Skip to main content

Advertisement

Log in

Assessment of Prostate and Bladder Cancer Genomic Biomarkers Using Artificial Intelligence: a Systematic Review

  • Published:
Current Urology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The aim of the systematic review is to assess AI’s capabilities in the genetics of prostate cancer (PCa) and bladder cancer (BCa) to evaluate target groups for such analysis as well as to assess its prospects in daily practice.

Recent Findings

In total, our analysis included 27 articles: 10 articles have reported on PCa and 17 on BCa, respectively. The AI algorithms added clinical value and demonstrated promising results in several fields, including cancer detection, assessment of cancer development risk, risk stratification in terms of survival and relapse, and prediction of response to a specific therapy. Besides clinical applications, genetic analysis aided by the AI shed light on the basic urologic cancer biology. We believe, our results of the AI application to the analysis of PCa, BCa data sets will help to identify new targets for urological cancer therapy.

Summary

The integration of AI in genomic research for screening and clinical applications will evolve with time to help personalizing chemotherapy, prediction of survival and relapse, aid treatment strategies such as reducing frequency of diagnostic cystoscopies, and clinical decision support, e.g., by predicting immunotherapy response. These factors will ultimately lead to personalized and precision medicine thereby improving patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

Abbreviations

AI:

Artificial intelligence

ANN:

Artificial neural network

AUC:

Area under curve

BCa:

Bladder cancer

CRPCa:

Castrate-resistant PCa

CSS:

Cancer-specific survival

DEGs:

Differentially expressed genes

DFS:

Disease-free survival

FRG:

Ferroptosis-related gene

ICI:

Immune checkpoint inhibitor

OS:

Overall survival

PCa:

Prostate cancer

PFS:

Progression-free survival

RFS:

Relapse-free survival

RT:

Radiation therapy

TURBT:

Transurethral resection of bladder tumor

References

Papers of particular interest, published recently, have been highlighted as: •  Of importance •• Of major importance

  1. Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, et al. Global cancer observatory: cancer today. Lyon: International Agency for Research on Cancer; 2020. https://gco.iarc.fr/today. Accessed Feb 2021.

  2. Van Booven DJ, et al. A Systematic Review of Artificial Intelligence in Prostate Cancer. 2021;31–39.

  3. Hamet P, Tremblay J. Artificial intelligence in medicine. Metabolism. 2017;69:S36–40. https://doi.org/10.1016/j.metabol.2017.01.011.

    Article  CAS  Google Scholar 

  4. Haug CJ, Drazen JM. Artificial Intelligence and Machine Learning in Clinical Medicine, 2023. N Engl J Med. 2023;388(13):1201–8. https://doi.org/10.1056/NEJMra2302038.

    Article  CAS  PubMed  Google Scholar 

  5. Hosein S, Reitblat CR. Clinical applications of artificial intelligence in urologic oncology. 2020;30(6):748–753. https://doi.org/10.1097/MOU.0000000000000819.

  6. Dias R, Torkamani A. Artificial intelligence in clinical and genomic diagnostics. Genome Med. 2019;11(1). https://doi.org/10.1186/S13073-019-0689-8.

  7. Phillips B, et al. Levels of Evidence, Oxford Centre for Evidence-based Medicine; 2011.

  8. Li R, Dong X, Ma C, Liu L. Computational identification of surrogate genes for prostate cancer phases using machine learning and molecular network analysis. Theor Biol Med Model. 2014;11(1):1–12. https://doi.org/10.1186/1742-4682-11-37.

    Article  Google Scholar 

  9. Elmarakeby HA, et al. Biologically informed deep neural network for prostate cancer discovery. Nature. 2021;598(7880):348–52. https://doi.org/10.1038/s41586-021-03922-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dong H, Wang X. Identification of Signature Genes and Construction of an Artificial Neural Network Model of Prostate Cancer. J Healthc Eng. 2022;2022. https://doi.org/10.1155/2022/1562511.

  11. • Wang C, Li J. A deep learning framework identifies pathogenic noncoding somatic mutations from personal prostate cancer genomes. Cancer Res. 2021;80(21):4644–54. https://doi.org/10.1158/0008-5472.CAN-20-1791The only article in the observed area related to noncoding alterations on cancer adverse clinical manifestation.

    Article  Google Scholar 

  12. • Lee S, Kerns S, Ostrer H, Rosenstein B, Deasy JO, Oh JH. Machine Learning on a Genome-wide Association Study to Predict Late Genitourinary Toxicity After Prostate Radiation Therapy. Int J Radiat Oncol Biol Phys. 2018;101(1):128–35. https://doi.org/10.1016/J.IJROBP.2018.01.054. Data presented about long-term outcomes of radiotherapy, including toxicity, depending on genes alterations.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hou Q, et al. RankProd Combined with Genetic Algorithm Optimized Artificial Neural Network Establishes a Diagnostic and Prognostic Prediction Model that Revealed C1QTNF3 as a Biomarker for Prostate Cancer. EBioMedicine. 2018;32:234–44. https://doi.org/10.1016/J.EBIOM.2018.05.010.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Shamsara E, Shamsara J. Bioinformatics analysis of the genes involved in the extension of prostate cancer to adjacent lymph nodes by supervised and unsupervised machine learning methods: The role of SPAG1 and PLEKHF2. Genomics. 2020;112(6):3871–82. https://doi.org/10.1016/j.ygeno.2020.06.035.

    Article  CAS  PubMed  Google Scholar 

  15. Lin E, et al. Identification of Somatic Gene Signatures in Circulating Cell-Free DNA Associated with Disease Progression in Metastatic Prostate Cancer by a Novel Machine Learning Platform. Oncologist. 2021;26(9):751–60. https://doi.org/10.1002/onco.13869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Weitz P, et al. Transcriptome-wide prediction of prostate cancer gene expression from histopathology images using co-expression-based convolutional neural networks. Bioinformatics. 2022;38(13):3462–9. https://doi.org/10.1093/BIOINFORMATICS/BTAC343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lallous N, et al. Functional analysis of androgen receptor mutations that confer anti-androgen resistance identified in circulating cell-free DNA from prostate cancer patients. Genome Biol. 2016;17(1). https://doi.org/10.1186/S13059-015-0864-1.

  18. Bohl CE, Miller DD, Chen J, Bell CE, Dalton JT. Structural basis for accommodation of nonsteroidal ligands in the androgen receptor. J Biol Chem. 2005;280(45):37747–54. https://doi.org/10.1074/JBC.M507464200.

    Article  CAS  PubMed  Google Scholar 

  19. Hoffman-Censits J, Kelly WK. Enzalutamide: a novel antiandrogen for patients with castrate-resistant prostate cancer. Clin Cancer Res. 2013;19(6):1335–9. https://doi.org/10.1158/1078-0432.CCR-12-2910.

    Article  CAS  PubMed  Google Scholar 

  20. Pal SK, Stein CA, Sartor O. Enzalutamide for the treatment of prostate cancer. Expert Opin Pharmacother. 2013;14(5):679–85. https://doi.org/10.1517/14656566.2013.775251.

    Article  CAS  PubMed  Google Scholar 

  21. Bohl CE, Gao W, Miller DD, Bell CE, Dalton JT. Structural basis for antagonism and resistance of bicalutamide in prostate cancer. Proc Natl Acad Sci U S A. 2005;102(17):6201–6. https://doi.org/10.1073/PNAS.0500381102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Clegg NJ, et al. ARN-509: a novel antiandrogen for prostate cancer treatment. Cancer Res. 2012;72(6):1494–503. https://doi.org/10.1158/0008-5472.CAN-11-3948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fizazi K, Smith MR, Tombal B. Clinical Development of Darolutamide: A Novel Androgen Receptor Antagonist for the Treatment of Prostate Cancer. Clin Genitourin Cancer. 2018;16(5):332–40. https://doi.org/10.1016/J.CLGC.2018.07.017.

    Article  PubMed  Google Scholar 

  24. Snow O, Lallous N, Ester M, Cherkasov A. Deep learning modeling of androgen receptor responses to prostate cancer therapies. Int J Mol Sci. 2020;21(16):1–11. https://doi.org/10.3390/ijms21165847.

    Article  CAS  Google Scholar 

  25. • Bartsch G, et al. Use of Artificial Intelligence and Machine Learning Algorithms with Gene Expression Profiling to Predict Recurrent Nonmuscle Invasive Urothelial Carcinoma of the Bladder. J Urol. 2016;195(2):493–8. https://doi.org/10.1016/j.juro.2015.09.090The only article related to AI use in bladder cancer prognosis.

    Article  PubMed  Google Scholar 

  26. Borkowska EM, et al. Molecular subtyping of bladder cancer using Kohonen self-organizing maps. Cancer Med. 2014;3(5):1225–34. https://doi.org/10.1002/cam4.217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dai ZT, et al. Prognostic Value of Members of NFAT Family For Pan-Cancer and a Prediction Model Based on NFAT2 in Bladder Cancer. Aging (Albany. NY). 2021;13(10):13876–13897. https://doi.org/10.18632/aging.202982.

  28. • Hu S, et al. Robust Prediction of Prognosis and Immunotherapy Response for Bladder Cancer through Machine Learning Algorithm,” Genes (Basel). 13(6). https://doi.org/10.3390/genes13061073. Complex and complete analysis of AI assessment of correlation between aberrant genes presence and response to immunotherapy.

  29. Mao XD, Chen SH,  Li GH. Identification of a ten-long noncoding RNA signature for predicting the survival and immune status of patients with bladder urothelial carcinoma based on the GEO database: a superior machine learning model. Aging (Albany. NY). 2021;13(5):6957–6981. https://doi.org/10.18632/aging.202553.

  30. De Maturana EL, et al. Application of multi-SNP approaches Bayesian LASSO and AUC-RF to detect main effects of inflammatory-gene variants associated with bladder cancer risk. PLoS One. 2013;8(12). https://doi.org/10.1371/journal.pone.0083745.

  31. Zhou M, et al. Computational recognition of lncRNA signature of tumor-infiltrating B lymphocytes with potential implications in prognosis and immunotherapy of bladder cancer,” Brief Bioinform. 2021;22(3). https://doi.org/10.1093/bib/bbaa047.

  32. Catto JWF, et al. The Application of Artificial Intelligence to Microarray Data: Identification of a Novel Gene Signature to Identify Bladder Cancer Progression. Eur Urol. 2010;57(3):398–406. https://doi.org/10.1016/j.eururo.2009.10.029.

    Article  CAS  PubMed  Google Scholar 

  33. Ciaramella A, Di Nardo E, Terracciano D, Conte L, Febbraio F, Cimmino A. A new biomarker panel of ultraconserved long non-coding RNAs for bladder cancer prognosis by a machine learning based methodology. BMC Bioinformatics. 2023;23(Suppl):6. https://doi.org/10.1186/S12859-023-05167-6.

    Article  Google Scholar 

  34. Yates DR, et al. Promoter hypermethylation identifies progression risk in bladder cancer. Clin Cancer Res. 2007;13(7):2046–53. https://doi.org/10.1158/1078-0432.CCR-06-2476.

    Article  CAS  PubMed  Google Scholar 

  35. Chen S, Zhang N, Wang T, Zhang E, Wang X., Zheng J. Biomarkers of the Response to Immune Checkpoint Inhibitors in Metastatic Urothelial Carcinoma. Front Immunol. 2020;11. https://doi.org/10.3389/fimmu.2020.01900.

  36. Chen H, Yang W, Ji Z. Machine learning-based identification of tumor-infiltrating immune cell-associated model with appealing implications in improving prognosis and immunotherapy response in bladder cancer patients. Front Immunol. 2023;14. https://doi.org/10.3389/fimmu.2023.1171420.

  37. Wang Y, Chen L, Ju L, Xiao Y, Wang X. Tumor mutational burden related classifier is predictive of response to PD-L1 blockade in locally advanced and metastatic urothelial carcinoma. Int Immunopharmacol. 2020;87. https://doi.org/10.1016/j.intimp.2020.106818.

  38. Wang J, He X, Bai Y, Du G, Cai M. Identification and validation of novel biomarkers affecting bladder cancer immunotherapy via machine learning and its association with M2 macrophages. Front Immunol. 2022;13. https://doi.org/10.3389/fimmu.2022.1051063.

  39. Wang Y, et al. Immune-related signature predicts the prognosis and immunotherapy benefit in bladder cancer. Cancer Med. 2020;9(20):7729–41. https://doi.org/10.1002/cam4.3400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xu H, et al. Artificial intelligence-driven consensus gene signatures for improving bladder cancer clinical outcomes identified by multi-center integration analysis. Mol Oncol. 2022;16(22):4023–42. https://doi.org/10.1002/1878-0261.13313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Su PW, Sen Chen B. Systems Drug Design for Muscle Invasive Bladder Cancer and Advanced Bladder Cancer by Genome-Wide Microarray Data and Deep Learning Method with Drug Design Specifications. Int J Mol Sci. 2022;23(22). https://doi.org/10.3390/ijms232213869.

  42. Wan Q, Pal R. An Ensemble Based Top Performing Approach for NCI-DREAM Drug Sensitivity Prediction Challenge. PLoS One. 2014;9(6). https://doi.org/10.1371/journal.pone.0101183.

  43. Ma J, Sheridan RP, Liaw A, Dahl GE, Svetnik V. Deep Neural Nets as a Method for Quantitative Structure − Activity Relationships. 2015. https://doi.org/10.1021/ci500747n.

  44. Gui J, Li H. Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data. Bioinformatics. 2005;21(13):3001–8. https://doi.org/10.1093/bioinformatics/bti422.

    Article  CAS  PubMed  Google Scholar 

  45. Nakagawa H, Fujita M. Whole genome sequencing analysis for cancer genomics and precision medicine. Cancer Sci. 2018;109(3):513–22. https://doi.org/10.1111/cas.13505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. •• Schwarze K, Buchanan J, Taylor JC, Wordsworth S. Are whole-exome and whole-genome sequencing approaches cost-effective? A systematic review of the literature. Genet Med. 2018;20(10):1122–30. https://doi.org/10.1038/gim.2017.247. The article outlines the cost-effectiveness of whole-genome sequencing and thus helps to estimate the AI use in clinical practice and research.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: A. Morozov, A. Zvyagin, D. Enikeev Data curation: A. Bazarkin, A. Morozov, A. Androsov, S. Koroleva Analysis and interpretation of data: A. Bazarkin, A. Morozov, A. Androsov, S. Koroleva Writing - original draft: A. Bazarkin, A. Morozov, A. Androsov, S. Koroleva Writing - review and editing: H. Fajkovic, J. Rivas, N. Singla, J. Teoh, A. Zvyagin, S. Shariat, B. Somani, D. Enikeev Supervision: A. Zvyagin, Bhaskar Somani, D. Enikeev

Corresponding author

Correspondence to Dmitry Enikeev.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Studies Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors were performed in accordance with all applicable ethical standards including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazarkin, A., Morozov, A., Androsov, A. et al. Assessment of Prostate and Bladder Cancer Genomic Biomarkers Using Artificial Intelligence: a Systematic Review. Curr Urol Rep 25, 19–35 (2024). https://doi.org/10.1007/s11934-023-01193-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11934-023-01193-2

Keywords

Navigation