

4 There is also another way to look at it, as pointed out by the anonymous reviewer. In balancing tests
the desired outcome is to not reject the null hypothesis of no differences, whereas in classical hypothesis
tests the desired outcome is to reject the null. In the latter case, uncertainty is making it harder to reject the
undesired null, whereas in the former case, uncertainty works in favor of the researcher’s goal to obtain
a (seemingly) balanced sample.
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in each group. The standardized difference is the difference in means in the treatment
and control groups, expressed as a percentage of the “average” standard deviation
over both groups for each covariate. In their original work, Rosenbaum and Rubin
(1985) consider 20% to represent a large bias. Currently, however, biases below
3–5% are considered to indicate sufficient balance in matching analyses (Caliendo
and Kopeinig 2008: 48).

3 The Dehejia and Wahba (2002) algorithm for reducing
misspecification bias

To improve balance, Rosenbaum and Rubin (1984) were the first to propose refining
the propensity score by including squares and interactions. In the appendix to their
own paper, Dehejia and Wahba (2002) expanded on this idea and proposed a simple
algorithm that can be followed if balance is not reached for a given analysis. Dehejia
andWahba (2002) used results from a randomized experiment (the benchmark causal
effect) to compare the performance of different variants of the matching estimator.
They were mainly concerned with “whether or not to match with replacement, how
many comparison units to match to each treated unit, and (...) which matching mode
to choose” (Dehejia and Wahba 2002: 153). However, Dehejia and Wahba (2002)
also noted that the specification of the propensity score equation may influence the
results and proposed a method of identifying the most appropriate specification.

As described by Diaz and Handa (2006: 325), the DW algorithm “essentially
entails adding interaction and higher-order terms to [the] base model until tests
for mean differences in covariates between control and comparison units become
statistically insignificant” (see also Stuart 2010, p. 7). In detail, the DW algorithm
begins by (1) stratifying the sample based on quantiles (e. g., 0–0.2, ..., 0.8–1)
of a propensity score estimated with a parsimonious logistic regression (that is,
a specification containing only linear terms). The balance is checked within each
stratum by applying a t-test for the equality of means. If the covariates are not
balanced for some strata (i. e., the t-test is statistically significant), (2) the sample
should be divided into finer strata, and a new balancing test should be conducted. If
these finer strata are not balanced, they recommend that (3) the logistic regression
should be modified by “adding interaction terms and/or higher-order terms of the
covariates” (Dehejia and Wahba 2002, p. 161), starting with the least balanced
variable, until balance is achieved. Comparing the treatment effects obtained by
applying their algorithm to a benchmark estimate from a randomized experiment,
Dehejia andWahba (2002) concluded that their algorithm is successful. Both Dehejia
and Wahba (2002) and Rosenbaum and Rubin (1984) discussed their augmentation
algorithms in the context of a propensity score stratification procedure, not in the
context of matching on the propensity score.

The Dehejia and Wahba algorithm has several disadvantages and has thus been
criticized. Smith and Todd (2005a) criticized the algorithm’s lack of objective cri-
teria for choosing and refining the initial strata. This lack of objective criteria is
problematic because smaller strata include fewer cases; thus, the power of the test
is lower. As a consequence, t-tests become insignificant, even if the bias is still sub-
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stantial. Additionally, Smith and Todd (2005b) criticize the use of balancing tests per
se because they lack formal criteria for determining when the balance is sufficient.
In line with this argument, Lee (2013) demonstrated that balancing tests display
size problems. For the DW algorithm, he found that the t-test for balance led to
rejection in 23.8% of tested cases, instead of the conventional 5%. To alleviate these
high rejection rates, Lee (2013) developed a permutation version of the traditional
t-test. This updated test leads to test sizes of 3.5% for the DW algorithm; thus, it
is rather conservative. Lee (2013) also considered the standardized difference, ap-
plied a 20% threshold for indicating imbalance, and found a rejection rate of nearly
100%, instead of 5%. Unfortunately, the permutation test developed by Lee (2013)
is not applicable to standardized differences. However, the applied threshold is two
to three times as large as the 3–5% threshold proposed by Caliendo and Kopeinig
(2008: 48) and is thus too high; this fact partially explains the poor performance
of the standardized difference in Lee (2013). Finally, Iacus et al. (2012: 21) used
an empirical example to show that augmenting the propensity score equation can
increase bias, as well as decrease it. To our knowledge, except for an unpublished
manuscript by Smith and Zhang (2007), no Monte Carlo simulations have been
conducted to test the performance of the DW algorithm. Furthermore, a large part
of the criticism refers only to the application of the DW algorithm in the context of
propensity score stratification and/or propensity score weighting, thus it is not clear
if matching estimators are also subject to the same disadvantages.

4 A modified version of the Dehejia and Wahba (2002) algorithm and
two recent alternatives

Instead of abandoning the idea of augmenting the propensity score equation al-
together, we propose to modify the DW algorithm in a way that eliminates the
above problems but keeps the basic idea of augmentation intact. We are not the
first to extend the algorithm to propensity score matching. Indeed, some applied
researchers already have employed some of the modifications we propose (see, for
example, Diaz and Handa 2006: 325). However, we claim that we are the first to
present a systematic argument for such modifications and to systematically test the
performance of the modified algorithm using Monte Carlo simulations.

The modification that we propose and test begins (1) with a main-effect logit or
probit specification. The specification should include all covariates that are neces-
sary to fulfill the conditional independence assumption. (2) Propensity matching,
which is performed instead of stratification, is conducted using a standard match-
ing algorithm (e. g., nearest-neighbor matching with a caliper). By restricting the
augmentation algorithm to propensity score matching, instead of propensity strati-
fication, the subjectivity in determining the number of strata that was criticized by
Smith and Todd (2005a) is eliminated. In addition, Austin (2009) found that propen-
sity score matching outperforms propensity score stratification in terms of producing
a balance between treatment and control groups. (3) After matching, we determine
the standardized difference for all covariates (rather than performing t-tests), the
least balanced variable is identified, and the corresponding standardized difference
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is recorded. By using standardized differences instead of significance tests, the sensi-
tivity of the balancing checks to sample size is alleviated. (4) Steps 1–3 are repeated
several times, and the propensity score equation is augmented each time with an-
other interaction term and/or a higher-order term5. This step contrasts with that of
the original algorithm, which only augments the equation if a t-test indicates im-
balance. Because it is unclear what constitutes sufficient balance, we augment the
equation repeatedly and select the specification that produces the best balance. This
procedure should also avoid the problem that some augmented specifications reduce
balance, rather than improving it (Iacus et al. 2012: 21). (5) Among all of the tested
specifications, the specification that has the lowest value for the standardized bias
in step three is identified. By defining best balance in terms of the maximum imbal-
ance among all variables, the bias due to the worst balanced variable is minimized.
(6) The causal effect is estimated using the specification identified in step 5.

A different route was taken by Imbens and Rubin (2015), who proposed an al-
ternative augmentation algorithm. In contrast to the DW algorithm, they do not rely
on the propensity score tautology to select the propensity score equation. Rather,
their algorithm is based on step-wise logistic regression. However, the algorithm
tests whether each individual covariate should be included in the propensity score
equation at all, in addition to augmenting the existing set of covariates to avoid mis-
specification bias. Therefore, the algorithm conducts a broader specification search
than the DW algorithm by including or excluding entire variables, based on the
strength of their association with the treatment. As described in Imbens (2015), the
algorithm starts with selecting a subset of covariates that should be included in the
propensity score equation, irrespective of the strength of their association with the
treatment. Additional covariates, as well as additional second-order terms, are then
included in the propensity score equation, if they pass a specified threshold value.
More specifically, the decision to include an additional term is based on the like-
lihood ratio test statistic of the null hypothesis that the coefficient from a logistic
regression predicting treatment assignment is equal to zero. The threshold values
are recommended based on simulation analysis, i. e., 1 for additional covariates and
2.71 for additional second-order terms Imbens (2015).

In contrast to both Dehejia and Wahba (2002) and Imbens and Rubin (2015), the
estimator proposed by Hong (2010) does not use augmentation. It is based on the po-
tentially misspecified main effects propensity score equation. Hong (2010) focused
primarily on extending propensity score stratification to the case of multi-valued
treatments. However, this author also argued that the “[marginal mean weighting
through stratification (MMWS)] method usually provides a better approximation of
nonlinear or nonadditive relationships between treatment assignment and pretreat-
ment covariates” (Hong 2010, p. 523) and therefore is robust to incorrect specifica-
tion of the functional form of the propensity score equation.

5 Note that propensity score matching, and consequently the augmentation algorithm, do not involve the
outcome variable. Therefore, algorithms like those proposed here are not considered “data mining”. Bal-
ance testing can (and should) be conducted prior to hypothesis testing to maintain objectivity while search-
ing for the specification that provides the best balance, regardless of whether this specification supports or
rejects a given research hypothesis (Rubin 2001, 2007).
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Hong’s (2010) MMWS estimator combines weighting and propensity score strat-
ification. First, the sample of observations is divided into a number of strata, based
on the estimated and potentially misspecified propensity score. The strata are chosen
such that the number of observations in each stratum is approximately equal. As
a consequence of this stratification, within each stratum, the distribution of the co-
variates should be similar in both the treatment and control groups. Marginal mean
weights (mmw) are computed based on the following equation:

mmw D nsP .T D t/

nt;s

where P.T D t/ is the probability of receiving treatment version t. In the case of
binary treatments, only two versions exist, treatment and no treatment; however, the
method can be extended to multiple ordered and unordered treatments. ns is the
total number of observations in stratum s, whereas nt;s is the number of observa-
tions subjected to treatment version t within the same stratum s. To estimate the
causal effect, these stratum-specific weights are applied to all observations within
the common support.

Hong (2010) supported this argument using a Monte Carlo simulation. More
recently, Linden (2017a) compared Hong’s (2010) version to standard propensity
score stratification and found the former to be slightly more robust to misspecifica-
tion than the latter; both methods outperform inverse probability weighting. Linden
(2017a; see also Linden 2017b for a similar analysis) appears to both support Hong’s
(2010) methodological claim and to indicate that the need for augmentation is not
as strong as claimed by the methodologists Dehejia and Wahba (2002) and Imbens
and Rubin (2015). However, in a simulation with a more complex design, Linden
et al. (2016) found that the bias in MMWS is often similar to the bias in inverse
probability weighting, which can be substantial. No comparison to propensity score
matching with or without augmentation has been conducted so far.

5 Monte Carlo experiment

We conduct a Monte Carlo simulation to investigate the performance of the modified
DW algorithm and other estimators in the presence of misspecification of the propen-
sity score. We use two different simulation structures that have been developed for
similar purposes.

Simulation 1 follows a setup developed by Setoguchi et al. (2008) that has been
modified only slightly for our purposes. The simulation involves a continuous out-
come variable y and a binary treatment variable t (1 if treated, 0 if control) where
p(t = 1) = �0.5. Four covariates (x1, x2; x3 and x4/ are correlated with both the
treatment and the outcome, three covariates are correlated only with the treatment
(x5; x6 and x7), and another three covariates are correlated only with the outcome
(x8; x9 and x10). The covariates are generated such that two groups of some covari-
ates (x2 and x6; x4 and x9) are highly correlated (0.9) with each other, but not with
any of the other covariates. Other covariates are only moderately correlated (0.2)
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with each other (x1 and x5; x3 and x8) and also not correlated with the other co-
variates. The remaining correlations are set to 0. All of the covariates are generated
as standard normal random variables, but they are dichotomized after introducing
the correlations (x1, x3; x5, x6; x8 and x9/. We implement a continuous outcome
variable, following Lee et al. (2010), in which yi D 0.4ti C x’i˛ C "i ; however,
the coefficient vector ˛ is the same as in Setoguchi et al. (2008). The random error
term " is not correlated with any of the covariates, and "i � N.0,1/, leading to an
R2 of approximately 0.3.

The treatment indicator t (1 if treated, 0 if control) is generated from a binomial
distribution with probability pi .ti D 1/ D .1 C exp.�.f .x’i /ˇ///�1, with .i D
1; :::; N /, where the function f .x’i / is specified such that the propensity score
equation is characterized by increasing degrees of nonadditivity and nonlinearity
from Scenarios A to G. For example, in Scenario A, the true propensity score
equation contains only main effects, such that pi D .1 C exp.� .ˇ0 C ˇ1xi1 C
ˇ2xi2 C ˇ3xi3 C ˇ4xi4 C ˇ5xi5 C ˇ6xi6 C ˇ7xi7///

�1: In Scenario G, the
propensity score equation features 10 two-way interaction terms and 3 quadratic
terms, a situation Setoguchi et al. (2008) call moderate nonadditivity and nonlinearity
(see the appendix for a detailed listing).

The simulation is conducted by generating a population of size N, where N takes
the values of 200, 1000, and 2500. A logistic regression analysis is conducted to
estimate the propensity score bpi for each sample. Each Monte Carlo simulation
consists of R = 1000 replicates of the process, from generating the population N to
estimating the causal effect from the sample of N observations. We chose to estimate
the average treatment effect on the treated, since this is most common in empirical
applications.

The estimators we compare differ in several regards. They differ in terms of
the specification of the propensity score equation (i. e., main effects specifications
vs. augmentation algorithms), whether or not a treatment predictor is omitted and
whether propensity score matching or (in one case) propensity score weighting is
used. We first start with a main effects specification that does not omit a treatment
predictor but is misspecified with regard to the functional form of the propensity
score equation in all but Scenario A. This estimator is our benchmark because it
shows us to what degree bias arises when only the functional form of the propensity
score equation is misspecified. The second estimator uses a main effects specification
for the propensity score equation but omits variable x2, i. e., a variable associated
both with the treatment and the outcome. The third estimator differs from the sec-
ond one only in that it omits variable x7, a variable that is associated only with
the treatment and not with the outcome. By comparing the results obtained using
estimators two and three with those obtained using estimator one, we can assess
the size of the bias caused by misspecification. Causal effects are estimated by way
of propensity score matching in all three cases, and we choose the SNNM without
replacement with a caliper of 0.01. To estimate the causal effect, we use the Stata
add-on “psmatch2” (Leuven and Sianesi 2014).

The fourth estimator, mean marginal weighting through stratification (MMWS),
relies on weighting, rather than propensity score matching. To implement MMWS,
we first use the Stata add-on “pstrata” (version 1.1.1; Linden 2016) to find the
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“optimal” number of strata, which corresponds to finding no significant differences
in the mean propensity scores (p = 0.05) between the treatment and control groups
within each stratum. The algorithm starts with 2 strata and tests for the equality of
means. If significant differences remain, the sample is divided in 3 strata and the
test is repeated, etc. The algorithm stops either when no significant differences exist
or when one stratum contains no treatment or no control observations. The solution
is then passed to the Stata add-on “mmws” (version 1.21; Linden 2014) to estimate
the causal effect using the respective weights.

Only the fifth and sixth estimators use augmentation to find the preferred specifi-
cation. Starting with the fifth estimator, the modified Dehejia and Wahba algorithm
is implemented as described in Sect. 4. Dehejia and Wahba recommend including
interactions and higher-order terms for unbalanced variables, although there is no
guarantee that the resulting propensity score will balance the sample. Rather, anal-
ysists shouldtest for the equality of means and modify the equation if significant
differences remain. Only in that case, the score is re-estimated, and a new balancing
test is performed. This process is repeated until analysists find a specification that is
sufficiently balanced. Here, we modify the algorithm to always augment the equation
step by step, including first the squares of each variable and then all possible first-
order interactions one by one. This procedure yields several different estimates. The
number of these estimates depends on the number of covariates. From the various
specifications we choose the version for which the highest standardized difference
among the variables correlated with the treatment is the lowest of the consecutive
estimates (i. e., we minimize the maximum bias from the consecutive propensity
score estimates).

As implemented here, the modified DW algorithm systematically estimates sev-
eral logistic regressions, where the interactions and squares are applied to all co-
variates, not only those that are deemed unbalanced. Because we restrict ourselves
to first-order interactions and squares, the modified DW algorithm does not cover
all possible specifications of the propensity score. Furthermore, once a square or
an interaction term is included, it is no longer excluded from the estimation of
the propensity score. Thus, the simulation results are conservative because some
specifications that might reduce the balance even further are not considered. Addi-
tionally, we stress that none of the specifications coincide with the true one in either
Simulation 1 or in Simulation 2 below. This procedure reflects a situation in which
researchers remain agnostic about the true specification and follow what subject
matter researchers would consider a “mindless” strategy; that is, the interactions
and squares are included, regardless of any theoretical justification.

To implement the Imbens – Rubin (2015) algorithm, we use the Stata add-on
“psestimate” (Version 1.5.3, Carril 2016). We use the default settings for the thresh-
old values, as they are the ones recommended by Imbens and Rubin (2015). However,
the Stata add-on “psestimate” unfortunately does not permit the selection of some
covariates to be part of the propensity score equation, regardless of the strength of
their correlation with the treatment.

Simulation 1 stops at Scenario G, a situation characterized by Setoguchi et al.
(2008) as moderate nonadditivity and nonlinearity in the propensity score equation.
In a second simulation (Simulation 2), we model a more extreme form of non-
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additivity and nonlinearity. Furthermore, we also investigate the consequences of
nonadditivity and nonlinearity in the outcome equation for the performance of the
modified DW algorithm. To do this, the second simulation structure follows a setup
developed by Kang and Schafer (2007) that has been slightly modified for our pur-
poses. In contrast to Simulation 1, this setup includes fewer covariates6 but allows for
nonlinearities and nonadditivity in both the outcome and propensity score equations.
In addition, the nonlinearity and nonadditivity in both equations is more complex
than those in Simulation 1, explaining why we refer to it as strong nonadditivity and
nonlinearity. Four covariates (z1, z2; z3 and z4/ are generated following a standard
normal distribution and subsequently transformed, such that

xi1 D exp
�zi1

2

�

xi2 D zi2

1 C exp .zi1/
C 10

xi3 D
�zi1zi3

25
C 0.6

�3

xi4 D .z2 C z4 C 20/2

This setup is used to compare four estimators. First, we analyze the performance
of a propensity score matching estimator in which the analyst guesses the correct
specification of the propensity score equation. Second, we analyze the performance
of propensity score matching based on a misspecified main effects propensity score
equation. Third, we examine whether marginal mean weighting based on the mis-
specified main effects propensity score equation eliminates bias associated with
potential misspecification. Fourth and fifth, we investigate the performance of both
the Dehejia and Wahba and the Imbens and Rubin augmentation algorithms.

We distinguish two scenarios. In Scenario 1, the outcome equation is based on
z1 to z4 such that nonlinearity and nonadditivity is only present in the propensity
score equation; yi D 2.1 C 0.4ti C 2.74zi1 C 1.37zi2 C 1.37zi3 C 1.37zi4 C ©i. In
Scenario 2, the variables x1 to x4 are substituted for the z-variables in the outcome
equation, thus keeping the coefficients but causing the outcome equation to also be
characterized by strong nonlinearity and nonadditivity.7

Simulation 2 is also conducted by generating a population of size N, where
N takes the values 200, 1000, and 2500, a logistic regression analysis is conducted
to estimate the propensity score bpi .ti D 1/for each sample. Moreover, the average
treatment effect on the treated is estimated and averaged over the 1000 replications
of the simulation. The implementations of PSM, MMMS and the two augmentation
algorithms follow those in Simulation 1.

6 However, all four covariates are correlated with both the treatment and the outcome. Given that covariates
correlated to either the treatment or the outcome are not expected to contribute to eliminating bias, the
simulations are more similar than it seems at first glance.
7 Note that, in contrast to Kang and Schafer (2007), we do not perform additional regression adjustments.
Instead, we merely estimate the causal effect via the (weighted) difference in mean outcomes of the treat-
ment and control groups. Because we do not use an outcome model to estimate the causal effect, only
the propensity score equation can be misspecified. However, the data-generating process can be linear and
additive or non-linear and non-additive for both the treatment and the outcome.
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6 Results

In this section, we present the results from the two simulations, both of which are
conducted with 200, 1000 and 2500 observations. In Simulation 1, Scenarios A
to G differ with regard to the extent of nonlinearity and nonadditivity in the true
propensity equation, but the outcome equation is always linear and additive. We
compare the effects of the different estimation strategies on the bias of the causal
effect estimate, specifically the average treatment effect on the treated. We first
discuss the results presented in Table 1, which are based on simulations with 1000
observations, and then compare these to the results for smaller and larger samples
that are presented in Table 2 and 3, respectively.

We start with results for propensity score matching based on a main effects
logistic regression that includes all seven covariates. In Scenario A, this specification
coincides with the true specification, and we find only a small absolute bias. In
Scenarios B–G, the true specification is characterized by increasing nonlinearity and
nonadditivity, and therefore the main effects logistic regression becomes increasingly
misspecified. However, contrary to expectations, the bias does not increase with the
degree of misspecification. This result contrasts with that obtained for propensity
score weighting performed using the same simulation setup (Setoguchi et al. 2008).
Therefore, it appears that misspecification bias is less of a problem for propensity
score matching than other propensity score methods, especially weighting.

Compared to misspecification bias, omitting an important covariate leads to a sub-
stantial bias of around 10%. In line with statistical theory and previous research, we
find this omitted variable bias arises only when the variable is associated with both
the treatment and the outcome, but not when the omitted variable is associated only
with the treatment.

Even if misspecification bias is generally small, there are some differences be-
tween estimators, both between those that do and do not omit treatment predictors
and between those that are based on main effects propensity score equations and
those that rely on augmentation algorithms. In the special case were the main-effect
logit is correctly specified, we find that matching on the propensity score leads to
a small absolute bias of 1.6%. The bias is similar for marginal mean weighting
(1.9%). However, the modified DW augmentation algorithm has a bias of only 1%.
Thus, re-estimating the propensity score after including additional nonlinear terms
further reduces the already small bias compared to the correctly specified equation.
This result occurs because several attempts at propensity score matching are made
per replication, and the algorithm chooses the one with the lowest bias. A similar
reduction in bias is achieved by the IR augmentation algorithm. In Scenarios B to G,
the misspecification bias remains small, although the degree of nonlinearity and non-
additivity is greater. For most of the tested specifications, MMWS does not reduce
the bias and sometimes increases it; the absolute bias reaches 2.5% in Scenario E.
In contrast, the two augmentation algorithms mostly continue to reduce bias.

Over all of the tested scenarios, the standard errors are similar for all estimators.
In contrast, the mean standardized differences diverge between estimation strategies.
First, even when propensity score matching is applied with misspecified main effects,
the mean standardized difference is between 3 and 4% and thus well within the
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range considered to indicate sufficient balance in a matching analysis (Caliendo
and Kopeinig 2008: 48). Because these low values are accompanied by only small
misspecification bias, there is no contradiction. Also, bias reduction using the DW
algorithm is accompanied by a simultaneous reduction in the mean standardized
differences, which are reduced to below 2%. However, although marginal mean
weighting also reduces the mean standardized bias in the covariates compared to the
misspecified propensity score matching, this change is not always accompanied by
reductions in bias. Notably, in the case where a treatment predictor is omitted, the
standardized difference remains low with a maximum of 5%, even in the case of
omitted variable bias. On the other hand, the standardized difference is quite high,
reaching almost 12%, even if omitting a variable does not induce bias.

Comparing the results for 1000 observations to those for the very small sample
of 200 observations (Table 2) shows that the standard errors, as well as the mean
standardized bias in the covariates, are higher, as expected. The omitted variable
bias does not seem to depend strongly on sample size. Although the misspecifica-
tion bias is larger in the smaller sample, it is still rather small. Also in the small
samples, the bias does not change substantially, even when the degree of misspec-
ification increases. Again, the DW and IR algorithms slightly improve upon both
the correct main effects specification and the misspecified main effects logit regres-
sions. However, when the degree of misspecification increases, the performance of
both augmentation algorithms decreases. In contrast to the medium-sized sample, in
smaller samples, the marginal mean weighting does not reduce the bias but instead
increases it; the absolute bias often reaches 5 to 6%. Both the standard errors and
mean standardized differences are generally higher in the smaller sample than in
the medium-sized sample, as is to be expected. If the sample size increases to 2500
observations (Table 3), we find that the misspecification bias mostly disappears, re-
gardless of the degree of misspecification and whether augmentation is used or not.
The standard errors and mean standardized differences are very small.

In Simulation 2, where both the true propensity score and the outcome equation
are allowed to contain high levels of nonlinearity and nonadditivity, the results are
quite different from those of Simulation 1. Again, we start by discussing the results
for the case with 1000 observations shown in Table 4. In Scenario I, the outcome
equation is strictly linear and additive, whereas the true propensity score equation is
not. In such cases, propensity score matching that uses the correct specification to
estimate the propensity score is only slightly biased (by 1%), and this degree of bias
is similar to that obtained with the correct main effects specification in Simulation 1.
In contrast to Simulation 1, however, we find that the misspecified main effects
estimation of the propensity score equation leads to a substantially larger absolute
bias of 13%. This bias is virtually unchanged by marginal mean weighting. This
result contradicts the claims of both Hong (2010) and Linden (2017a, 2017b) that
stratification alleviates or even eliminates misspecification bias, but it is in line with
results obtained in Linden et al. (2016). In contrast, the DW algorithm reduces the
absolute bias by about half (to 7%), whereas the IR algorithm reduces the bias to
9%. It seems that, in the case of higher levels of nonlinearity and nonadditivity,
misspecification of the propensity score equation actually does lead to considerable
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bias. Both of the augmentation algorithms, but not MMWS, are able to reduce the
bias substantially, but they are not able to eliminate it altogether.

Turning to Scenario II, where the true outcome equation is strongly nonlinear and
nonadditive, propensity score matching is biased by approximately 11%, even when
it is based on a correctly specified model. This result is in line with that of Kang
and Schafer (2007) for weighting and double robust estimators. If propensity score
estimation is additionally based on a misspecified main effects logit, the estimate
is severely biased, and the absolute bias becomes 77%. Surprisingly, MMWS is as
biased in Scenario II as in Scenario I; i. e., the absolute bias is 16%. Whereas both
augmentation algorithms perform similarly in Scenario I, the IR algorithm does not
reduce the bias; instead, it increases it slightly (to 82%) in Scenario II. In contrast,
the DW algorithm leads to a strong decrease in the bias and leads to an absolute bias
of merely 2.6%. The suboptimal performance of the IR algorithm is, however, most
likely attributable to the specific implementation in stata. The user written program
does not allow for retaining specific variables in the propensity score equation,
irrespective of their correlation with the treatment. This restriction might have lead
the algorithm to eliminate variables from the propensity score equation that have
only small correlation to the treatment, but if the same variables are highly correlated
to the outcome, their exclusion might still be problematic.

Similar to Simulation 1, the relationship between the degree of bias and the
mean standardized difference is not unambiguous. For both the unbiased and the
(moderately and severely) biased estimators, the values of the mean standardized
bias are similar and well within the accepted range of 2–5%. In contrast, the mean
standardized bias is in fact lowest for the DW algorithm, which is the least biased
estimator. We interpret this result as evidence for the point made in Ho et al. (2007),
who argued that even small standardized differences should be avoided for unbiased
estimation.

The observed pattern does not change when the results from Simulation 2 obtained
with populations of 1000 observations are compared with those obtained using
much smaller or larger samples (Tables 5 and 6). Regardless of sample size, the
DW algorithm performs best among the selected estimators, even if the outcome
equation is nonlinear and nonadditive.

7 Conclusions

In this paper, we tested the performance of augmentation as proposed by Dehejia
and Wahba (2002) to reduce bias due to misspecification. We proposed to slightly
modify the original algorithm to alleviate the problems pointed out by its critics. The
original algorithm involves systematically introducing interactions and higher-order
terms while checking whether balance is improved. There is, however, no guarantee
that balance will improve, even if the introduced interactions are theoretically sound.
Therefore, the modified Dehejia and Wahba–algorithm proposes to test several spec-
ifications and select the one that produces the best balanced sample. The step-wise
cumulative augmentation of the logistic regression by introducing interactions and
higher-order terms is a simple and convenient strategy to reduce bias.
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Based on the two preceding Monte Carlo simulations, we can draw several con-
clusions. From the first simulation, we learned that compared to omitting a relevant
variable, misspecifying the functional form in the model that estimates the propensity
score induces only small bias. Even in cases where the true equation is characterized
by moderate nonlinearity and nonadditivity, misspecification is often negligible, as
long as the outcome equation is linear and additive. However, the modified Dehejia
and Wahba (2002) algorithm still helps to further reduce the misspecification bias.
An alternative augmentation algorithm suggested by Imbens and Rubin (2015) per-
formed similarly, whereas a variant of propensity score stratification proposed by
Hong (2010) performed slightly worse, especially in small samples.

From the second simulation we learned that in case of high nonlinearity and
nonadditivity, misspecification bias can be quite severe. If the functional form of
the propensity score equation is misspecified, but the outcome equation is linear
and additive, misspecification bias is quite substantial. If in addition, the outcome
equation is also highly nonlinear and nonadditive, bias becomes severe. In both
cases, however, we found the modified Dehejia and Wahba–algorithm to reduce bias
markedly, whereas the Imbens and Rubin (2015) algorithm only reduced bias if the
outcome equation was linear and additive.

In all, misspecification will not always induce bias, especially when the true equa-
tion is only moderately nonlinear and nonadditive. Because the true specification of
the propensity score equation is unknown, it seems prudent, however, to always
take measures to avoid misspecification bias. We found the modified Dehejia and
Wahba–algorithm to do a good job in reducing bias, especially compared to propen-
sity score stratification and often also compared to the recent proposal by Imbens
and Rubin (2015).
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Appendix

Simulation 1 True propensity score models
Scenario A (a model with additivity and linearity):

p .t D 1jx/ D .1 C exp f� .“0 C “1x1 C “2x2 C “3x3 C “4x4 C “5x5 C “6x6 C “7x7/g/�1

Scenario B (a model with mild non-linearity):

p .t D 1jx/
D .1 C exp f� .“0 C “1x1 C “2x2 C “3x3 C “4x4 C “5x5 C “6x6 C “7x7 C “2x2x2/g/�1
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Scenario C (a model with moderate non-linearity):

p.t D 1jx/ D .1 C exp

f�.“0 C “1x1 C “2x2 C “3x3 C “4x4 C “5x5 C “6x6 C “7x7 C “2x2x2 C “4x4x4 C “7x7x7/g/�1

Scenario D (a model with mild non-additivity):

p.t D 1jx/ D .1 C expf�.“0 C “1x1 C “2x2 C “3x3 C “4x4 C “5x5 C “6x6 C “7x7

C“1 � 0.5 � x1x3 C “2 � 0.7 � x2x4 C “4 � 0.5 � x4x5 C “5 � 0.5 � x5x6/g/�1

Scenario E (a model with mild non-additivity and non-linearity):

p.t D 1/x/ D .1 C expf�.“0 C “1x1 C “2x2 C “3x3 C “4x4 C “5x5 C “6x6

C “7x7 C “2x2x2 C “1 � 0.5 � x1x3 C “2 � 0.7 � x2x4 C “4 � 0.5 � x4x5C
“5 � 0.5 � x5x6/g/�1

Scenario F (a model with moderate non-additivity):

p .t D 1jx/

D

0

B

B

B

B

@

1 C exp

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

�

0

B

B

B

B

@

“0 C “1x1 C “2x2 C “3x3 C “4x4 C “5x5 C “6x6 C “7x7
C“1 � 0.5 � x1x3 C “2 � 0.7 � x2x4 C “3 � 0.5 � x3x5
C“4 � 0.7 � x4x6 C “5 � 0.5 � x5x7 C “1 � 0.5 � x1x6
C“2 � 0.7 � x2x3 C “3 � 0.5 � x3x4 C “4 � 0.5 � x4x5
C“5 � 0.5 � x5x6
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>

>

>
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>

>

>

>
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A
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Scenario G (a model with moderate non-additivity and non-linearity):

p .t D 1jx/

D
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1 C exp
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“0 C “1x1 C “2x2 C “3x3 C “4x4 C “5x5 C “6x6 C “7x7
C“2x2x2 C “4x4x4 C “7x7x7 C “1 � 0.5 � x1x3
C“2 � 0.7 � x2x4 C “3 � 0.5 � x3x5 C “4 � 0.7 � x4x6
C“5 � 0.5 � x5x7 C “1 � 0.5 � x1x6 C “2 � 0.7 � x2x3
C“3 � 0.5 � x3x4 C “4 � 0.5 � x4x5 C “5 � 0.5 � x5x6
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C

C

C

A
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>
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�1

Outcome model Scenario A–G:

y.x/ D .1 C exp f� .’0 C ’1x1 C ’2x2 C ’3x3 C ’4x4 C ’5x8 C ’6x9 C ’7x10 C ”1t/g/�1
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Table 7 Coefficients of propen-
sity score and outcome model

“0 D 0

“1 D 0.8

“2 D �0.25

“3 D 0.6

“4 D �0.4

“5 D �0.8

“6 D �0.5

“7 D 0.7

’0 D �3.85

’1 D 0.3

’2 D �0.36

’3 D �0.73

’4 D �0.2

’5 D 0.71

’6 D �0.19

’7 D 0.26

”1 D �0.4
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